A granular computing approach to machine learning

2010.09.30

Eung-Hee Kim
Agenda

• Abstract
• Introduction
• A granular computing view of data mining
• A typical machine learning problem
• Classification algorithms
• Conclusion
Abstract

• **Goal of Granular Computing**
 – Using of granules in problem solving

• **Classification**
 – intensely studied problems in machine learning

• **Aim of this paper**
 – Proposing a granular computing approach for classification
 • By studying & extending ID3 and PRISM algorithm
Introduction

• Knowledge discovery & Data mining
 – Extraction of interesting info & patterns from large databases
 – Major goal
 • Learning & Identification for knowledge, patterns and regularities

• Representation of knowledge
 – Rules / Black box systems (in ANN)

• Lots of studies have focused on
 – Algorithms for many different rules
 – Speeding up of existing algorithms
Introduction

• In logicians’ view point

Data mining (esp., rule mining)

Formation of concepts

Identification of relationship between concepts

Concept (granule)

Intension

A set of properties (attributes)

Extension (granule)

A set of entities (objects)
Introduction

Granular Computing

- methods
- theories
- tools
- techniques

Using Granules
(Subset of universe)

- subsets
- classes
- clusters

Concept := (extent, intent) = Unit of thought

An example of granular computing data mining model

- Result from FCA
- Result from Granular computing

- Concept
- Extent
- Intent
- Granule
- Description
Introduction

Granulation cases

Partition

Covering

ID3

PRISM
A granular computing view of data mining

- Granule: a subset of universe
 - \{A\}, \{A, B\}, \{A, B, C\}, ...

- Granulation: a family of granules containing every objects in the universe
 - \{\{A, B, C\}, \{D, E\}\}, \{\{A, B\}, \{B, C, D\}, \{E\}\}, ...

- Partition, Covering \(\subseteq\) Granulation
 - Partition:= disjoint subsets of the universe
 - \{\{A, B, C\}, \{D, E\}\}, ...
 - Covering:= subsets of the universe allowing overlapping
 - \{\{A, B\}, \{B, C, D\}, \{E\}\}
 - Partition \(\subseteq\) Covering
 - \(\therefore\) Granule = each element of partitions or coverings
Basic definitions & symbols

• Information table
 – \(S=(U, A_t, L, \{V_a| a \in A_t\}, \{I_a| a \in A_t\}) \)
 • \(U \): a finite nonempty set of objects
 – \(\{o_1, o_2, o_3, \ldots, o_8\} \)
 • \(A_t \): a finite nonempty set of attributes
 – \(\{\text{height, hair, eyes}\} \)
 • \(L \): a language defined using attributes in \(A_t \)
 • \(V_a \): a nonempty set of values for \(a \in A_t \)
 – \(V_{\text{hair}}=\{\text{blond, red, dark}\} \)
 • \(I_a \): an information function \(U \rightarrow V_a \)
 • \(I_A(x) \) where \(A \subseteq A_t \) and \(x \in U \): the value of an object \(x \) on \(A \)
 – \(I_{\{\text{height}\}}(o_1)=[\text{short}] \), \(I_{\{\text{height, hair, eyes}\}}(o_2)=[\text{short, blond, brown}] \)

<table>
<thead>
<tr>
<th>object</th>
<th>height</th>
<th>hair</th>
<th>eyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>o₁</td>
<td>short</td>
<td>blond</td>
<td>blue</td>
</tr>
<tr>
<td>o₂</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
</tr>
<tr>
<td>o₃</td>
<td>tall</td>
<td>red</td>
<td>blue</td>
</tr>
<tr>
<td>o₄</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
</tr>
<tr>
<td>o₅</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
</tr>
<tr>
<td>o₆</td>
<td>tall</td>
<td>blond</td>
<td>blue</td>
</tr>
<tr>
<td>o₇</td>
<td>tall</td>
<td>dark</td>
<td>brown</td>
</tr>
<tr>
<td>o₈</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
</tr>
</tbody>
</table>
Language L

• Language L
 – Atomic formula: \(a = v \) where \(a \in A_t \) and \(v \in V_a \)
 ♦ hair = blond, eyes=blue
 – Logical operators: negation, conjunction and disjunction
 ♦ Extended formula
 – \(\neg (\text{hair} = \text{blond}) \land (\text{eyes} = \text{blue}) \lor (\text{height} = \text{tall}) \)

• Semantics of the language L
 – The satisfiability of a formula \(\varnothing \) by an object \(x \), written \(x \models S \varnothing \) (in short \(x \models \varnothing \))
 1) \(x \models a = v \) iff \(I_a(x) = v \)
 2) \(x \models \neg \varnothing \) iff not \(x \models \varnothing \)
 3) \(x \models \varnothing \land \psi \) iff \(x \models \varnothing \) and \(x \models \psi \)
 4) \(x \models \varnothing \lor \psi \) iff \(x \models \varnothing \) or \(x \models \psi \)
Concept := (intension, extension)

• If \emptyset is a formula
 – $m_S(\emptyset) = \{ x \in U \mid x \models \emptyset \}$, in short, $m(\emptyset)$
 • $m(\emptyset) \subseteq U$ is the meaning of the formula \emptyset
 • \emptyset is the description of $m(\emptyset)$
 • \therefore a connection between formulas of L and subsets of U is established

• Formal description of concepts with the language L
 – A concept :=(\emptyset, m(\emptyset)), where $\emptyset \in L$
 • \emptyset: intension, description
 • m(\emptyset): extension, granule

• Granules with the language L
 – For an atomic formula $a = v$
 • m($a = v$)
 – For two formulas \emptyset, $\psi \in L$
 • $m(\emptyset) \cap m(\psi) = m(\emptyset \land \psi)$
 • $m(\emptyset) \cup m(\psi) = m(\emptyset \lor \psi)$
Conjunctively definable granule

• Definable granule
 – A set of objects $X \subseteq U$ is definable granule in an information table S
 • If there exists a formula $\varnothing \in L$ such that $m(\varnothing) = X$
 – E.g. $\{o_1, o_2, o_3, o_8\}$ is a definable granule
 » \varnothing: Height=short \lor hair=red, $m(\varnothing) = \{o_1, o_2, o_3, o_8\}$

• Conjunctively definable granule
 – A set of objects $X \subseteq U$ is conjunctively definable granule in an information table S
 • If there exists a formula $\varnothing \in L$ such that \varnothing is a conjunction of atomic formulas and $m(\varnothing) = X$
 – E.g. $\{o_1, o_2, o_8\}$ is a conjunctively definable granule
 » \varnothing: height=short \land hair=blond, $m(\varnothing) = \{o_1, o_2, o_8\}$

<table>
<thead>
<tr>
<th>object</th>
<th>height</th>
<th>hair</th>
<th>eyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_1</td>
<td>short</td>
<td>blond</td>
<td>blue</td>
</tr>
<tr>
<td>o_2</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
</tr>
<tr>
<td>o_3</td>
<td>tall</td>
<td>red</td>
<td>blue</td>
</tr>
<tr>
<td>o_4</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
</tr>
<tr>
<td>o_5</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
</tr>
<tr>
<td>o_6</td>
<td>tall</td>
<td>blond</td>
<td>blue</td>
</tr>
<tr>
<td>o_7</td>
<td>tall</td>
<td>dark</td>
<td>brown</td>
</tr>
<tr>
<td>o_8</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
</tr>
</tbody>
</table>
Conjunctively definable partition & covering

• A partition π is called a conjunctively definable partition
 – If every equivalence class of π is a conjunctively definable granule

• A covering τ is called a conjunctively definable covering
 – If every equivalence class of τ is a conjunctively definable granule

• To understand the meaning of equivalence class
 – Understanding of equivalence relation should be involved
Equivalence relation

• An equivalence relation is any relation, written $a \sim b$, satisfying three rules
 1. $a \sim a$ (reflexivity)
 2. If $a \sim b$, then $b \sim a$ (symmetry)
 3. If $a \sim b$ and $b \sim c$, then $a \sim c$ (transitivity)

• Example 1. Equals (=) is an equivalence relation
 1. $a = a$ all the time
 2. If $a=b$, $b=a$
 3. If $a=b$ and $b=c$, $a=c$

• Example 2. Let us define $a \sim b$ if a and b have the same sign (0: positive)
 – a has the same sign as a, so $a \sim a$
 – If a has the same sign as b, b has the same sign as a
 – If a has the same sign as b, and b has the same sign as c, a and c must have the same sign
 • $3 \sim 5, 7 \sim 2, -5 \sim -18$, not $-6 \sim 3$
Equivalence relation & Equivalence class

• Example 3. We will say $a \sim b$ if a and b have the same remainder when you divide by three
 - $3 \sim 6$, $1 \sim 16$, not $2 \sim 7$
 - There are three equivalence classes
 • The things with remainder 0 when you divided by three
 - Equivalence class $1=\{0, 3, 6, 9, \ldots\}$
 • The thins with remainder 1 when you divided by three
 - Equivalence class $2=\{1, 4, 7, 10, \ldots\}$
 • The thins with remainder 2 when you divided by three
 - Equivalence class $3=\{2, 5, 8, 11, \ldots\}$

• Distinguish size of an equivalence class and number of equivalence classes
 - In the case of relation with equals (=), size of an equivalence class = 1, # of equivalence classes = infinite
 - In the case of relation with sign, size of an equivalence class = infinite, # of equivalence classes = 2
 - In the case of relation with mod 3, size of an equivalence class = infinite, # of equivalence classes = 3
Formal definition of Equivalence class
(in WolframMathWorld http://mathworld.wolfram.com)

• An equivalence class is defined as a subset of the form \(\{ x \in X : x \mathrel{R_a} \} \), where \(a \) is an element of \(X \) and the notation “\(x \mathrel{R_y} \)” is used to mean that there is an equivalence relation between \(x \) and \(y \).

• It can be shown that any two equivalence classes are either equal or disjoint, hence the collection of equivalence classes forms a partition of \(X \).

• For all \(a, b \in X \), we have \(a \mathrel{R_b} \) iff \(a \) and \(b \) belong to the same equivalence class.

• A set of class representatives in a subset of \(X \) which contains exactly one element from each equivalence class.

 – E.g. For \(n \) a positive integer, and \(a, b \) integers, consider the \(a \equiv b \) (mod \(n \)), then the equivalence classes are the sets \(\{ \ldots, -2n, -n, 0, n, 2n, \ldots \} \), \(\{ \ldots, 1-2n, 1-n, 1, 1+n, 1+2n, \ldots \} \) etc. The standard class representatives are taken to be \(0, 1, 2, \ldots, n-1 \).
Classification: A typical machine learning problem

- S=(U, A_t, L, \{V_a| a \in A_t\}, \{I_a| a \in A_t\})
 - A_t = F \cup \{\text{class}\}
 - where F is a set of attributes used to describe objects

- The goal of Classification
 - Finding classification rules of the form, \(\emptyset \Rightarrow \text{class} = c_i \), where \(\emptyset \) is a formula over F and \(c_i \) is a class label

- Let \(\pi_{\text{class}} \subseteq \Pi(U) \) denote the partition induced by the attribute class
 - E.g. \(\pi_{\text{class}} = \{\{o_1, o_3, o_6\}, \{o_2, o_4, o_5, o_7, o_8\}\} \)

- An information table provides a consistent classification
 - If \(I_F(x) = I_F(y) \), then \(I_{\text{class}}(x) = I_{\text{class}}(y) \)
 - \(I_F(o_4) = \{\text{tall, dark, blue}\}, I_F(o_5) = \{\text{tall, dark, blue}\} \Rightarrow I_{\text{class}}(o_4) = -, I_{\text{class}}(o_5) = - \)

- Symbol \(\preceq \) (set partial order)
 - \(A = \{\{1, 2, 3\}, \{4, 5, 6, 7\}\}, B = \{\{1, 2\}, \{3\}, \{4, 5\}, \{6, 7\}\} \)
 - \(B \preceq A \)
Consistently classifiable information table

• Formal definition of consistently classifiable information table
 – An information table is a consistent classification problem if and only if
 \[\pi_F \leq \pi_{\text{class}} \]
 • \(\pi_{\text{class}} = \{ \{ o_1, o_3, o_6 \}, \{ o_2, o_4, o_5, o_7, o_8 \} \} \)
 • \(\pi_F = \{ \{ o_1 \}, \{ o_2, o_8 \}, \{ o_3 \}, \{ o_4, o_5 \}, \{ o_6 \}, \{ o_7 \} \} \)
 – \(\pi_F \leq \pi_{\text{class}} \)

• However, \(\pi_F \) is not very interesting!
 – A subset of attributes from \(F \) producing the correct classification is more interest!
 • A conjunctively definable partition \(\pi \) such that \(\pi \leq \pi_{\text{class}} \)
 • A conjunctively definable covering \(\tau \) such that \(\tau \leq \pi_{\text{class}} \)

• \(X \): a granule in a partition or covering of the universe
• \(\text{des}(X) \): description of \(X \) using language \(L \)
 – If \(X \subseteq m(\text{class} = c_i) \), we can construct a classification rule:
 • \(\text{des}(X) \Rightarrow \text{class} = c_i \)

<table>
<thead>
<tr>
<th>object</th>
<th>height</th>
<th>hair</th>
<th>eyes</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>(o_1)</td>
<td>short</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>(o_2)</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>(o_3)</td>
<td>tall</td>
<td>red</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>(o_4)</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>(o_5)</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>(o_6)</td>
<td>tall</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>(o_7)</td>
<td>tall</td>
<td>dark</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>(o_8)</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
</tbody>
</table>
Partition and Covering

• **Partition**
 – An object is only classified by one rule

• **Covering**
 – An object many be classified by more than one rule

• **Example**
 – \(\pi_{\text{class}} = \{\{o_1, o_3, o_6\}, \{o_2, o_4, o_5, o_7, o_8\}\} \)
 – \(\pi = \{\{o_1, o_6\}, \{o_2, o_8\}, \{o_3\}, \{o_4, o_5, o_7\}\} \): partition
 – \(\tau = \{\{o_1, o_6\}, \{o_2, o_7, o_8\}, \{o_3\}, \{o_4, o_5, o_7\}\} \): covering

 • \(\pi \preceq \pi_{\text{class}} \) and \(\tau \preceq \pi_{\text{class}} \)

<table>
<thead>
<tr>
<th>object</th>
<th>height</th>
<th>hair</th>
<th>eyes</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_1</td>
<td>short</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o_2</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>o_3</td>
<td>tall</td>
<td>red</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o_4</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>o_5</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>o_6</td>
<td>tall</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o_7</td>
<td>tall</td>
<td>dark</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>o_8</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
</tbody>
</table>
Partition

- Example

 - $\pi_{\text{class}} = \{\{o_1, o_3, o_6\}, \{o_2, o_4, o_5, o_7, o_8\}\}$

 - $\pi = \{\{o_1, o_6\}, \{o_2, o_8\}, \{o_3\}, \{o_4, o_5, o_7\}\}$: partition

 - $\tau = \{\{o_1, o_6\}, \{o_2, o_7, o_8\}, \{o_3\}, \{o_4, o_5, o_7\}\}$: covering

 - $\pi \preceq \pi_{\text{class}}$ and $\tau \preceq \pi_{\text{class}}$

- Classification rules of π

 - hair=blond \land eyes=blue \Rightarrow class=+: $\{o_1, o_6\}$

 - hair=blond \land eyes=brown \Rightarrow class =-: $\{o_2, o_8\}$

 - hair=red \Rightarrow class=+: $\{o_3\}$

 - hair=dark \Rightarrow class=-: $\{o_4, o_5, o_7\}$

<table>
<thead>
<tr>
<th>object</th>
<th>height</th>
<th>hair</th>
<th>eyes</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_1</td>
<td>short</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o_2</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>o_3</td>
<td>tall</td>
<td>red</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o_4</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>o_5</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>o_6</td>
<td>tall</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o_7</td>
<td>tall</td>
<td>dark</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>o_8</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
</tbody>
</table>
Covering

• Example

 $\pi_{\text{class}} = \\{\{o_1, o_3, o_6\}, \{o_2, o_4, o_5, o_7, o_8\}\}$

 $\pi = \{\{o_1, o_6\}, \{o_2, o_8\}, \{o_3\}, \{o_4, o_5, o_7\}\}$: partition

 $\tau = \{\{o_1, o_6\}, \{o_2, o_7, o_8\}, \{o_3\}, \{o_4, o_5, o_7\}\}$: covering

 $\bullet \pi \preceq \pi_{\text{class}}$ and $\tau \preceq \pi_{\text{class}}$

 π Classification rules of π

 \bullet hair=red \Rightarrow class=+: $\{o_3\}$

 \bullet eyes=blue \land hair=blond \Rightarrow class=+: $\{o_1, o_6\}$

 \bullet eyes=brown \Rightarrow class =-: $\{o_2, o_7, o_8\}$

 \bullet hair=dark \Rightarrow class=-: $\{o_4, o_5, o_7\}$

<table>
<thead>
<tr>
<th>object</th>
<th>height</th>
<th>hair</th>
<th>eyes</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_1</td>
<td>short</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o_2</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>o_3</td>
<td>tall</td>
<td>red</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o_4</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>o_5</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>o_6</td>
<td>tall</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o_7</td>
<td>tall</td>
<td>dark</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>o_8</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
</tbody>
</table>
Classification algorithms

Study and remodel some popular classification

ID3 for partitioning
PRISM for covering
ID3 (for partition)

• Characteristic of ID3
 – Using of **information gain** to select a suitable attribute to partition the universe
 – Keep previous step until all granules can be understood or expressed by a formula

• What is information gain?!
 – Entropy before information gain
 – Information gain with Building decision tree based ID3 algorithm
Calculation of information before Entropy

• Based on Information Theory
 – The lower the possibility of an event is, the more the event has information
 – Let X is a variable
 • If e is an value of X and P(e) is the possibility \(\in [0, 1]\) of e, the self-information of e is
 - \(h(e) = -\log_2 P(e)\)
 » if \(P(e_1)=1/1024\), \(h(e_1)=-\log_2 2^{-10}=10\) (bit)
 » if \(P(e_2)=1/32\), \(h(e_2)=-\log_2 2^{-5}=5\) (bit)
 » if \(P(e_3)=1\), \(h(e_3)=-\log_2 2^0= 0\) (bit)

• Meaning of \(-P(e)\log_2 P(e)\)
 – Average amount of the information from the value e
Entropy

- For a variable X, the amount of information which can be obtained from the variable X is

\[H(X) = -\sum_{i=1}^{n} P(e_i) \log_2 P(e_i) \]

and it is called ‘Entropy of the variable X.’

- The case that variable X has the minimum entropy is where
 - There is a value \(e_i \) where \(P(e_i) = 1 \)

- The case that variable X has the maximum entropy is where
 - All the values of the variable X has the same probability
ID3 algorithm to analyze Simpsons

<table>
<thead>
<tr>
<th>Person</th>
<th>Hair Length</th>
<th>Weight</th>
<th>Age</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>0”</td>
<td>250</td>
<td>36</td>
<td>M</td>
</tr>
<tr>
<td>Marge</td>
<td>10”</td>
<td>150</td>
<td>34</td>
<td>F</td>
</tr>
<tr>
<td>Bart</td>
<td>2”</td>
<td>90</td>
<td>10</td>
<td>M</td>
</tr>
<tr>
<td>Lisa</td>
<td>6”</td>
<td>78</td>
<td>8</td>
<td>F</td>
</tr>
<tr>
<td>Maggie</td>
<td>4”</td>
<td>20</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>Abe</td>
<td>1”</td>
<td>170</td>
<td>70</td>
<td>M</td>
</tr>
<tr>
<td>Selma</td>
<td>8”</td>
<td>160</td>
<td>41</td>
<td>F</td>
</tr>
<tr>
<td>Otto</td>
<td>10”</td>
<td>180</td>
<td>38</td>
<td>M</td>
</tr>
<tr>
<td>Krusty</td>
<td>6”</td>
<td>200</td>
<td>45</td>
<td>M</td>
</tr>
</tbody>
</table>
The entropy of the information table

- For the variable X about Sex
 - \(P(e_1) = \frac{5}{9} \) where the value \(e_1 \) is ‘MAN’
 - \(P(e_2) = \frac{4}{9} \) where the value \(e_2 \) is ‘WOMAN’
 - \(H(X) = -P(e_1) \log_2 P(e_1) - P(e_2) \log_2 P(e_2) \)
 \[= 0.9911 \]

- Our Goal
 - Reducing the Entropy by selecting the most suitable attributes among ‘Hair length, Weight, Age’
Start with ‘Hair length ≤ 5’

Initial status (4F:5M), Entropy (4F:5M) = 0.9911

$\text{Gain}(A) = E(\text{Current set}) - \sum E(\text{all child sets})$

$\text{Gain}(\text{Hair Length } \leq 5) = 0.9911 - (4/9 \times 0.8113 + 5/9 \times 0.9710) = 0.0911$
With ‘Weight ≤ 160’

Initial status (4F:5M), Entropy (4F:5M)=0.9911

Child_1 (4F:1M)

Child_2 (0F:4M)

\[
\text{Entropy}(4F,1M) = -(4/5)\log_2(4/5) - (1/5)\log_2(1/5) \\
= 0.7219
\]

\[
\text{Entropy}(0F,4M) = -(0/4)\log_2(0/4) - (4/4)\log_2(4/4) \\
= 0
\]

\[
\text{Gain}(A) = E(\text{Current set}) - \sum E(\text{all child sets})
\]

\[
\text{Gain}(\text{Weight} \leq 160) = 0.9911 - (5/9 \times 0.7219 + 4/9 \times 0) = 0.5900
\]
With ‘Age ≤40’

Initial status (4F:5M), Entropy (4F:5M)=0.9911

熵计算如下:

熵(4F,2M) = -(3/6)log₂(3/6) - (3/6)log₂(3/6)
= 1

熵(1F,2M) = -(1/3)log₂(1/3) - (2/3)log₂(2/3)
= 0.9183

Gain(A) = E(Current set) - \sum E(all child sets)

Gain(Age <= 40) = 0.9911 - (6/9 * 1 + 3/9 * 0.9183) = 0.0183
Now, select !!

• Information gain comparison
 – Hair ≤5 : 0.0911
 – Weight ≤160: 0.5900
 – Age ≤40 : 0.0183

• The value ‘Weight ≤160’ contributes best to reduce the entropy (⇔ the best information gain) so that it is selected!
Completion of building Decision Tree

• Stop when the entropy of every leaf became ‘zero’
Entropy in Concept Lattice

({p_1, p_2, p_3, p_4, p_5, p_6, p_7}, ø)
Back to the paper

<table>
<thead>
<tr>
<th>object</th>
<th>height</th>
<th>hair</th>
<th>eyes</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>o₁</td>
<td>short</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o₂</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>o₃</td>
<td>tall</td>
<td>red</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o₄</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>o₅</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>o₆</td>
<td>tall</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o₇</td>
<td>tall</td>
<td>dark</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>o₈</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 2: An example of partition by ID3

The Universe
{ o₁, o₂, o₃, o₄, o₅, o₆, o₇, o₈ }

- hair-blonde
 -{ o₁, o₂, o₆, o₈ }
 +/{ o₁, o₆ }
 -/{ o₂, o₈ }

- hair-darker
 -{ o₇, o₄, o₅ }

- hair-red
 +{ o₅ }

- eyes-blue
 -{ o₁, o₆ }

- eyes-brown
 +{ o₈ }
 -{ o₂ }

34
PRISM (for covering)

- ID3: using the notion of entropy for partitioning
- PRISM: using the conditional probability for covering
 - Conditional probability: \(P(A|B) \)
 - The possible of A when B happens

<table>
<thead>
<tr>
<th>object</th>
<th>height</th>
<th>hair</th>
<th>eyes</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>(o_1)</td>
<td>short</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>(o_2)</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>(o_3)</td>
<td>tall</td>
<td>red</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>(o_4)</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>(o_5)</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>(o_6)</td>
<td>tall</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>(o_7)</td>
<td>tall</td>
<td>dark</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>(o_8)</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
</tbody>
</table>

\[
P(+) | hair=red = \frac{|\{o_1, o_3, o_6\}|}{|\{o_1, o_3, o_4, o_5, o_6\}|} = 1
\]
\[
P(+) | hair=blond = \frac{|\{o_1, o_6\}|}{|\{o_1, o_3, o_4, o_5, o_6\}|} = 0.5
\]
Extraction of classification rules using Granules

- **ID3**: using only an attribute for each step
- **PRISM**: executing rule extraction procedures for each class
- **Extended one**: using various attributes for each step and executing rule extraction procedure at once.

<table>
<thead>
<tr>
<th>object</th>
<th>height</th>
<th>hair</th>
<th>eyes</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>o₁</td>
<td>short</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o₂</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>o₃</td>
<td>tall</td>
<td>red</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o₄</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>o₅</td>
<td>tall</td>
<td>dark</td>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>o₆</td>
<td>tall</td>
<td>blond</td>
<td>blue</td>
<td>+</td>
</tr>
<tr>
<td>o₇</td>
<td>tall</td>
<td>dark</td>
<td>brown</td>
<td>-</td>
</tr>
<tr>
<td>o₈</td>
<td>short</td>
<td>blond</td>
<td>brown</td>
<td>-</td>
</tr>
</tbody>
</table>

The Universe
{₀₁,₀₂,₀₃,₀₄,₀₅,₀₆,₀₇,₀₈}

- **hair-dark** {₀₄,₀₅,₀₇} -
- **eyes-brown** {₀₂,₀₇,₀₈} -
- **hair-red** {₀₃} +
- **hair-blond** {₀₁,₀₂,₀₆,₀₈} +/-
- **eyes-blue** {₀₁,₀₆} +
- redundant granule
Q n A