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Abstract: In this manuscript, the graphene oxide (GO) was modified by hyper-branched polyester
(HBP). The effects of GO or modified GO (HBP-m-GO) on the mechanical performance and wearing
properties were investigated. The results of X-ray photoelectron spectra (XPS), Fourier transform
infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) revealed the successful
grafting of HBP onto GO. The thermogravimetric analysis (TGA) indicated that the graft amount
of HBP is calculated to be 9.6 wt%. The GO or HBP-m-GO was added into acrylonitrile-butadiene-
styrene copolymer (ABS) to prepare the ABS/GO composites. The mechanical properties and wear
performance of the composites were studied to comparatively study the impact of GO modification
on the properties of the composites. The results revealed that the addition of GO has a significant
effect on the mechanical properties of ABS, and when HBP-m-GO was added, the elastic modulus
and tensile strength of ABS/HBP-m-GO increased evidently compared with ABS/GO. The tensile
strength increased from 42.1 ± 0.6 MPa of pure ABS to 55.9 ± 0.9 MPa, up to 30%. Meanwhile, the
elongation at break was significantly higher than ABS/GO to 20.1 ± 1.3%, slightly lower than that of
pure ABS. For wear performance, the addition of raw GO decreased the friction coefficient, and when
the HBP-m-GO was added, the friction coefficient of the ABS/HBP-m-GO dropped more evidently.
Meanwhile, the weight loss during the wear test decreased evidently. The related mechanism
was discussed.

Keywords: graphene oxide; hyper-branched polyester; acrylonitrile-butadiene-styrene; mechanical
performance

1. Introduction

The acrylonitrile-butadiene-styrene (ABS) copolymer is a kind of plastic with excellent
comprehensive properties [1,2]. The presence of high polar polyacrylonitrile component
and rubber phase, as well as its unique multiphase composite structure, micro morphology
and molecular structure endow it with good surface gloss, excellent mechanical properties,
easy surface spraying, and electroplating characteristics [3]. Therefore, ABS resin is widely
used in electronic and electrical appliances, automobile and other daily necessities, and
industrial products manufacturing. However, the friction and wear resistance of ABS resin
is limited and the friction coefficient is large [4]. On the other hand, it is urgent to have
better mechanical properties [5]. Therefore, adding nano fillers into the ABS resin so as to
further improve its mechanical and wear properties is considered to be an effective method,
and also a research hotspot in related fields [6–9].

Graphene is a two-dimensional sheet material, with extremely thin thickness and
high specific surface area [10–12], excellent electrical properties, thermal conductivity,
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and mechanical properties [13–15]. As a chemical precursor of graphene, graphene oxide
(GO) can have some extent of attractive properties of graphene after chemical or thermal
reductions [14,16,17]. GO also has a large number of reactive groups such as hydroxyl
group, carboxyl group, and epoxy group distributed on its surface, which is easy for further
organic modification, and is an ideal reinforcing material for ABS resins [18–20]. In order
to improve the compatibility between GO and ABS resins and improve the dispersion
uniformity of GO in ABS resins, it is a common method to use reactive groups on the GO
surface to graft modification of macromolecules [21–24].

In recent years, the addition of derivatives of graphene into ABS have been extensively
investigated. Wilkie C et al. [1] prepared composites by melt blending various graphites
(virgin graphite, expandable graphites, and expanded graphite) with polystyrene (PS) and
its copolymers (ABS and high-impact polystyrene (HIPS)), and comparatively studied
the roles of graphites in enhancing the properties of the composites. Kharrat M et al. [2]
systematically studied the impact of 0–7.5 wt% graphite particles in the mechanical and
tribological properties in ABS composites, and observed a significant decrease of elastic
modulus and failure strain, improvement of friction behavior and anti-wear abilities after
the addition of graphite. They suggested that graphite strengthens the wear resistance of
ABS composites and effectively reduces its adhesive and ploughing wear, and enhances
the formation of a third body with better quality on the sliding stripe. Raza M et al. [8]
prepared thermally reduced graphene oxide (TRGO)/ABS composites, and comparatively
studied the effects of pristine graphite and TRGO on the mechanical and thermal properties
of composites. They reported that the combined solution and melt mixing technique can
significantly improve dispersion of TRGO in the ABS matrix. Kar K et al. [3] studied the
effects of 0–40 vol% graphite flakes (GFs) in tensile, flexural, impact, hardness, and thermal
conductivity performances of ABS/GFs composites, and reported that the GF-reinforced
ABS composite with improved thermal conductivity, heat stability, viscoelastic behavior,
and flexural modulus can be a promising as well as a suitable composite material for
making various electronic and electrical accessories including bipolar plates for fuel cell ap-
plications. Hassan A et al. [5] prepared graphene nanoplates reinforced polycarbonate/ABS
composites, and studied structural, morphological, mechanical, and thermal properties of
the nanocomposites, claiming that the addition of GNP improved the flexural and tensile
properties without the loss of extensibility and good thermal properties. Pal K et al. [7]
enlightened the effect of three different derivatives of graphene on mechanical, thermal,
and rheological properties of ABS composites prepared via the melt-mixing technique,
i.e., GO, chemically reduced graphene oxide (rGO-C), and thermally reduced graphene
oxide. They noticed that rGO-C acts as a better reinforcement in ABS than other derivatives.
Khan N et al. [6] comparatively studied the reinforcement effects of two-dimensional few
layer graphene (FLG) and one-dimensional multi-walled carbon nanotubes (MWCNT) in
ABS using the tensile testing machine. To obtain the desired improvement of properties of
the composites, one key factor is to improve the dispersion of the filler in the ABS matrix.
However, current works mainly focus on the sample preparation method as well as the
type and concentration of the filler. The impact of functional modification of the filler on
the properties of the ABS composites is still urgent to be studied.

The hyper-branched polyester has a high degree of branching and a large number of
hydroxyl terminated [25,26], low viscosity, high solubility, and high functionality, as well
as has a very good compatibility with the ABS resin [27–29]. At the same time, it has a
high reactivity with GO. It can be used as the surface graft of GO to further improve the
compatibility between GO and ABS resins, which has not been reported before.

In this study, GO was modified by hyper-branched polyester (HBP) and then added
into ABS resins to prepare the ABS/GO composites. The effects of hyper-branched polyester
modification on the mechanical performance and wear properties of ABS/GO composites
were studied.
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2. Experimental Section
2.1. Materials and Sample Preparation
2.1.1. Materials

ABS granules (tradename 0215H, MFI2.16 = 3.1 g/10 min) were kindly provided by Jilin
Petrochemical Company, PetroChina Co. Ltd., Jilin, China. The hyper-branched polymer
with the tradename of BOLTORN H202 (molecular weight = 600 g/mol, hydroxyl value
= 550 mg KOH/g polymer) was purchased from Shanghai Bio Biotechnology Co., Ltd.,
Shanghai, China. N,N-dimethylformamide (DMF), analytical grade, were purchased from
Sinopharm Chemical Reagent Beijing Co., Ltd., Beijing, China. The graphene oxide (GO),
tradename N002-PDE, was purchased from Guangzhou Angstron graphene Technology
Co. Ltd., Guangzhou, China. The average thickness of GO is lower than 1 nm, the lateral
size is 0.5 and 1.5 micrometers, and the content of O atom is higher than 20%. All of the
materials were used as received.

2.1.2. Preparation of Surface Modified GO

The illustration of the reaction between GO hand HBP is shown in Scheme 1. The
hyper-branched polyester HBP and GO were dissolved in DMF at room temperature, and
then irradiated using an ultrasound for 1 h. After that, they were heated up to 120 ◦C and
reacted under magnetic stirring for 24 h. After that, they were cooled to room temperature
slowly and filtered using the PVDF filtration membrane with the average pore diameter of
0.22 µm. The product was firstly washed by acetone and filtered several times to eliminate
the unreacted HBP and extra solvent. Each time, the washed acetone was taken for the FT-
IR analysis, and the washing is finished until the washed acetone has the same FT-IR spectra
compared with pure acetone. The collected material was then heated under a vacuum drier
at 80 ◦C for 24 h to obtain the final product, which was denoted as HBP-m-GO.
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2.1.3. Preparation of ABS/GO Composites

The composites were prepared by melt blending ABS with GO or HBP-m-GO at
200 ◦C for 10 min using a Brabender Plasticorder, Brabender Technologie, GMBH & CO.
KG, Duisburg, Germany. The weight percentage of GO or HBP-m-GO was selected as 1.5%
of the composites.

2.2. Characterization
2.2.1. Fourier Transform Infrared Spectroscopy (FT-IR)

The sample was scanned by Nicolet IS50 FT-IR (Thermo Fisher Scientific Corp.,
Waltham, MA, USA) with a spectral resolution of 4 cm−1 and test range of 400–4000 cm−1.
The sample was prepared by the KBr tablet pressing method [30,31].
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2.2.2. Transmission Electron Microscopy (TEM)

The transmission electron microscopy (TEM, Tecnai G2 F20, FEI Corp., Hillsboro, OR,
USA) was used.

2.2.3. Thermogravimetric Analysis (TGA)

The samples were heated to 800 ◦C at 20 ◦C/min under the protection of N2 and after
equilibrium at 30 ◦C. The values were observed by the TG209F1 thermal analyzer (Netzsch
Corp., Selb, Germany).

2.2.4. X-ray Photoelectron Spectra (XPS)

The X-ray photoelectron spectra was carried out by the ESCALAB 250 photoelectron
spectrometer (Thermo Fisher Scientific Corp., Waltham, MA, USA) with Al Kα (1486.6 eV)
as the X-ray source set at 150 W and a pass energy of 30 eV for high resolution scan [32–34].

2.2.5. Mechanical Properties

Tensile tests were performed on an INSTRON universal tensile machine equipped
with 5 KN load cell and 25 mm displacement extensometer (Instron Corporation, Norwood,
MA, USA) [35–37]. The crosshead speed for the tensile test was set at 50 mm/min. All of
the tests were carried out at room temperature (25 ± 2 ◦C). Five to eight samples from each
sample were tested and the averaged values were obtained [38–40]. The geometry of the
samples was according to an international tensile testing norm AFNOR NF T 51-034.

2.2.6. Wear Properties

Friction and wear tests were carried out using a reciprocating sliding tribometer
connected to a computer monitoring the friction coefficient [41,42]. Tests were performed
using a rectangular 30 × 10 × 20 mm3 composite sample sliding against a 35 mm diameter
high chromium steel ball under a constant normal load Fn = 17.16 N. The steel ball was kept
in stationary and the tangential cyclic motion was applied to the composite specimen using
the crank system driven by an electric motor with an electronic speed regulator [9,43–45].
The ball-on-plate machine was set to run with a tangential motion amplitude of 5 mm at
1 Hz. The tests were performed at a temperature of around 25 ◦C and a relative humidity
(RH) between 50–60%. Durations of sliding tests were fixed to 1000, 2500, 4000, 5500, 7000,
8500, and 10,000 cycles. At least four tests were performed for each set of conditions.

3. Results and Discussion
3.1. Characterization of the Modified GO

The microstructures of GO, modified GO, and HBP were investigated by XPS, FT-IR,
TGA, and TEM.

3.1.1. XPS

The XPS spectrum of neat GO, HBP-m-GO, and HBP are shown in Figure 1. From
Figure 1, the detailed analysis on the C1s and O1s were carried out, the peak fitting results
have been shown in Figures 1b and 2 and Table 1.

As can be seen from the XPS results, the O and C element contents of HBP, GO, and
HBP-m-GO are greatly different. The C atom content of GO was 83.7%, which was higher
than that of HBP (39.5%) and HBP-m-GO (72.3%). On the other hand, the content of O
element in GO is 16.7%, which is lower than that in HBP-m-GO (27.7%) and HBP (60.5%).
The ratio n(O)/n(C) of O element and C element was calculated, and it can be found that
the n(O)/n(C) of GO is 0.19, and the n(O)/n(C) of HBP is 1.53. After the grafting reaction,
the n(O)/n(C) of HBP-m-GO increased from 0.19 to 0.38, indicating that the content of
oxygen element was significantly increased. As can be seen from the detailed analysis in
Figure 2 and Table 1, after grafting HBP, the percentage of C=O of HBP-m-GO decreases
compared with neat GO, while the percentage of C–O of HBP-m-GO increases. In summary,
all of the XPS results above confirmed the success of the grafting reaction.
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Table 1. Detailed analysis of the O1s profile of XPS results of GO, HBP-m-GO, and HBP.

Type Position (eV) GO (%) HBP-m-GO (%) HBP (%)

C−O 531.7 37.0 47.3 63.1
C=O 533.4 64.0 52.7 36.9

3.1.2. FT-IR

Figure 3 is the infrared spectrum of the sample. For HBP, the peak at 3420 cm−1

corresponds to the vibration of –OH group, while signals at the wavenumbers of 2920 and
2888 cm−1 represent the asymmetric and symmetric vibrations of –CH3 and –CH2, respec-
tively [46–48]. The peaks at the wavenumber of 1722 cm−1 are the stretching vibration
peak of carbonyl [49,50].

On the other hand, by comparing the infrared spectra of GO and HBP-m-GO, it can
be found that, compared with pure GO, new characteristic peaks appear on the infrared
spectra of HBP-m-GO, which are located at 2921, 2888, and 1734 cm−1 [51–53]. These three
absorption peaks correspond to the asymmetric and symmetric vibrations of –CH3 and
–CH2, and stretching vibration peak of carbonyl, respectively, suggesting that the HBP is
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successfully grafted onto GO. Obviously, these three peaks all come from HBP, indicating
that HBP was successfully grafted onto GO.
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3.1.3. TGA

Figure 4 is the TGA curve of the sample. It can be seen that the heat resistance of
HBP is poor, and its weight loss takes place in the range of about 300–450 ◦C, and almost
completely decomposes when the temperature is higher than 450 ◦C. GO has the least
thermal weight loss and the best thermal stability. However, HBP-m-GO exhibits a certain
degree of weight loss in the range of 300–457 ◦C, which is caused by the grafting of HBP
onto it. It can be seen from Figure 4 that, at the temperature of 457 ◦C (indicated by a short
dash line in the figure), the residue weights of GO and HBP-m-GO are 85.1 and 75.5 wt%
respectively, and the graft amount of HBP is calculated to be about 9.6 wt%.
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3.1.4. TEM

To directly observe the morphology of the fillers, TEM was performed as shown in
Figure 5. Clearly, compared with neat GO, many dark dots can be observed from the
TEM image of HBP-m-GO, which might be the evidence for the successful grating of HBP
onto GO.
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3.2. Mechanical Performance

Figure 6 shows the typical tensile stress-strain curves for the neat ABS and its compos-
ites. It is shown that the typical yield behavior occurs in stress strain curves for the compos-
ites with GO or HBP-m-GO. The addition of GO or HBP-m-GO reduces the tensile tendency
of the material, meaning that the greater tensile stress is needed to stretch and yield. It is
clear from the results in Figure 6 and Table 2 that when the unmodified GO is added, the
tensile strength of ABS/GO increased from 42.1 ± 0.6 MPa of pure ABS to 42.8 ± 1.3 MPa,
while the elastic modulus increased from 1.15 ± 0.03 GPa to 1.21 ± 0.05 GPa. Meanwhile,
the elongation at break decreased drastically from 23.2 ± 1.2% of pure ABS to 11.3 ± 2.0%.
These trends indicate that the addition of GO has a significant effect on the mechanical
properties of ABS, which is mainly attributed to the weak interface interaction between
ABS and GO and the lack of chemical bonds.
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Table 2. Mechanical parameters of ABS, ABS/GO, and ABS/HBP-m-GO.

Samples
Composition (wt%) Elastic Modulus

(GPa)
Tensile Strength

(MPa)
Elongation at Break

(%)ABS GO HBP-m-GO

ABS 100 - - 1.15 ± 0.03 42.1 ± 0.6 23.0 ± 1.2
ABS/GO 98.5 1.5 - 1.21 ± 0.05 46.8 ± 1.3 11.3 ± 2.0

ABS/HBP-m-GO 98.5 - 1.5 1.43 ± 0.04 55.9 ± 0.9 20.1 ± 1.3



Polymers 2021, 13, 2614 8 of 12

Interestingly, when the modified GO was added, the elastic modulus and tensile
strength of ABS/HBP-m-GO increased evidently. The tensile strength increased from
42.1 ± 0.6 MPa of pure ABS to 55.9 ± 0.9 MPa, up to 30%. Meanwhile, the elongation
at break of the sample was significantly higher than ABS/GO, to 20.1 ± 1.3%, slightly
lower than that of pure ABS resin. This might be attributed to the significantly enhanced
interaction between the ABS matrix with GO after surface grafting modification. During
stretching, the area of weak interfaces between ABS and HBP-m-GO significantly decreased,
resulting in the maintaining of elongation at break at a higher level. Meanwhile, the elastic
modulus and tensile strength are significantly enhanced.

3.3. Wear Performance

Figure 7a shows the relationship between the coefficient of friction and the sliding
cycles of pure ABS and ABS/GO composites. It is shown that for all the samples, the
coefficient of friction increases monotonically with the number of sliding times. Pure ABS
exhibits a high coefficient of friction (0.41) after 1000 sliding cycles. As the number of
cycles increases, the friction coefficient gradually increases, after 10,000 cycles, the pure
ABS specimen wears out severely and the friction coefficient increases significantly to
0.62. Compared with pure ABS, the addition of raw GO decreases the friction coefficient
compared to pure ABS, a rule consistent in 10,000 cyclic tests. On the other hand, when
the modified GO is added, the friction coefficient of the ABS/HBP-m-GO drops further, at
0.27 after 1000 sliding cycles, and after 10,000 cycles, at 0.395. This shows that the addition
of the modified GO significantly reduces the coefficient of friction of the ABS.
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Figure 7. (a) Friction coefficient and (b) weight losses (%) versus number of sliding cycles for ABS and ABS/GO composites.

On the other hand, it is well known that the worse the wear resistance, the greater the
wear losses. From the curve of the sample mass loss-cyclic friction number in Figure 7b,
the pure ABS resin has the lowest wear resistance and the largest mass loss in the friction
cycle test, and after 10,000 cyclic frictions, it reaches 0.24%. After adding the unmodified
GO, the wear amount is greatly reduced, indicating that the GO added improves the wear
resistance of the ABS resin. When the modified GO is added, the wear amount of the
composite decreases further. After 10,000 cyclic frictions, the wear only reaches 0.07%,
which is 29% of the same condition as pure ABS. The above results show that the surface
modification of the GO can significantly improve the friction resistance of the ABS resin,
possibly since the surface modification of the GO makes it a more uniform dispersion in
the ABS resin and has a stronger interface binding force with the ABS matrix.

The SEM observation was used to investigate the effect of the fillers on the worn
surface morphological features of ABS after 1000, 4000, and 10,000 sliding cycles (Figure 8).
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Figure 8. SEM images of the worn surface morphological features of pure ABS, ABS/GO and ABS/HBP-m-GO after (a–c)
1000, (d–f) 4000 and (g–i) 10,000 sliding cycles, respectively.

Morphologies of the worn surfaces formed after 1000 sliding cycles are shown in
Figure 8a–c. For the neat ABS (Figure 8a), a large area of surface deformation can be
seen, characterized by plastic deformation and plough constitute predominant surface
modification, indicating that the adhesive wear mechanism is activated. Meanwhile, the
deformed area of ABS/GO is much smaller than the neat ABS, and almost no deformation
can be seen from ABS/HBP-m-GO, which is in accord with the result in Figure 7.

At 4000 sliding cycles (Figure 8d–f), a similar trend can be observed. The surface of
neat ABS is seriously worn, while the severity of the wear of ABS/HBP-m-GO is lowest.

At 10,000 sliding cycles (Figure 8h–j), the seriously worn surface of neat ABS can
be seen, characterized by severe peeling off and plastic deformation (Figure 8h), corre-
sponding to its worse tribological properties. When raw GO was added, it can be seen
that the worn surface is relatively smooth compared with the neat ABS, reflecting that the
addition of GO benefits for wear reduction. However, it should be emphasized that some
debris can be noticed for ABS/GO, which might be attributed to the limited compatibility
between raw GO and ABS. For ABS/HBP-m-GO, its worn surface is obviously smoother
compared with the neat ABS and ABS/GO and almost no debris can be seen, indicating
the evidently enhancement of tribological properties, which might be attributed to the
surface modification of GO and the strengthened compatibility between HBP-m-GO and
the polymer matrix.

4. Conclusions

In this manuscript, the GO surface was modified by hyper-branched polyester and the
ABS/GO and ABS/HBP-m-GO composites were prepared. The effects of GO or modified
GO on the mechanical performance and wearing properties were investigated, as follows:
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(1) The results of XPS, FT-IR, and TEM revealed the successful grafting of HBP onto GO.
In addition, TGA indicated that the graft amount of HBP is calculated to be about
9.6 wt%.

(2) ABS/GO composites have been prepared, and the mechanical properties and wear
performance were studied in detail. The results herein reviewed that the addition
of GO has a significant effect on the mechanical properties of ABS, and when the
modified GO was added, the elastic modulus and tensile strength of ABS/HBP-m-GO
increased evidently. The tensile strength increased from 42.1 ± 0.6 MPa of pure ABS
to 55.9 ± 0.9 MPa, up to 30%. Meanwhile, the elongation at break of the sample
was significantly higher than ABS/GO, to 20.1 ± 1.3%, slightly lower than that of
pure ABS resin. For wear performance, the addition of raw GO decreases the friction
coefficient compared with pure ABS, and when the modified GO is added, the friction
coefficient of the ABS/HBP-m-GO drops further, at 0.27 after 1000 sliding cycles,
and after 10,000 cycles, at 0.395, revealing that the addition of the modified GO
significantly reduces the coefficient of friction of the ABS. Meanwhile, the weight loss
during the wear test decreases evidently. Finally, the morphological analysis was
conducted and the related mechanism was analyzed.
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