A Histochemical Study of Steroid Hormone Synthesis in the Gonads of the Brown Leghorn Chick Embryo

David Glenn Rabuck

Loyola University Chicago

Recommended Citation
http://ecommons.luc.edu/luc_theses/2060

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1966 David Glenn Rabuck
A HISTOCHEMICAL STUDY OF STEROID HORMONE SYNTHESIS IN THE GONADS OF THE BROWN LEGHORN CHICK EMBryo

by

David Glenn Rabuck

A Thesis Submitted to the Faculty of the Graduate School of Loyola University in Partial Fulfillment of the Requirements for the Degree of Master of Science

June 1966
Davld Glenn Rabuck was born on December 30, 1940 in Geneva, Illinois. He was graduated from Evanston Township High School, Evanston, Illinois, in June 1958. He attended North Central College, Naperville, Illinois, and was awarded the Bachelor of Arts degree in June, 1963.

In September, 1963 he began his graduate studies in the Department of Anatomy, Loyola University Stritch School of Medicine, Chicago, Illinois. He is the recipient of a Loyola University Graduate Student Teaching Assistantship and is currently also serving as a Research Assistant in Anatomy.

He is an Associate Member of the American Chemical Society.
ACKNOWLEDGEMENTS

To Dr. Lincoln V. Domm, Professor of Anatomy, and Chairman, Department of Anatomy, my sponsor, I wish to extend my sincere appreciation for his suggestion of the problem, his example and his patient help and guidance throughout this study.

To Dr. James E. Woods, Research Associate in Anatomy, I wish to extend my heartfelt thanks for his encouragement and generosity of his time, without whose counsel this undertaking would have been considerably more difficult.

I also would like to express my appreciation to Dr. Leslie A. Emmert, Assistant Professor of Anatomy, for his thoughtful criticisms and suggestions on histochemical and technical problems; to Dr. Lucia Smelte, Senior Technician in Anatomy, for her considered advice concerning tissue preparations; and to Mr. John Maurer, Medical School Photographer, for his expert advice concerning color photomicrography.

Last, but not least, to my wife, Loralee, for her unending help and moral support, I wish to give my sincere thanks.

The study was supported in part by USPHS., NIH, Research Grants AM 03895 and AM 09926, and a USPHS., NIH, General Research Support Grant. Grants administered by Dr. Lincoln V. Domm.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>REVIEW OF THE RELATED LITERATURE</td>
<td>3</td>
</tr>
<tr>
<td>A. EARLY OBSERVATIONS AND THEORIES</td>
<td>3</td>
</tr>
<tr>
<td>B. EXPERIMENTAL VERIFICATION AND TESTING OF THEORIES</td>
<td>4</td>
</tr>
<tr>
<td>1. TRANSPLANTATION</td>
<td>4</td>
</tr>
<tr>
<td>2. TISSUE CULTURE AND CASTRATION</td>
<td>5</td>
</tr>
<tr>
<td>3. ADMINISTRATION OF HORMONES</td>
<td>6</td>
</tr>
<tr>
<td>4. BIOCHEMICAL FINDINGS</td>
<td>8</td>
</tr>
<tr>
<td>5. HISTOCHEMICAL OBSERVATIONS</td>
<td>9</td>
</tr>
<tr>
<td>a. TECHNIQUES EMPLOYED</td>
<td>11</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>13</td>
</tr>
<tr>
<td>EXPERIMENTAL RESULTS</td>
<td>18</td>
</tr>
<tr>
<td>A. THE HISTOCHEMICAL METHOD FOR Δ^5-3\beta-HYDROXYSTEROID DEHYDROGENASE</td>
<td>19</td>
</tr>
<tr>
<td>B. THE USE OF DEHYDROEPIANDROSTERONE (DHA) AS THE SUBSTRATE</td>
<td>19</td>
</tr>
<tr>
<td>1. THE PERIOD OF 3 DAYS TO SEX DIFFERENTIATION</td>
<td>19</td>
</tr>
<tr>
<td>2. THE PERIOD FROM SEX DIFFERENTIATION TO DAY 13</td>
<td>21</td>
</tr>
<tr>
<td>3. THE PERIOD OF DAY 13 TO HATCHING</td>
<td>21</td>
</tr>
<tr>
<td>C. THE USE OF PREGNENOLONE AS THE SUBSTRATE</td>
<td>22</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>23</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>27</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>29</td>
</tr>
<tr>
<td>TABLES</td>
<td>34</td>
</tr>
<tr>
<td>PLATES AND FIGURES</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>THE INTENSITY OF FORMAZAN DEPOSITION IN Δ^5-3B-HSD-preparations days 3 to 6</td>
<td>34</td>
</tr>
<tr>
<td>2.</td>
<td>THE INTENSITY OF FORMAZAN DEPOSITION IN Δ^5-3B-HSD-preparations days 7 to 9</td>
<td>35</td>
</tr>
<tr>
<td>3.</td>
<td>THE INTENSITY OF FORMAZAN DEPOSITION IN Δ^5-3B-HSD-preparations days 11 to 20</td>
<td>36</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.</td>
<td>EXPERIMENTAL CROSS-SECTION OF A THREE DAY EMBRYO SHOWING REACTION OF Δ^2-3B-HSD IN GENITAL RIDGE, WOLFFIAN DUCT, ADJACENT MESENCHYMAL TISSUE, COELOMIC EPITHELIUM AND DORSAL MESCURITY</td>
<td>37</td>
</tr>
<tr>
<td>2.</td>
<td>EXPERIMENTAL CROSS-SECTION OF THREE DAY EMBRYO SHOWN IN FIGURE ONE SHOWING REACTION THROUGHOUT NEURAL TUBE, NOTOCHORD AND LINING OF GUT</td>
<td>37</td>
</tr>
<tr>
<td>3.</td>
<td>A CONTROL CROSS-SECTION OF THREE DAY EMBRYO SHOWN IN FIGURES ONE AND TWO TO SHOW ABSENCE OF Δ^2-3B-HSD</td>
<td>38</td>
</tr>
<tr>
<td>4.</td>
<td>A HIGHER MAGNIFICATION OF UPPER GENITAL RIDGE SHOWN IN FIGURES THREE TO CONFIRM ABSENCE OF FORMAZAN GRANULES</td>
<td>39</td>
</tr>
<tr>
<td>5.</td>
<td>EXPERIMENTAL CROSS-SECTION OF A CONAD OF A FIVE DAY EMBRYO SHOWING SCATTERED FORMAZAN GRANULES THROUGHOUT THE GENITAL RIDGE AND GUT EPITHELIUM</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>EXPERIMENTAL CROSS-SECTION OF A SEVEN DAY CONAD SHOWING DIFFUSE BUT DEFINITE GRANULATION</td>
<td>41</td>
</tr>
<tr>
<td>7.</td>
<td>EXPERIMENTAL CROSS-SECTION OF A NINE DAY CONAD SHOWING REACTION IN WHAT MAY BE MEDULLARY COMPONENT OF OVARY</td>
<td>41</td>
</tr>
<tr>
<td>8.</td>
<td>EXPERIMENTAL CROSS-SECTION OF A 14 DAY OVARY SHOWING A PATCHY REACTION IN LOOSE PORTION OF MEDULLARY COMPONENT, AND VERY DENSE REACTION IN THE COMPACT PORTION</td>
<td>42</td>
</tr>
<tr>
<td>9.</td>
<td>HIGHER MAGNIFICATION OF A CROSS-SECTION OF LOOSE MEDULLARY PORTION SHOWN IN FIGURE EIGHT SHOWING MEDULLARY LACUNA AND THE REACTION IN THE INTERSTICES BETWEEN MEDULLARY LACUNAE AND CORDS</td>
<td>42</td>
</tr>
<tr>
<td>10.</td>
<td>EXPERIMENTAL CROSS-SECTION OF A 16 DAY TESTIS SHOWING A REACTION THROUGHOUT THE ORGAN AS WELL AS SEVERAL REACTIVE PATCHES</td>
<td>43</td>
</tr>
<tr>
<td>11.</td>
<td>HIGHER MAGNIFICATION OF SAME TISSUE SECTION AS IN FIGURE TEN TO SHOW A PATCH OF INTENSE FORMAZAN DEPOSITION</td>
<td>43</td>
</tr>
<tr>
<td>12.</td>
<td>EXPERIMENTAL CROSS-SECTION OF THE SACRAL PORTION OF A 17 DAY EMBRYO SHOWING THE OVARY WITH DEPOSITS IN PATCHES IN THE MEDULLA AND IN THE ADJACENT ADRENALS</td>
<td>43</td>
</tr>
</tbody>
</table>

vi
13. HIGHER MAGNIFICATION OF SECTION OF OVARY SHOWN IN FIGURE 12 SHOWING CHARACTER OF GRANULAR PATCHES.......................... 43

14. EXPERIMENTAL CROSS-SECTION OF A 20 DAY TESTIS SHOWING GRANULATION MOSTLY IN THE CENTER OF THIS ORGAN... 44

15. EXPERIMENTAL CROSS-SECTION OF A 20 DAY OVARY SHOWING RELATIVELY COMPACT CORTEX AND LOOSLY ARRANGED MEDULLA WITH A PATCHY GRANULE DEPOSITION... 44
INTRODUCTION

It is well known that, in at least some of the vertebrates, sex hormones are elaborated by the gonads during the embryonic period. However, the exact time in development at which these hormones are first produced is not known with certainty. Histochemical and biochemical methods should reveal their presence earlier in development than bioassay techniques. However, this is not the case with regard to the chick embryo gonad.

In the chick embryo in vivo transplantation experiments have indicated the initial synthesis and release of sex hormones by the gonads at eight days (Wenger, 1965). On the other hand, biochemical techniques have not disclosed the presence of estrogens in embryonic chick gonad extracts until the tenth day of incubation (Gallien and Le Foulgoc, 1957).

Histochemical techniques have not revealed steroid hormone synthesis prior to the eighth day of incubation in chick embryos. The presence of histochemically demonstrable cholesterol has been reported at eight days in the gonads of both sexes (Chieffi et al., 1964), and at eight days in the ovary and ten days in the testis (Narbaizts and Sabatini, 1963). Δ⁵-3β-Hydroxysteroid dehydrogenase (Δ⁵-3β-HSD) activity has been reported in the embryonic gonads of both sexes from eight days onward by Chieffi (1964), while Narbaizts and Kolodny (1964) first observed the presence of this enzyme at eight days in the ovary and at ten days in the testis.

The absence of histochemically demonstrable Δ⁵-3β-HSD activity in the gonads of the chick embryo before eight days of incubation may possibly be
ascribed to the fact that this method is a threshold reaction and the enzyme
may be present before this time but not available in sufficient quantities
for reduction of the tetrazolium salt. Also, other investigators may not
have cut their sections thick enough, or incubated them long enough in the
substrate medium.

A recently developed immunofluorescent technique for the histological
visualization of androgenic steroids (Woods and Domus, 1966) is probably, like
many immunological procedures, a sensitive and specific indication for this
one class of steroids and the exclusion of others.

The Δ^5-3\beta-HSD technique, demonstrating as it does an essential step in
the synthesis of steroid hormones, generally can provide a broader spectrum of
information concerning steroid hormone synthesis than the immunofluorescent
method. It is recognized, however, that the presence of a single enzyme in
a bio-synthetic pathway does not necessarily insure successful synthesis nor
release of formed hormone (Lobel et al., 1962). Moreover, this technique
does not provide information as to the character of the elaborated steroid
hormone.

Since the time of onset of sex hormone synthesis in the gonad of the
chick embryo, as demonstrated histochemically, does not precede in time the
initial secretion of formed hormone as determined by bioassay, a re-examina-
tion of the histochemical aspects of this problem would seem to be indicated.
In the present study, chick embryo gonad sections were examined for the
presence of Δ^5-3\beta-HSD in order to determine the period during embryonic
development when steroid hormone synthesis first occurs in these organs.
A. Early Observations and Theories

The first recorded hypothesis attributing sex differentiation to hormones emanating from the embryonic gonads was that of Bouin and Ancel (1903). These investigators observed interstitial cells of Leydig in a secretory state in the testis of the 30 mm pig embryo.

The first evidence in support of this hypothesis was reported by Lillie (1916, 1917) and Keller and Tandler (1916) with regard to the phenomenon of freemartinism in cattle. They observed that the embryonic membranes of twins occasionally were so closely associated that anastomoses of membranes and blood vessels occurred, thus permitting a mixing of their blood. If the twins were a heterosexual pair, the male developed normally while the reproductive system of the female was masculinized or appeared to be an intersex. The normal development of the ovarian cortex and of the Mullerian ducts were inhibited and development and differentiation of the Wolffian ducts were facilitated in the female. In an attempt to explain this condition these investigators postulated that in such cases the male hormone was produced in the embryo prior to that of the female hormone and thus exerted its influence earlier in developmental time. The phenomenon did not occur in the absence of vascular anastomoses of embryonic membranes.

A similar phenomenon occurs, but to a lesser extent, in the pig (Hughes, 1929). Petakoi (1953, 1955) also noted the freemartin phenomenon in cattle,
but did not observe it in sheep or goats, apparently due to a comparatively late establishment of vascular anastomosis of embryonic membranes in the latter.

Lillie (1917) stated that it would be necessary to prove his theory experimentally before it could be accepted.

3. Experimental Verification and Testing of Theories

Since the present investigation has been limited to the bird, the following literature review is also so limited.

Proof of the presence of embryonic sex hormone synthesis is basic to the establishment of the hormonal theory of sex differentiation. Several approaches have been employed by a host of investigators in an effort to establish the production of these hormones during the embryonic period.

1. Transplantation

Gonads or pieces of gonads were grafted onto the chorio-allantoic membrane of chick embryos (Minoura, 1921; Greenwood, 1925; Kemp, 1927; Willier, 1927; Bradley, 1941). Willier (1927) grafted undifferentiated, as well as differentiated, gonads onto the chorio-allantoic membrane. Minoura was the only investigator to report that the grafts exerted a hormonal effect. He reported that like gonads stimulated one another's growth and differentiation, while unlike gonads inhibited each other.

Bradley, (1941), noticed occasional feminization of testes under the influence of an ovary grafted onto the chorio-allantoic membrane of host embryos. Minoura's and Bradley's results, therefore, contributed evidence
for the theory that sex hormones are responsible for sex differentiation, while the work of Greenwood, of Kemp and of Willier does not support this theory.

Wolff (1947) transplanted gonads from 6–11 day embryos into the coelom of 48–52 hour embryos. He obtained feminization of host testes (development of a cortex) by transplanted ovaries and inhibition of development of the Mullerian ducts of female hosts by transplanted testes.

Graesendijk-Huijbers (1960) transplanted embryonic chick gonads from 3–6 day donors into the coelom of 4–8 day hosts. Since no data was gathered before the eleventh day of incubation of any host, the results indicate that with the youngest grafts hormone production took place at an undetermined time before the twelfth day of incubation. This investigator also made chorio-allantoic transplants; however, only an incomplete reduction of Mullerian ducts was obtained. This condition was considered to be due to the fact that it was impossible to transplant enough testis onto the chorio-allantoic membranes to cause complete reduction of this duct system.

2. Tissue Culture and Castration

The results of the in vitro culture of gonads side by side, and of gonads and target organs demonstrate strictly traditional feminization by ovarian and masculinization by testicular secretions. These results are similar to those obtained from castration experiments. Whether the action of sex hormones on target organs is interfered with by interrupting their secretion through castration (Wolff and Wolff, 1949, 1951) or by removing the target organs and cultivating them in vitro the results are the same. Target
organs removed before sex differentiation and cultured alone, as well as those present in castrated embryos, evolved in the same way regardless of the genetic sex of the embryo (Wolff and Wolff, 1951-53). These neutral forms were the male form of the syrinx and genital tubercle of the duck embryo and the female form of the Mullerian ducts of the chick embryo. When the duck syrinx and genital tubercle were cultivated with estrogens and the chick Mullerian duct with androgens, the influence of these hormones caused development in the direction of the sex of the culture hormone (Wolff et al., 1952; Lutz-Geltertag, 1954).

Experiments were also performed associating gonads heterosexually and associating gonads of the chick embryo with Mullerian ducts (Wolff and Waffen, 1952; Weniger, 1962). When gonads were associated heterosexually, the testes were feminised, while Mullerian ducts regressed when associated with testes.

Later Weniger (1964, 1965a, b) cultured 7-12 day old chick embryo ovaries in vitro and afterward tested the medium for estrogens by the Allen-Doisy method. Estrogens were first detected in a medium in which seven day old ovaries had been cultured for 24 hours, i.e., on the eighth day of incubation.

3. Administration of Hormones

The results of this type of research are rather complex and somewhat contradictory. They will be categorized here according to class of hormone administered.

Utilizing estrogens, results were obtained that are similar to those of
ovarian influence in transplant and tissue culture experiments. Although
there are some differences, the similarity is quite evident.

In general, estrogens when administered in early embryonic life femin-
ized the testes by bringing about the differentiation of a cortex, and in
extreme cases, by changing the morphological characteristics of the testis
so that it was indistinguishable from an ovary. In females, the right
Mullerian duct, which normally undergoes involution, is maintained and both
right and left duct may hypertrophy depending on the dosage administered
(Dantchakoff; Willier, Gallagher and Koch; Wolff and Gislinger, 1935).
Normal differentiation of the ovaries was not affected or changed. Bendit
(1923), Donn (1927), Tabor, (1954) and Kornfeld (1956), stated that estrogens
seem to be responsible for the inhibition of growth and differentiation of the
right ovary. Wolff and Wolff (1951), on the other hand, reported that the
gaminal epithelium was maintained and differentiated into an ovarian cortex
on the right side when they injected estrogens into the embryo before the
fourth day. Lewis (1946) and Lewis and Donn (1948) treated duck embryos of
4-10 days incubation with estrogens and obtained a modification of the
syrinx and genital tubercle in the female direction, indicating that the
normal female character is determined by estrogens. Since these results are
similar to those observed in normal development, they appear to indicate that
the embryonic gonads exert an influence on sex differentiation as a result of
the synthesis and release of sex hormones.

The results of experiments in which androgens were administered are
less clear-cut and not easily explained. Testosterone and androstosterone were
observed to stimulate the Wolffian ducts of both sexes, (Dantchakoff; Willier,
Gallagher and Koch; Wolff and Ginglinger, 1935) as well as the Mullerian
ducts in females. Furthermore, androsterone was observed to cause the inci-
pient cortex of the left testis to differentiate into a genuine cortex, thus
bringing about the development of a typical ovotestis.

Although the results are not too well defined, there are indications
that the effects of administering hormones resemble those of the association
of gonads in vitro and in vivo, particularly with reference to estrogens
(Kozelka and Gallagher, 1934; Dantchev, 1935; Wolff and Ginglinger, 1935;
Willier et al., 1937; Lewis, 1946). The fact that the results do not corres-
pond completely may indicate that the hormonal effects seen in vitro and in
vivo are the results of an interaction of androgens and estrogens on the
accessory sex characters. The purity of the administered hormones may also
have been a critical factor.

4. Biochemical Findings

Lecoq (1948) extracted a substance from chick embryos of 14-19 days
incubation which was active on the comb of the capon, indicating the presence
of androgens. Using biochemical methods, Stoll and Maroud (1956) analyzed
the allantoic and amniotic fluids of chick embryos for 17-ketosteroids.
Traces of these steroid metabolism end-products were first observed at six
days, the amount increasing from seven to 13 days. Gallien and Le Foulgoc
(1957) used colorimetry and fluorimetry to detect and measure phenolic ster-
oids extracted from ovaries of 10, 13 and 21 day old chick embryos. These
steroids were observed to increase in amount with increasing age.
5. Histochemical Observations

The first histochemical investigation concerning hormone production by the embryonic gonad involved the identification of lipids, and cholesterol, the primary precursor of all steroids.

Initially Scheib (1958a, b) investigated total lipid content in 8, 12, 14, 18 and 20 day old chick embryos using Sudan B. Lipids were visualized in the gonads at all ages examined and were confined largely to the medullary component of both gonads. This investigator later (Scheib, 1959) examined the gonads of embryos from seven days of incubation to hatching by means of Sudan staining. He noted that lipids first appeared in the medullary cords of the testis on day seven, and in the medullary component of the ovary, "at the time of morphological sex differentiation."

Morbaitz and Sabatini (1963a) used the Sudan Black reaction for lipids and the digitonin reaction for cholesterol on the gonads of chick embryos of 7-12 days of incubation. In the ovary both substances were seen on the eighth day of incubation, while in the testis lipids were observed on day eight, but cholesterol was not seen until the tenth day.

Morbaitz and Sabatini (1963b) removed gonads from chick embryos at six and seven days and cultured them in vitro for four days. They were then examined by means of the digitonin technique for cholesterol. The results differed somewhat depending on which of two culture media were employed. Cholesterol specific precipitation was not seen on the sixth day in any of the gonads cultured in Wolff and Haffem's (1952) standard medium, but it was seen in 59% of the cases cultured beginning on the seventh day. On the other hand,
a specific precipitation was seen in 50% of the cases cultured in Stenger-Haffen's No. 46 synthetic medium, (Stenger and Haffen 1957) beginning with the sixth day, and in 83% of the cases cultured beginning with the seventh day. The positive reaction was generally distributed throughout the testis, but in the ovary it was limited to the medullary component. These investigators were not able to determine the sex of the gonads in all instances, but they attributed the lack of complete consistency of their results to a finding previously described by Narbaits and Sabatini (1963a), namely, that the ovary shows the presence of cholesterol two days earlier than the testis. Thus it was shown that, depending on the medium used for culture, the presence of cholesterol can be demonstrated in six or seven day old embryonic chick gonads which have been cultured in vitro for four days.chieffi et al., (1964) also used the Sudan B technique for lipids. He tested gonads of chick embryos of 4 to 7, 7½, 8, 10, 12, 15, 17 and 21 days of age and observed positive reactions beginning with the eighth day of incubation.

Narbaits and Kolodny (1964), and Chieffi et al., (1964) examined gonads of chick embryos for the presence of \(\Delta^5 \)-3\beta-hydroxysteroid dehydrogenase (\(\Delta^5 \)-3\beta-HSD). This enzyme catalyzes the conversion of \(\Delta^5 \)-3\beta-hydroxy steroids to \(\Delta^4 \)-3-ketosteroids (Samuels et al., 1951). Since the active form of all steroid hormones is the \(\Delta^4 \)-3-keto form, or is derived from a precursor of this form, it is apparent that \(\Delta^5 \)-3\beta-HSD is an essential enzyme in the biosynthetic pathway of steroid hormones. Therefore, it is present in all tissues where steroid hormone synthesis takes place. Narbaits and Kolodny reported that the enzyme was seen in the ovary at eight days of incubation and in the testis beginning at ten days thus confirming previous reports
concerning the presence of lipids and cholesterol (Harbaits and Sabatini, 1963a, b). Chieffi et al., (1964), however, reported its presence in both ovary and testis beginning at eight days of incubation.

a. Techniques Employed

The technique for histologically visualising the presence of Δ^5-3B-HSD activity employed in this investigation was that of Wattenberg (1958) as modified by Levy et al., (1959). He sectioned frozen tissues, then incubated them in a medium containing steroid substrate (dihydroepiandrosterone, pregnanolone and others), nicotine adenine dinucleotide (NAD), buffer (pH 8.0), a tetrasodium salt (Nitro-NT) and solvent (acetone). The hydrogen ions removed from the substrate by the dehydrogenase were transferred to the NAD, then from the NADH to the tetrasodium salt which, following the reduction, changed its form and precipitated as a granular formazan, indicating cellular localization of the enzyme. Wattenberg described the presence of a positive reaction in the cells of the adrenal cortex, interstitial cells of Leydig of the testis, stromal cells of the ovary, and weakly in the cells of the liver parenchyma.

Levy et al., (1959) modified Wattenberg's method by substituting propylene glycol for acetone, maintaining the medium at a lower pH (7.1-7.4), and changing the concentrations of NAD, Nitro-NT and substrate. Studies were made on rat adrenals, gonads and the adnexa of both sexes. These investigators confirmed Wattenberg's findings, but they also observed a positive reaction in the epithelial cells of the oviduct.

A great deal of Δ^5-3B-HSD work has been done by a number of investigators (Beallie and Griffiths, 1964; Chieffi et al., 1964; Harbaits and Kolodny, 1964;
Preal et al., 1965; Rubin et al., 1965; Baillie et al., 1965-1966; Goldman et al., 1966). Of special interest is the study of Baillie and Griffiths (1964), in which both dehydroepiandrosterone (DHA) and pregnenolone were used as substrates for the histochemical demonstration of Δ^5-3B-HSD activity in the interstitial cells of Leydig of fetal mouse testes. When pregnenolone was employed as a substrate, a positive histochemical reaction was observed four days earlier in developmental time (11 days) than when DHA was used as the substrate (15 days). Thus, it appears that either pregnenolone is a more specific substrate for Δ^5-3B-HSD, or that there are actually two enzymes involved, the one which utilizes pregnenolone being present at a younger embryonic age, at which time the enzyme which utilizes DHA as substrate is absent.
MATERIALS AND METHODS

All embryos were obtained from single comb, light-brown Leghorn eggs incubated at a temperature of 38.3 ±0.3°C. in a forced draft incubator. The age of the embryos at the time of sacrifice represents the actual time the eggs remained in the incubator. Embryos were sacrificed from day three through hatching. The ages of the earliest embryos were verified by use of the staging technique of Hamburger and Hamilton (1951). Sacrifices were performed within four hours of the specified number of days. All staging and handling of tissues used for experimental purposes was carried out as rapidly as possible, and, in fact, an effort was made to carry out this manipulation within five minutes of time of sacrifice.

Gonads were prepared in three ways: (1) The first of these was by freezing the entire embryo in an extended position on the freezing stage of a cryostat. (2) Gonads were recovered attached to the dorsal body wall. A rectangular section of the dorsal body wall, with the viscera ventral to the gonads and the skin of the dorsal surface removed to obtain better liquid contact for freezing, was frozen immediately dorsal side down on the freezing stage of a cryostat. These tissue blocks were then wrapped with multiple layers of flexible plastic wrap and stored in sealed bottles at -20°C. for subsequent sectioning. (3) The gonads were dissected, being careful to separate them from adjacent tissues. The first gonad removed was placed on a stainless steel weighing spatula and flooded with a drop of cold isotonic saline. The second one was removed and placed in the same drop of saline.
The spatula was then placed in the cryostat, where excess moisture was removed just prior to freezing by blotting the edge of the drop of saline with absorbent paper. The gonads were transferred to the freezing stage, either by lifting them from the spatula with the corner of a piece of dry paper towel or on the points of a pair of “watch makers” forceps. In certain cases they were placed upon the top surface of the freezing stage while hanging by capillary adhesion from the spatula. In all cases after being transferred to the freezing stage the gonads were frozen within about one second’s time.

Since the isolated gonads were too small to mount directly on a cryostat chuck, a method of support that would allow for rapid and easy handling of the tissue was devised. The use of large pieces of tissues was considered but discarded because of a lack of uniformity of the mount and ease of handling. Gelatin or gelatin-related materials, molded and frozen to shape directly over the gonads on the stage, were utilized. These substances possess the characteristics of both uniformity and unlimited availability. Several such materials were used for this purpose. A 5% solution of gelatin in water is recommended by workers using gelatin block methods. However, when this concentration was employed, the sections were either compressed or could not be obtained in serial order. Since the problem seemed to be one of too great a flexibility of the block, the concentration of gelatin was reduced to 2.5%. This provided somewhat more satisfactory properties when blocked, but these blocks melted too easily and were more fragile.

A commercial embedding medium made by Lab-Tek Corporation for frozen sectioning (“O.C.T.”) was found to give the best results. This medium is
available in three grades: I, II and III, in decreasing order of temperatures recommended for its use. In our work both O.C.T. I (for temperatures of 0° to -15°C.) and O.C.T. II (for temperatures of -15 to -30°C.) were used and proved very satisfactory when used within the recommended temperature range. The O.C.T. I medium was somewhat more satisfactory than the O.C.T. II for three reasons: (1) the temperature range of 0° to -15°C. gave optimal cutting results with gonadal material, (2) these blocks did not melt as readily when handled, and (3) the higher temperature was more easily maintained by the refrigerating apparatus of the cryostat. To prepare the blocks, a mold made from a strip of polystyrene was placed around the gonads on the freezing stage and the embedding medium poured into the mold. A heat extractor attached to the wall of the cryostat was then lowered onto the top of the mold. After the molded block had frozen, it was broken loose from the stage, the mold stripped away and the block wrapped in multiple layers of plastic wrap. It was then labeled and stored in a sealed bottle at -20°C. for future sectioning.

Frozen blocks were initially cut on a Lipshaw freezing microtome. However, an American Optical "Cryocut" was used for the major portion of our investigation. Sections of 2 to 40 micra thickness were cut singly or, when possible, in ribbons. These sections were either lifted onto a pre-chilled slide or coverslip, which was then removed from the chamber and the section allowed to dry on the slide, or a warm slide was brought into contact with the cut tissue adhering to the knife. The tissue slice adhered to and melted on the slide. All sections were air-dried for at least fifteen minutes.

The following technique was employed to examine gonads for Δ^5-3B-19D
activity. Slides with adherent sections were placed in a warm (37°C) buffer solution (pH 7.2 ± 0.1) for 15 to 30 minutes in order to remove endogenous substrates (Wattenberg, 1958) and to dissolve the material used as a support for the tissue while cutting. Following this, sections were incubated in the substrate medium for periods of one-half to twenty-eight hours. In the majority of cases the incubation time was one hour. Prolonged incubation periods were used for gonads from younger embryos in order to compensate for the smaller quantity of enzyme present. Dehydroepiandrosterone (DHA) was the substrate employed with most gonads examined. However, pregnenolone was used as an alternate substrate for some of the gonads. The incubation medium was prepared according to the method of Levy et al. (1959), as follows:

<table>
<thead>
<tr>
<th>CONSTITUENT</th>
<th>AMOUNT</th>
<th>CONCENTRATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydroepiandrosterone (DHA)</td>
<td>0.2 mg</td>
<td>0.1mM</td>
</tr>
<tr>
<td>or Pregnenolone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotin-adenines dinucleotide (NAD)</td>
<td>2.4 mg</td>
<td>0.54mM</td>
</tr>
<tr>
<td>Nitro-BT</td>
<td>1.0 mg</td>
<td>0.16mM</td>
</tr>
<tr>
<td>Phosphate buffer (pH 7.2)</td>
<td>4.0 ml</td>
<td>0.057M</td>
</tr>
<tr>
<td>Acetone</td>
<td>0.5 ml</td>
<td></td>
</tr>
</tbody>
</table>

When incubations were complete, sections were fixed for 15 to 30 minutes in a mixture consisting of 10% formalin, 5% glacial acetic acid and 85% of 70% ethyl alcohol, (F.A.A.), rinsed in tap water to remove residual fixative and stained for 5-10 minutes in Grenacher's Alum Carnine. After a second tap water rinse, tissue sections were dehydrated in a graded series of alcohols, cleared in xylene and mounted with Harleco synthetic resin.
Ovaries and testes were also embedded in paraffin and stained with Harris' Hematoxylin and Eosin for purposes of general histological identification. Histological examination and photography were carried out by means of an American Optical Microstar microscope at 40, 100, 450, and 1000 x magnifications. Photomicrographs were made using 35 mm. Kodachrome and Kodacolor film and exposure times of one fifth to one twenty-fifth of a second.
OBSERVATIONS

A total of 49 preparations of chick embryo gonads were examined. They ranged in age from three to 20 days of incubation. Eight of these were testes, 13 ovaries, and 27 of gonads prior to sex differentiation.

For the examination of chick embryos younger than ten days, cross sections of the entire embryo were found to be the most convenient form of preparation, in terms of orientation of the gonads as well as their association with other tissues in the embryo.

The times found to be optimal for fixation in F.A.A. were 15 minutes for sections up to 15 μ and 30 minutes for those thicker than 15 micra.

Sex differentiation is said to begin on the fifth or sixth day of incubation (Swift, 1916; Esenberg and Gerwacki, 1938), the seventh day (Lalande, 1886; Firket, 1924), or the eighth day (Firket, 1920). In this study it was first found to be noticeable grossly toward the end of the seventh day and microscopically at about nine days. The criteria found most useful in distinguishing the sex of the embryos examined were: (1) The presence in ovaries of a cortex which was absent or greatly reduced in testes, and a two layered medulla, the inner layer of which has many large lacunae, giving it a loose appearance, the outer layer consisting of compact tissue. After nine days the cortex shows a secondary proliferation of cords which have invaginated from the germinal epithelium. (2) The testes present a considerably more homogeneous picture. They consist entirely of a connective tissue stroma into which primary (medullary) cords have invaginated from the germinal epithe-
lium prior to the eighth day. These medullary cords become wavy by day eight, convoluted by day 11, and finally branch, anastomose, and form a reticulum by the 13th day. (3) The surface of testes is smooth and covered by a somewhat thickened tunica albuginea, which becomes increasingly prominent with advancing age, while the surface of the ovary is uneven, giving it a roughened appearance.

A. The Histochemical Method for Δ^5-3B-Hydroxysteroid Dehydrogenase

The results following the use of this method are most meaningful when divided into three periods according to incubation age: (1) the period prior to sex differentiation, (2) the period from sex differentiation to day 13 and (3) the period from day 13 to hatching. The time of sex differentiation would appear to be a significant initial point of division, since following this period the gonads are different from one another, as well as from their pre-differentiation form. Thirteen days of incubation is a significant second point of division because it divides the incubation period, from the time of sex differentiation to hatching, into two equal time intervals and also is the age at which interstitial tissue, often said to be involved in steroid hormone synthesis, is believed to appear (Swift, 1916).

B. The Use of Dehydroepiandrosterone (DHA) as the Substrate

1. The Period of Three Days to Sex Differentiation

This period was characterized by an unexpected finding. A somewhat generalized pattern of formazan granule deposition was seen throughout most of the tissues in cross-sections of three day embryos, becoming less general-
ized in distribution on the following days of incubation up through the
period of sex differentiation. Tissues other than the genital ridges exhibiting
formazan granules were the gut, notochord, neural tube, spleen primordium,
and the general mesenchymal tissue (figs. 1 and 2). The genital ridges showed
formazan deposition to a lesser extent than the other tissues mentioned and to
the same extent as the surrounding mesenchymal tissue and the closely adjacent
dorsal mesentery (fig. 1). The control slides showed an absence of formazan
deposition in all cases (figs. 3 and 4). The intensity of reaction in the
sections examined was rated according to a 0 to +++ scale, (table 1). The
gonads and adjacent reactive tissues exhibited an intensity of +, while the
strongly reacting duct epithelia showed a +++ degree of reactivity. These
tissue comparisons were made on whole embryo sections which were cut at a
thickness of 30 μ and incubated for approximately six hours in the histochem-
ical medium.

On day five, the reaction had become more localized and was seen with
an intensity of ++ in the gonads (fig. 5), epithelial lining of the stomach,
ependymal layer of the neural tube, Wolffian duct and diffusely in the meson-
ephros, and with an intensity of +++ in the adrenals. Again, the control
sections showed a complete absence of granule deposition. Sections of day
four embryos had an appearance intermediate between those of days three and
five.

After day five, the mesonephros, including the gonads, was usually
dissected free of other tissues in preparation for examination. It continued
to show a fine and very diffuse formazan deposition. This reactivity was
also occasionally seen in the mesonephros of control slides, thus minimizing
its significance in this study. Adrenal tissue often accompanied sacral seg-
ments and usually showed an intense granulation. Sections of gonads of six
through nine days of incubation showed a ++ reactivity when cut at ten μ
and incubated in the histochemical medium for three hours. No granules were
seen in the dorsal mesentery, neural tube or mesenchyme at these ages (figs.
6 and 7).

2. The Period From Sex Differentiation to Day 13

In ovaries granule deposition showed a tendency, with advancing age, to
become localized in patches, presumably in the cords, within the medulla of
the ovary. Testes exhibited a granule deposition of + to ++, limited largely
to the medullary cords. No substantial increase in the amount of activity in
ovaries and testes was seen during this age range. The control slides showed
no reaction. Thus, it seems that a relatively stable amount of enzyme is
present in the ovary between the period of sex differentiation and 13 days.

3. The Period of Day 13 to Hatching

The ovary shows a steady increase in the amount of reactivity throughout
this period (table 1), (figs. 8 and 15). The reactivity was seen almost ex-
clusively in the medullary component of the ovary, although there also were
some formazan deposits in the cortex. The deposition was extremely heavy in
the outer, more compact portion of the medullary component in the 14 day ovary,
but it was also seen in small groups of cells within the primary cords of the
inner core portion of the medulla (figs. 8 and 9).

A generalized reactivity was seen throughout the stroma of the testis with the greatest intensity in the cores. This generalized reaction had an intensity judged at ++. An especially intense deposit of formazan granules was seen in occasional cells within the sex cords of testes. This corresponds to observations in the female, which could perhaps be anticipated since the testis and the ovarian medulla are homologous structures. This deposit was seen at about +++ intensity in a 16 day testis (figs. 10 and 11), 17 day ovary and testis (figs. 12 and 13), and in a 20 day ovary and testis (figs. 14 and 15). The 16 day testis was cut at 4 μ and incubated for one hour while the 17 and 20 day gonade were cut at 10 μ and incubated for three hours.

C. The Use of Pregnenolone as the Substrate

Pregnenolone was used as a substrate for Δ^5-3β-HSD with the hope that the activity of this enzyme could be traced to a younger incubation age than that observed when DHA was used, thus extending to another species the observations reported by Baillie and Griffiths (1964) on the testis of the mouse embryo. The results, however, were not as anticipated. A reactive granule deposition was seen only in certain experimental slides, whereas an extremely intense reaction (++++) was observed when DHA was employed as the substrate. An example of this is the case of an adrenal from a 19 day female embryo which revealed a + reaction with pregnenolone, while with DHA the section appeared almost completely opaque as a result of formazan deposits. The controls for both the pregnenolone and DHA experiments were negative.
DISCUSSION

This investigation was undertaken for the purpose of determining, by histochemical means, the time of initial steroid hormone synthesis in the gonads of the chick embryo.

The results obtained with gonads between three days of incubation and the period of sex differentiation (approximately 6-7 days) were not as expected. Δ^5-3B-HSD activity, employing DHA as a substrate, was not limited to those tissues which are known to contain this enzyme i.e., gonads, adrenals, mesonephros and liver (Levy et al., 1959). Perinuclear granules were also seen throughout the gut, neural tube, as well as in the notochord, spleen primordium and mesenchyme from three to five days of incubation. The deposits decreased in intensity with advancing age until during the fifth day they had disappeared from the notochord, spleen primordium, the neural tube, except for the ependymal layer, and the mesenchyme. These deposits had also disappeared by this time in the gut, except for the epithelial lining. This granulation in these tissues is an unusual finding and two possible explanations may be considered. First, there is the possibility that this could be a phenomenon of enzyme induction. The fact that the tissues are less differentiated in nature and therefore less specialized in young embryos may allow the tissues to produce a Δ^5-3B-hydroxysteroid dehydrogenating enzyme in response to introduced substrate. A second possibility is that the Δ^5-3B-HSD is normally found in more generalized locations in very young embryos, again because of the less specialized nature of their tissues. This would imply a generalized
potentiality of the tissue to synthesize steroid hormones, many of which no doubt lose this potential as they become specialized. Steroid hormone synthesis in the gonads alone probably takes place gradually and may be indicated by the increase in granule deposition in the gonads seen in our investigation shortly before the onset of sex differentiation, that is, at about six days.

The results with embryonic gonads at ages between sex differentiation and hatching are straightforward in nature. An apparently steadily increasing concentration of enzyme was observed in the gonads with advancing age.

The fact that the sex hormones seem to be synthesized mostly by the medullary component of the ovary or testis appears to confirm the results of in vitro studies in which chick gonads were cultured in heterosexual combination and gonads and accessory sex organs were associated (Wolff and Haffen, 1952; Weniger, 1962). It was found that the principal hormones involved in differentiation of the reproductive system in the chick are the androgens. The Mullerian duct grew and differentiated normally in the absence of hormones, while the presence of androgens caused degeneration, as normally occurs when differentiation takes place in the male direction. Thus, the direction of differentiation can be determined by the presence or absence of male hormones. The fact that the testis is feminized by female hormones is probably not as important as the Mullerian duct phenomenon, since a high concentration of estrogens is not normally encountered in the male.

Our results, then, confirm the findings of Chieffi et al. (1964), and Narbaitz and Kolodny (1964) who observed the presence of Δ^5-3β-HSD in the
embryonic gonads immediately after gonad differentiation and thus shortly prior
to differentiation of the Mullerian ducts. However, we have also observed
Δ^5-3B-HSD activity in the undifferentiated gonad, which would appear to indi-
cate that the enzymatic mechanisms for steroid hormone synthesis are present
in these organs some time in advance of secretion of the sex hormones. This
is a particularly important point in that it is a verification of the timing of one event in a sequence of events. Before the hormones can be released
they must first be synthesized by the gonads and before they can by synthesiz-
ed, the enzymes involved in their synthesis must be present. All of these
events should precede in time the actual secretion of formed hormone as deter-
mined by bioassay techniques.

The significance of this work, then, lies in the fact that, while up to
the present the above considerations were apparent, the actual sequence of
events had not been experimentally demonstrated, i.e., the results of biochem-
ical and histochemical techniques on the one hand and bioassay results on the
other, did not reveal a proper time sequence. It now appears that the synthe-
tic mechanisms for steroid hormone formation are present prior to differentia-
tion of the gonads.

Regarding the failure of the substrate pregnenolone to yield the
expected results, it is to be noted that the solvent used in our investigation
was different from that used on fetal mouse gonads by Baillie and Griffiths
(1964). These workers used propylene glycol in both their pregnenolone and
dehydroepiandrosterone (DHA) experiments, employing the modification of Levy
et al., (1959) of Wattenberg's (1958) original medium. We used acetone, as
did Wattenberg in his investigation. In the acetone-pregnenolone medium a
moderate amount of precipitate was seen on the bottom of the staining jar,
which was not seen in the DHA jar. It is conceivable that this precipitate
could be pregnenolone since the medium contained a high percentage of water.
Pregnenolone and DHA are both water insoluble; however, pregnenolone is
probably less soluble in the medium used, than is DHA, possibly to the point
where it is not available in sufficient concentration for utilization as a
substrate. It might be available in greater concentration if a different
solvent were used thereby permitting complete solubilization.
SUMMARY AND CONCLUSIONS

1. Forty-nine embryonic gonads of the single comb, light-brown, Leghorn
 flock from three days of incubation to hatching were examined by the tech-
 nique of Wattenberg (1958) for the presence of Δ^5-3β-hydroxysteroid
dehydrogenase, an enzyme necessary for the synthesis of steroid hormones.
 Two substrates were employed, dehydroepiandrosterone and pregnenolone.

2. Virtually no enzyme specific granulation was seen in the tissue incubated
 with pregnenolone probably due to its relative insolubility in the aceto-
 tone medium employed. Propylene glycol was the solvent used in previous
 investigations (Baillie and Griffiths, 1964).

3. Results obtained in three day embryos, with the use of dehydroepiandro-
 sterone as the substrate, showed formazan granulation in the gut and
 Wolffian ducts, as well as the ependymal layer of the neural tube, dor-
 sal mesentery, spleen primordium, surrounding abdominal mesenchymal
 tissue, and the genital ridges.

4. Between days three and five the generalized reactivity became more
 restricted to the epithelium of the Wolffian ducts, neural tube, gut and
 to the genital ridges.

5. Subsequent to day five, formazan deposits became more intense in local-
 ized patches of cells around lacunae in the medullary component of the
 ovary and weakly generalized in the ovarian cortex and the medullary
 cords of the testis.

6. It is assumed that the generalized tissue reactivity, which is seen in
the embryo from day three to five, is due to the relatively undifferentiated nature of embryonic structures during this period of development because of which all tissues may: (1) possess the potential for steroid synthesis by virtue of the presence of certain enzymes involved in the biogenesis of steroid hormones including Δ^5-3β-HSD or (2) respond to the test substrate by producing a Δ^5-3β-HSD.

7. It is tentatively concluded that the results of this investigation indicate a capacity for steroid hormone synthesis in the gonad of the chick embryo beginning on about the sixth day of incubation. At this time the generally distributed reactivity, seen in most of the tissues during the early embryonic period, begins to disappear and reactivity in the gonads begins to increase. After the sixth day, reactivity in the gonads appeared to show a steady increase up to the time of hatching.
LITERATURE CITED

Willier, B. H. 1927 The specificity of sex, of organization and of differ-
entiation of embryonic chick gonads as shown by grafting experiments.

Wolfer, E. H., T. F. Gallagher and F. C. Koch 1935 Sex modifications in the
chick embryo resulting from injections of male and female hormones.

Wolff, E. 1947 Recherches sur l'intersexualite experimentale produite par
la methode des greffes de gonades a l'embryon de poulet. Arch. Anat.

caesaux de Muller de l'embryon de poulet sous l'action directe des hormo-

Wolff, E., Y. Lutz-Ostertag and K. Haffan 1952a Sur la culture in vitro
des caesaux de Muller de l'embryon de poulet. C. R. Soc. Biol., 146:
1791-1793.

Wolff, E., Y. Lutz-Ostertag and K. Haffan 1952b Sur la regression et la
necrose in vitro des caesaux de Muller de l'embryon de poulet sous l'

Wolff, E., and E. Wolff 1949 Application de la methode de castration a
l'embryon de canard: sur deux tests de l'activite precoce des gonades
embryonnaires, le syrinx et le tubercule genital. C. R. Soc. Biol.,
143: 529-531.

Wolff, E., and E. Wolff 1951 The effects of castration on bird embryos.

Wolff, E., and E. Wolff 1952a Le determinisme de la differentiation sexu-
325-350.

Wolff, E., and E. Wolff 1952b Action de l'hormone femelle sur la differen-
ciation sexuelle de la syrinx de canard cultivée in vitro. C. R. Soc.

Wolff, E., and E. Wolff 1953 Cultivation and differentiation of the syrinx

Woods, J. E., and L. V. Dunn 1966 A histochemical identification of the
androgen-producing cells in the gonads of the domestic fowl. Anat.
<table>
<thead>
<tr>
<th>Days of Incubation</th>
<th>No. of Specimens</th>
<th>Undifferentiated Gonads</th>
<th>Ovaries</th>
<th>Testes</th>
<th>Thickness (Micra)</th>
<th>Incubation Period (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>++G2</td>
<td></td>
<td></td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+G2</td>
<td></td>
<td></td>
<td>10</td>
<td>2 3/4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>++G2</td>
<td></td>
<td></td>
<td>30</td>
<td>18 1/2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+G2</td>
<td></td>
<td></td>
<td>10</td>
<td>3 1/2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>+++G2</td>
<td></td>
<td></td>
<td>20-40</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Gonad not seenG1</td>
<td></td>
<td></td>
<td>10</td>
<td>4 1/2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+G1</td>
<td></td>
<td></td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>+++</td>
<td></td>
<td></td>
<td>12</td>
<td>1-3 (one 17)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>++</td>
<td></td>
<td></td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+</td>
<td></td>
<td></td>
<td>10</td>
<td>3 3/4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>40</td>
<td>2 1/2-4</td>
</tr>
</tbody>
</table>

0: No formazan deposition
+ Rarely detectable, but definite deposition
++ Moderate deposition
+++ Extremely heavy deposition (tissue opaque)
G1 Generalized deposition present in several tissues other than gonad, mesonephros or adrenal
G2 Deposition generalized through most tissues
TABLE 2
THE INTENSITY OF FORMAZAN DEPOSITION IN Δ^5-3BHSD PREPARATIONS

DAYS 7 to 9

<table>
<thead>
<tr>
<th>Days of Incubation</th>
<th>No. of Specimens</th>
<th>Undifferentiated Gonads</th>
<th>Ovaries</th>
<th>Testes</th>
<th>Thickness (Micra)</th>
<th>Incubation Period (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+</td>
<td></td>
<td></td>
<td>10</td>
<td>2 1/2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td></td>
<td>++</td>
<td>++</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>++</td>
<td></td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td></td>
<td>++</td>
<td>++</td>
<td>6 & 10</td>
<td>1</td>
</tr>
</tbody>
</table>

0. No formazan deposition
+ Rarely detectable, but definite deposition
++ Moderate deposition
++++ Extremely heavy deposition (tissue opaque)

G_1 Generalised deposition present in several tissues other than gonad, mesonephros or adrenal

G_2 Deposition generalised through most tissues
<table>
<thead>
<tr>
<th>Days of Incubation</th>
<th>No. of Specimens</th>
<th>Undifferentiated Gonads</th>
<th>Ovaries</th>
<th>Testes</th>
<th>Thickness (Micra)</th>
<th>Incubation Period (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>+</td>
<td>++</td>
<td>6</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>+</td>
<td>++</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>+</td>
<td>++</td>
<td>22.10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>+</td>
<td>++</td>
<td>23.4</td>
<td>2.3/4</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>+</td>
<td>++</td>
<td>10</td>
<td>1 1/3</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>+</td>
<td>++</td>
<td>23.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>+</td>
<td>++</td>
<td>10</td>
<td>1 1/3</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>+</td>
<td>++</td>
<td>23.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>+</td>
<td>++</td>
<td>10</td>
<td>1 1/3</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>++</td>
<td>++</td>
<td>10</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

*No formazan deposition
+Barely detectable, but definite deposition
++Moderate deposition
++++Heavy deposition
++++Extremely heavy deposition (tissue opaque)

G1: Generalized deposition present in several tissues other than gonad, mesonephros or adrenal
G2: Generalized deposition through most tissues
PLATE 1

EXPLANATION OF FIGURES

1 Experimental cross-section of a 3 day embryo cut at 30 micra and incubated for 6½ hours showing +++ reaction of Δ⁷-3B-HSD in genital ridge (G), Wolffian duct (W), adjacent mesenchymal tissue (M), coelomic epithelium (C), and dorsal mesentery (D). X 450.

2 Experimental cross-section of a 3 day embryo shown in figure 1 showing ++ reaction throughout neural tube, (Nt), notochord (Nd), and lining of gut (G). X 450.
PLATE 2

EXPLANATION OF FIGURES

3 A central cross-section of 3 day embryo shown in figures 1 and 2 to show absence of Δ^3-\(\text{f-hsd} \) in genital ridges (g) and their relationship to the gut (g), notochord (Nd), and neural tube (Nt). X 100.

4 A higher magnification of upper genital ridge shown in figure 3 to confirm absence of formazan granules. The genital ridge (G), Wolffian duct (W) and dorsal mesentery (D) are shown. X 450.
Experimental cross-section of a gonad (G) of a 5 day embryo cut at 10 micra and incubated at 4 hours showing scattered formazan granules throughout the genital ridge and gut epithelium (E.) at ++ intensity. X 450.
6 Experimental cross-section of a 7 day gonad cut at 12 micra and incubated 1 hour showing diffuse but definite granulation judged at ++ intensity. X 450.

7 Experimental cross-section of a 9 day gonad cut at 6 micra and incubated 1 hour showing reaction (R) in what may be the medullary component of an ovary. X 100.
8 Experimental cross-section of a 14 day ovary cut at 40 micra and incubated 2 3/4 hours showing a patchy reaction in loose portion of medullary component (Ml), and a very dense reaction in the compact portion (Mc). There is a small amount of reaction in the cortex (C). X 100.

9 Higher magnification of a cross-section of loose medullary portion shown in figure 8 showing medullary lacuna (L), and the reaction (R) in the interstices between medullary lacunae and cords. X 450.
PLATE 6

EXPLANATION OF FIGURES

10 Experimental cross-section of a 16 day testis cut at 4 micro and incubated 1 hour showing a ++ reaction throughout the organ as well as several reactive +++ patches (R). X 450.

11 Patch of intense ferricin deposition (D) in same tissue section as shown in figure 10. The intracellular localization of the deposits may be seen. Oil immersion X 1000.
PLATE 7

EXPLANATION OF FIGURES

12 Experimental cross-section of the sacral portion of a 17 day embryo cut at 10 micra and incubated 1½ hours showing the ovary (O) with deposits (D) in patches in the medulla and the adrenals (A). X 100.

13 Higher magnification of section of ovary shown in figure 12 showing cortex (C) and medulla (M) with patches of granule deposition (D). X 450.
14. Experimental cross-section of a 20 day testis cut at 10 micra and incubated 3 hours showing granulation (G) mostly in center of this organ. X 100.

15. Experimental cross-section of a 20 day ovary cut at 10 micra and incubated 3 hours showing relatively compact cortex (C) and loosely arranged medulla (M) with a patchy formazan granule deposition (D). X 100.
APPROVAL SHEET

The thesis submitted by David Glenn Rabuck has been read and approved by four members of the faculty of the Graduate School of Loyola University.

The final copies have been examined by the director of the thesis and the signature which appears below verifies the fact that any necessary changes have been incorporated, and that the thesis is now given final approval with reference to content, form, and mechanical accuracy.

The thesis is therefore accepted in partial fulfillment of the requirements for the Degree of Master of Science.

Date: January 4, 1966

Signature of Advisor