
Weak Theories of Arithmetic for Computational
Complexity: A Gentle Introduction

Sendai Logic Seminar, May 2, 2012, Tohoku University

Naohi Eguchi

Mathematical Institute, Tohoku University, Japan
eguchi@math.tohoku.ac.jp

Abstract. In this talk we will discuss about proof-theoretic approaches
to computational complexity in terms of weak theories of arithmetic as
known as theories of bounded arithmetic, which was initiated by Samuel
Buss. We will start with classical facts on primitive recursive functions,
and then go into discussion about polynomial time functions and poly-
nomial space functions, including a recent challenge by the speaker.

1 Introduction

One goal in computational complexity theory is to classify problems, predicates
or functions depending on their intrinsic computational difficulty. Given a prob-
lem, it is natural to ask how much computing resources we need to solve it. To
date we have made much progress in classifying problems into complexity classes.
The class P of problems decidable in polynomial time has been accepted as the
most central complexity class along with a crucial open question “P ̸= NP?”.
The class PSPACE of problems decidable in polynomial space is known to-
gether with another crucial open question “P ̸= PSPACE?”.

Machine-independent approaches to computational complexity have been de-
veloped characterising complexity classes by conceptual measures from proof the-
ory. The proof-theoretic approaches to computational complexity started with
introduction of a first order theory S1

2 of bounded arithmetic, which characterises
the class P, by S. Buss in [2]. In [2] a second order theory U1

2 of bounded arith-
metic, which characterises the class PSPACE is also introduced. More recently,
in [5] A. Skelley introduces a third order theory W 1

1 of bounded arithmetic, or
more precisely a three sorted theory in the sense of S. Cook and P. Nguyen [4],
which characterises the class PSPACE. In a draft [1] Toshiyasu Arai1 and the
speaker propose a new second order theory T 1,seq

2 of bounded arithmetic for the
class PSPACE. This talk aims to give a brief introduction to theories S1

2 and
T 1,seq
2 . Mostly we will follow notations and conventions given in the chapter [3]

by S. Buss of “Handbook of Proof Theory”.

1 Graduate School of Science, Chiba University, Japan.

2 A classical proof-theoretic characterisation of primitive
recursive function

We start with a classical proof-theoretic characterisation of the class of primitive
recursive functions. We assume reader’s familiarity with standard first order the-
ories of arithmetic. In particular we assume that the languages of these theories
contain the constant symbol 0 and the successor function symbol S. For every
natural number m we will write m to denote the term Sm(0). Let IΣi denote
the fragment of Peano arithmetic PA with induction restricted to Σ0

i -formulas.
For a class Φ of formulas, let Φ-IND denote the schema of induction with respect
to a Φ-formula A:

A(0) ∧ ∀x(A(x) → A(S(x))) → ∀xA(x) (Φ-IND)

Definition 1. Let T be a theory of arithmetic such that IΣ1 ⊆ T , Φ a set of
formulas, k ≥ 0 a natural number, and f : Nk → N be a k-ary function. Then,
we say f is Φ-definable in T if there exists a formula Af (x1, . . . , xk, y) ∈ Φ which
enjoys the following conditions.

1. All free variables appearing in Af (x1, . . . , xk, y) are indicated.
2. For all m = m1, . . . ,mk, n ∈ N, n = f(m) holds if and only if N |=

Af (m, n), where N denotes a standard model of theories of first order arith-
metic.

3. T ⊢ ∀x∃!yAf (x, y), where x = x1, . . . , xk.

Theorem 1 (Parsons ’70, Mints ’73, Buss [2] and Takeuti ’87). A func-
tion f is Σ0

1 -definable in IΣ1 if and only if f is primitive recursive.

3 A first order theory S1
2 of bounded arithmetic for P

First order theories of bounded arithmetic are defined over the first order pred-
icate logic. For definitions we follow Buss [3]. We fix the language Lb

A of these
theories as follows. The logical symbols of Lb

A consist of the usual first-order
symbols, including propositional connectives, quantifiers and the equality =.
The non-logical symbols of Lb

A include 0, S, +, ·, and ≤. Further Lb
A includes

a unary function symbol ⌊x
2 ⌋ for division by 2, a unary function symbol |x| for

the function such that |x| = ⌈log2(x + 1)⌉, and a binary function symbol # for
the smash function x#y = 2|x|·|y|.

A bounded quantifier is of the form ∀x(x ≤ t → · · ·) or ∃x(x ≤ t ∧ · · ·) for
some term t not involving x. These can be abbreviated as (∀x ≤ t)(· · ·) and
(∃x ≤ t)(· · ·), respectively. A usual quantifier is called an unbounded quantifier.
A sharply bounded quantifier is of the form (Qx ≤ |t|)(· · ·) for some Q ∈ {∀, ∃}
and for some term t.

The non-logical axioms of theories of bounded arithmetic include the set
BASIC of basic axioms. The set BASIC consists of axioms which define each

2

function and predicate symbol in Lb
A. For the detailed definition of BASIC, we

kindly refer the readers to Buss [3].

Theories of bounded arithmetic are defined by imposing some constrains on
variations of induction schemes in such a way that induction is allowed only for
formulas from specific sets Σb

i or Πb
i (i ≥ 0). Let i ≥ 0. The sets Σb

i and Πb
i

(i ≥ 0) of formulas are simultaneously defined as follows.

1. Σb
0 := Πb

0 is the set of formulas in which all quantifiers are sharply bounded.

2. The set Σb
i is closed under ∨ and ∧.

3. If A ∈ Πb
i and B ∈ Σb

i , then {A → B,¬A} ⊆ Σb
i .

4. Πb
i ⊆ Σb

i+1.

5. If A ∈ Σb
i and t is a term, then {(∀x ≤ |t|)A, (∃x ≤ |t|)A} ⊆ Σb

i .

6. If A ∈ Σb
i and t is a term, then (∃x ≤ t)A ∈ Σb

i .

7. The set Πb
i is defined dually to Σb

i .

Definition 2. T i
2 = BASIC+Σb

i -IND. (i ≥ 0)

In contrast to the Φ-IND schema, Φ-PIND is the schema, for a Φ-formula A,

A(0) ∧ ∀x(A(⌊x
2 ⌋) → A(x)) → ∀xA(x). (Φ-PIND)

Definition 3. Si
2 = BASIC+Σb

i -PIND. (i ≥ 0)

Theorem 2 (Buss [2]). For all i ≥ 0, T i
2 ⊆ Si+1

2 ⊆ T i+1
2 .

Let us extend Definition 1 by replacing “IΣ1 ⊆ T” by “S1
2 ⊆ T”.

Theorem 3 (Buss [2]). A function f is Σb
1-definable in S1

2 if and only if f is
polynomial time computable.

This theorem can be generalised to each level of the polynomial hierarchy. Let
FP denote the class of functions computable in polynomial time and ΣP

i denote
the i-th class of the polynomial hierarchy, i.e., ΣP

0 = P, ΣP
1 = NP, Then a

hierarchy 2P
i (i ≥ 0) is defined by 2P

0 = FP and 2P
i+1 is the class of functions

computable in polynomial time using oracles from ΣP
i+1, i.e, 2

P
i = FPΣP

i .

Remark 1.
∪

i≥0 Σ
P
i ⊆ PSPACE.

Theorem 4 (Buss [2]). For every i ≥ 0 a function f is Σb
i -definable in Si

2 if
and only if f belongs to 2P

i .

Corollary 1. For every i ≥ 0 a predicate (or equivalently a problem) is ∆b
i -

definable in Si
2 if and only if it belongs to ΣP

i .

3

4 Why second order notions for PSPACE?

Let FPS denote the class of functions computable in polynomial space. Thanks
to the following fact, we can discuss about classes FP and FPS of functions
instead of classes P and PSPACE of problems.

Fact 1 FP ̸= FPS ⇐⇒ P ̸= PSPACE.

In cantrast to a (possible) gap between P and NP, it is known PSPACE =
NPSPACE. W. Savitch’s proof of this fact is based on an observation that
PSPACE computations allow computation sequences of exponential lengths.
However the exponential is an infinitary notion in first order bounded arithmetic.
Hence, in order to capture PSPACE computations, it is natural to extend first
order theories Si

2 and T i
2 of bounded arithmetic to second order ones, cf. Fig. 1.

Polynomials Exponentials

Predicativity Predicative Impredicative
Model Theory Standard Nonstandard

1st order Bounded Arithmetic finite infinite
2nd order Bounded Arithmetic 1st order elements 2nd order elements

Fig. 1. Relationship between polynomials and exponentials.

5 A new second order theory T 1,seq
2 for PSPACE

We extend the language Lb
A to Lseq

A by adding second order variables X,Y, Z, . . . ,
a function constant ∅, a unary function symbol | · |, binary function symbols ·(·)
and App. We write T (L) denote the set of all the terms over a language L.

Definition 4. The set T (Lseq
A) of Lseq

A terms is partitioned into T b(Lseq
A) and

T seq(Lseq
A). The sets T b(Lseq

A) and T seq(Lseq
A) of terms simultaneously as follows.

1. T (Lb
A) ⊆ T b(Lseq

A).
2. If f ∈ Lb

A is a function symbol of arity k and t1, . . . , tk ∈ T b(Lseq
A), then

f(t1, . . . , tk) ∈ T b(Lseq
A).

3. X ∈ T seq(Lseq
A) for each second order variable X.

4. ∅ ∈ T seq(Lseq
A).

5. If U ∈ T seq(Lseq
A), then |U | ∈ T b(Lseq

A).
6. If t ∈ T b(Lseq

A) and U ∈ T seq(Lseq
A), then U(t) ∈ T b(Lseq

A).
7. If U ∈ T seq(Lseq

A) and t ∈ T b(Lseq
A), then App(t, U) ∈ T seq(Lseq

A).

We use s, t, . . . to denote elements of T b(Lseq
A) while U, V,W, . . . to denote

elements of T seq(Lseq
A). Intuitively, each element of T b(Lseq

A) denotes a natural
number while each element of T seq(Lseq

A) denotes a finite sequence of natural
numbers. More precisely, we extend a standard semantic ·N for closed terms in
T (Lb

A) to a semantic for closed terms in T (Lseq
A) as follows.

4

Definition 5. We assume a primitive recursive sequencing of natural num-
bers: (m0, . . . ,ml−1) 7→ ⟨m0, . . . ,ml−1⟩. Let ⌢ denote the concatenation with
respect to this sequencing, i.e., ⟨m0, . . . ,ml−1⟩⌢⟨n0, . . . , nl′−1⟩ denote the se-
quence ⟨m0, . . . ,ml−1, n0, . . . , nl′−1⟩

1. ∅N := ⟨⟩.
2. App(t, U)N := UN⌢⟨tN⟩.
3. |U |N = l: the length of the sequence UN = ⟨m0, . . . ,ml−1⟩.
4. U(t)N = mtN : the tN-th entry of the sequence UN = ⟨m0, . . . ,ml−1⟩ if tN < l,

otherwise 0.

One could convince oneself that each of functions symbols ∅, | · |, ·(·) and App
defines a primitive recursive function. Indeed, each of them defines even a poly-
nomial time function, cf. discussion in Buss [3, Section 1.2].

Definition 6. Lseq
A -formulas are obtained by extending Lb

A-formulas as follows.

1. Every Lb
A-formula is an Lseq

A -formula.
2. If A is an Lseq

A -formula, then QXA is an Lseq
A -formula for each Q ∈ {∀, ∃}.

We introduce a set BASICseq of axioms which define function symbols in Lseq
A .

Definition 7. The set BASICseq consists of the following formulas.

1. |∅| = 0.
2. |App(x,X)| = |X|+ 1.
3. y < |X| → App(x,X)(y) = X(y).
4. App(x,X)(|X|) = x.

Definition 8. Let t, s ∈ T b(Lseq
A) be two terms and A(X) an Lseq

A -formula.
Then, we write (∃X(t,s))A(X) instead of ∃X((∀j < |X|)(X(j) ≤ t) ∧ |X| ≤ s ∧
A(X)). Accordingly, we write (∀X(t,s))A(X) instead of ∀X((∀j < |X|)(X(j) ≤
t) ∧ |X| ≤ s → A(X)). A quantifier of the form (∃X(t,s))(· · ·) or (∀X(t,s))(· · ·)
will be called a bounded quantifier on sequences.

Definition 9. For each i ≥ 0 sets Σseq
i , Πseq

i and ∆seq
i of Lseq

A -formulas are
simultaneously defined as follows.

1.
∪

j∈N Σb
j ⊆ Σseq

0 := Πseq
0 .

2. The set Σseq
i is closed under ∨ and ∧.

3. If A ∈ Πseq
i and B ∈ Σseq

i , then {A → B,¬A} ⊆ Σseq
i .

4. Πseq
i ⊆ Σseq

i+1.

5. If A ∈ Σseq
i and t ∈ T b(Lseq

A) is a term, then {(∀x ≤ t)A, (∃x ≤ t)A} ⊆ Σseq
i .

6. If A ∈ Σseq
i and t, s ∈ T b(Lseq

A) is two terms, then (∃X(t,s))A ∈ Σseq
i .

7. The set Πseq
i is defined dually to Σseq

i and ∆seq
i is defined in an obvious way.

Let N denote a standard model of first order theories of arithmetic. We
extend the standard validity N |= · to the Lseq

A -sentences. Here we extend the
notation for the numeral m corresponding to a natural number m to the notation
⟨m0, . . . ,ml−1⟩ for the sequence of natural numbers m0, . . . ,ml−1 in an obvious
way: ⟨⟩ = ∅, ⟨m0, . . . ,ml−1,ml⟩ = App(ml, ⟨m0, . . . ,ml−1⟩).

5

Definition 10. We write N |= ∃XA(X) if there exists a sequence ⟨m0, . . . ,ml−1⟩
of natural numbers m0, . . . ,ml−1 ∈ N such that N |= A(⟨m0, . . . ,ml−1⟩). The va-
lidity N |= ∀XA(X) is defined accordingly.

Definition 11. T i,seq
2 = BASIC+ BASICseq +Σseq

i -IND. (i ≥ 0)

Theorem 5 ([1]). A function f is Σseq
1 -definable in T 1,seq

2 if f is polynomial
space computable.

Conjecture 1. The “only if” direction of Theorem 5 also holds. Hence a predicate
is ∆seq

1 -definable in T 1,seq
2 if and only if it belongs to PSPACE.

6 Conclusion

We started with the classical fact that primitive recursive functions can be cap-
tured by IΣ1. The first order bounded arithmetic started with capturing the
class P by a miniaturisation S1

2 of IΣ1. In order to capture the class PSPACE
it is natural to extend S1

2 to second order theories. The speaker believes that a
new second order theory T 1,seq

2 captures the class PSPACE. What is new, or
what is a challenge, in the formulation of T 1,seq

2 compared to Buss’s second order
theory U1

2 or Skelley’s third order theory W 1
1 will be explained as follows.

Induction Axioms (Bit-) Comprehension Axioms
U1
2 Φ-PIND included

W 1
1 Φ-PIND included

T 1,seq
2 Φ-IND not included

For future works it is natural to ask what complexity classes can be captured
by T i,seq

2 in general, or by second order theories Si,seq
2 with Σseq

i -PIND defined in

accordance with T i,seq
2 .

References

1. T. Arai and N. Eguchi. A New Theory of Bounded Arithmetic for PSPACE Com-
putations. in preparation.

2. S. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.
3. S. Buss. Proof Theory of Arithmetic. In S. R. Buss, editor, Handbook of Proof

Theory, pages 79–147. North Holland, Amsterdam, 1998.
4. S. Cook and P. Nguyen. Logical Foundations of Complexity. Cambridge University

Press, 2010.
5. A. Skelley. A Third-order Bounded Arithmetic Theory for PSPACE. In Proceedings

of Computer Science Logic 2004, the 18th International Workshop of the EACSL,
LNCS, volume 3210, pages 340–354. Springer, Berlin, 2004.

6

