












Figure 8. MITF and SOX10 actively recruit BRG1. (A) UCSC screenshots illustrating occupancy over the TYR locus and highlighting the selective

recruitment of BRG1 by MITF and/or SOX10. * illustrates a region where BRG1 occupancy is diminished upon siMITF silencing, while the arrow indicates

a region where BRG1 is lost upon siSOX10 silencing. (B) * illustrates a region where BRG1 occupancy is diminished upon siMITF silencing, while the arrow

Figure 8. continued on next page
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BRG1-YY1-SOX10-TFAP2A-MITF co-localization defines sets of MAREs
with a specific chromatin organisation
BRG1 binds extensively over the melanoma cell genome often at active H3K27ac-marked enhancers

consistent with previous reports (Hu et al., 2011). Nevertheless, we describe here a novel profile

where BRG1 often binds as two peaks separated by 250–800 base pairs. These BRG1 sites define two

classes of elements. The first is a subset of TSS, where BRG1 occupies the nucleosomes flanking the

NDR with the Pol II pause site located immediately 5′ of the +1 nucleosome. This specific positioning

of BRG1 at the TSS was not noted in several previous ChIP-seq studies (De et al., 2011; Euskirchen

et al., 2011; Ho et al., 2009; Hu et al., 2011; Yu et al., 2013; Morris et al., 2014), however,

Tolstorukov et al. (2013) reported that BRG1 occupies the nucleosomes flanking the TSS.

Tolstorukov et al. also reported that inactivation of BRG1 does not affect the positioning of these

two nucleosomes, but rather elicits a strong reduction in their occupancy. Nevertheless, the overall

meta-profiles presented by Tolstorukov et al., analogous to that reported here, overlooked two

important features: (1) that many promoters show BRG1 occupancy of only the −1 or +1 nucleosome,

and (2) that −1 or +1 nucleosome location is variable (Fenouil et al., 2012).

The second class corresponds to TF binding sites in promoter and enhancer elements. The

observed variability in distances separating the BRG1-bound nucleosomes likely reflects the number

of TFs bound in the intervening regions. For example, combinations of MITF, SOX10, YY1, TFAP2A as

well as other TFs such as ETS1 bind between two BRG1-bound nucleosomes. At many of these sites

the BRG1-bound nucleosomes are also marked by H3K27ac, thus defining MAREs active in regulating

melanocyte lineage gene expression. As SOX10, YY1, TFAP2A, and ETS1 all have important roles in

melanocytes and/or melanoma, the MAREs identified here define a combinatorial signature of TFs

critical for gene regulation in this lineage (Figure 9). This is further underlined by the recent finding

that a combination of MITF, SOX10, and PAX3 can reprogram fibroblasts into functional melanocytes

(Yang et al., 2014). Ondrusova et al. reported an MITF-independent pro-survival role for BRG1 in

melanoma cells (Ondrušová et al., 2013). This observation is in agreement with our findings that

BRG1 silencing affects expression of many more genes than MITF and that the binding motifs for

a variety of factors other than MITF are enriched at BRG1-occupied sites. BRG1 is likely therefore to

act as a cofactor for many other TFs accounting for its MITF-independent functions.

Our data are consistent with the idea that MITF and other combinations of TFs bind the DNA

between two BRG1-occupied and H3K27ac-marked nucleosomes. Such an organisation has been

previously proposed based on extensive ChIP-seq profiling by the Encode consortium showing that

TF binding sites are often combinatorial and correspond to GC-rich, DNaseI hypersensitive NDRs

flanked by two positioned nucleosomes (Wang et al., 2012). Our data support this idea through the

identification of combinatorial MAREs and they extend it by showing that the nucleosomes flanking

the TF binding sites are often bound by BRG1 and marked with H3K27ac (Figure 9). These regulatory

elements show an analogous organisation to that of the TSS that also comprise a NDR encompassing

variable numbers of TF binding sites and the PIC, flanked by BRG1-bound nucleosomes. Although

examples of association between BRG1 and TFs have been previously described (Trotter and Archer,

2008; Reisman et al., 2009; Euskirchen et al., 2011), this specific configuration of BRG1 binding to

nucleosomes flanking the TF binding sites has not been generally recognised. In yeast, it has however

been reported that TF binding sites are rather flanked by nucleosomes bound by ISWI and CHD

remodellers (Zentner et al., 2013).

While there have been many examples of co-localization between BRG1 and TFs, this is the first

description of active genome-wide BRG1 recruitment. siRNA-mediated MITF or SOX10 silencing

Figure 8. Continued

indicates a region where BRG1 is diminished upon both siMITF and siSOX10 silencing. (C) Read density clustering illustrating set of sites whose BRG1

occupancy is diminished following siMITF or siSOX10 silencing compared to siLuc. The meta-profiles of several representative clusters are shown to the

right of the figure. (D) UCSC screenshots showing examples of BRG1 recruitment by SOX10 or MITF.

DOI: 10.7554/eLife.06857.016

The following figure supplement is available for figure 8:

Figure supplement 1. BRG1 and MITF repress gene expression.

DOI: 10.7554/eLife.06857.017
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Figure 9. BRG1 controls dynamics of MITF binding. (A) ChIP-qPCR of 3HA-MITF in 501Mel-CL8 cells at the indicated loci following transfection with siLuc

or siBRG1. The protamine 1 locus (PRM1) was used as a negative control. (B) UCSC screenshots illustrating binding of MITF between two BRG1-occupied

nucleosomes at selected loci assayed by ChIP-qPCR in panel A. sThe GPR110-1 and GPR110-2 sites assayed in Panel A are indicated in panel B.

Figure 9. continued on next page
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identified sites to which BRG1 was recruited either individually or cooperatively by these TFs.

Moreover, we show that MITF associates with PBAF in the soluble nuclear fraction suggesting that

they form a complex in the nucleoplasm and are recruited simultaneously to the chromatin to create

the NDRs (Figure 9C).

Chromatin remodelling has been shown to facilitate TF binding, a good example being that of

TAL1 where BRG1 repositions nucleosomes flanking its binding sites (Hu et al., 2011). In contrast, we

observed that MITF occupancy of many co-occupied sites either shows little change or is increased

following siBRG1 silencing suggesting that BRG1 regulates the dynamics of MITF binding. TF binding

to chromatin is often extremely dynamic with ChIP capturing only a snapshot of their occupancy (Voss

and Hager, 2014). The increased MITF occupancy seen in ChIP upon BRG1 silencing suggests an

increase in its time of residence at occupied sites.

Several mechanisms may explain the increased MITF binding upon BRG1 loss. The human genome

comprises many more consensus E-box elements than are occupied by MITF. The excess of consensus

as well as degenerate E-boxes could potentially act as a sink thus limiting the pool of MITF for binding

to functional sites. One function of BRG1-driven dynamics may therefore be to limit MITF

sequestration at non-functional sites and ensure a pool of MITF for binding to functional sites.

Alternatively, BRG1 may be required to establish the NDRs for MITF binding, for example after

mitosis, or at specific stages of the cell cycle. As siBRG1 cells are post-mitotic and senescent, the

increased MITF occupancy may reflect a new steady state where MITF remains more stably bound to

the NDRs established while BRG1 was still present compared to cycling cells where the NDRs are

established and erased in a more dynamic manner. Irrespective of the underlying causes, our results

indicate that BRG1 regulates dynamic MITF interactions with chromatin.

Materials and methods

Generation of 501Mel cells stably expressing F-H-MITF
501Mel cells cultured in RPMI 1640 medium (Sigma, St Louis, MO, USA) supplemented with 10% fetal

calf serum (FCS) were transfected with a CMV-based vector expressing Flag-HA-tagged MITF and

a vector encoding puromycin resistance. Transfected cells were selected with puromycin (3 μg/ml),

and the expression of MITF verified by western blot using the MITF antibody ab-1 (C5) from

Neomarkers, the 12CA5 HA antibody (Roche, Basel, Switzerland), or the M2 Flag antibody (Sigma).

Details of other cell culture are provided in Supplementary information. Hermes 3A cells were

obtained from the University of London St Georges repository.

Tandem immunoaffinity purification and mass-spectrometry
Cell extracts were prepared essentially as previously described and subjected to tandem Flag-HA

immunoprecipitation (Drané et al., 2010). Cells were lysed in hypotonic buffer (10 mM Tris–HCl at pH

7.65, 1.5 mM MgCl2, 10 mM KCl) and disrupted by Dounce homogenizer. The cytosolic fraction was

separated from the pellet by centrifugation at 4˚C. The nuclear soluble fraction was obtained by

incubation of the pellet in high salt buffer (final NaCl concentration of 300 mM) and then separated by

centrifugation at 4˚C. To obtain the nuclear insoluble fraction (chromatin fraction), the remaining

pellet was digested with micrococcal nuclease and sonicated. Tagged proteins were immunopreci-

pitated with anti-Flag M2-agarose (Sigma), eluted with Flag peptide (0.5 mg/ml), further affinity

purified with anti-HA antibody-conjugated agarose (Sigma), and eluted with HA peptide (1 mg/ml).

The HA and Flag peptides were first buffered with 50 mM Tris–HCl (pH 8.5), then diluted to 4 mg/ml

in TGEN 150 buffer (20 mM Tris at pH 7.65, 150 mM NaCl, 3 mM MgCl2, 0.1 mM EDTA, 10% glycerol,

Figure 9. Continued

(C) A model for regulatory elements in the melanocyte lineage. Melanocyte lineage enhancers comprise combinations of MITF, SOX10, YY1, and also

TFAP2A and ETS1 (not represented for simplicity. Note also that Pol II and the PIC are present at active enhancers where enhancer RNAs are made. For

simplicity these are also not represented.) bound to a nucleosome-depleted region. MITF but also these other factors recruit BRG1/PBAF to the

nucleosomes flanking the combinations of transcription factors. BRG1/PBAF also occupies the nucleosomes flanking the TSS and a subset of these

promoters further comprises a MITF binding site close to the TSS.

DOI: 10.7554/eLife.06857.018
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0.01% NP40), and stored at −20˚C until use. Between each step, beads were washed in TGEN 150

buffer. Complexes were resolved by SDS-PAGE and stained using the Silver Quest kit (Invitrogen, La

Jolla, CA, USA). Mass-spectrometry was performed at the Taplin Biological Mass Spectrometry

Facility (Harvard Medical School, Boston, MA).

Cell culture and lentiviral infections
Melanoma cell lines SK-Mel-28 and 501Mel were grown in RPMI 1640 medium (Sigma) supplemented

with 10% FCS. 293T cells were grown in Dulbecco’s modified Eagle’s medium supplemented with

10% FCS and penicillin/streptomycin (7.5 μg/ml). Hermes-3A cells were grown in RPMI 1640 medium

(Sigma) supplemented with 10% FCS, 200 nM TPA, 200 pM cholera toxin, 10 ng/ml human stem cell

factor (Invitrogen), 10 nM endothelin-1 (Bachem, Bubendorf, Switzerland), and penicillin/streptomycin

(7.5 μg/ml). All lentiviral shRNA vectors were obtained from Sigma (Mission sh-RNA series) in the PLK0

vector. The following constructs were used. shBRG1 (TRCN0000015549) and shMITF (TRCN0000019119).

In each case between 5 × 105 and 1 × 106 cells were infected with the indicated shRNA lentivirus vectors

and all experiments were performed at least in triplicate. siRNA knockdowns were performed with the

corresponding ON-TARGET-plus SMARTpools purchased from Dharmacon Inc. (Chicago, Il., USA).

Control siRNA directed against luciferase was obtained from Eurogentec (Seraing, Belgium). siRNAs were

transfected using Lipofectamine RNAiMax (Invitrogen).

Transfections, extract preparation and antibodies
Transient and stable transfections were performed with 5 μg of expression vectors and using FuGENE

6 reagent (Roche) following the manufacturer’s instructions. Medium was replaced 24 hr and cells

were collected 48 hr after transfection. Cells lysis was performed using LSDB 500 buffer (500 mM KCl,

25 mM Tris at pH 7.9, 10% glycerol, 0.05% NP-40, 1 mM DTT, and protease inhibitor cocktail). Up to 3

mg of whole cell extracts were diluted in LDSB without KCl to obtain a final concentration of 100 mM

KCl and incubated for 12 hr with 5 μg of specific antibody and 50 μl Slurry of protein-G sepharose (GE

Healthcare). Beads were washed 3 times in LSDB 300, twice in LSDB 150, and boiled in Laemmli buffer

before protein separation by SDS–PAGE. For flag immunoprecipitations, extracts were incubated with

50 μl Slurry of Anti-Flag M2-agarose affinity gel (Sigma) and washed similarly prior to elution with Flag

peptide (0.5 mg/ml). Immunoblots were performed with the following antibodies: MITF (MS-771-P;

Interchim), BRG1 (ab110641; Abcam, Cambridge, UK), HERC2 (612366; BD Transduction Laborato-

ries, Sparks, MD), USP11 (3263-1; Epitomics, Burlingame, CA), USP7 (#4833; Cell Signaling, Danvers,

MA), TRRAP (2TRR-2D5; IGBMC), NEURL4 (sc-243603; scbt, Santa Cruz, CA), actin (2D7; IGBMC),

XRCC6 (sc-17789; scbt), XRCC5 (sc-5280; scbt), BAF170 (A301-038A; Bethyl Laboratories,

Montgomery, TX), BAF155 (sc-10756; scbt), BAF250A (sc-373784; scbt), BAF250B (sc-32762; scbt),

BAF200 (ab56082; Abcam), BAF53A (ab131272; Abcam), CHD7 (ab31824; Abcam), BAF180

(ab137661; Abcam), BAF60A (#611728; BD Transduction Laboratories), BAF60B (ab166622; Abcam),

SOX10 (ab155279; Abcam), CREB (#06-863; Upstate Millipore, Molsheim, France).

Mice and genotyping
The Smarca4lox/lox and Tyr::Cre strains have been described previously (Indra et al., 2005; Delmas

et al., 2003). Genotyping of F1 offspring was carried out by PCR analysis of genomic tail DNA with

primers detailed in the respective publications. All animals were handled according to institutional

and national guidelines and policies.

Chromatin immunoprecipitation and sequencing
BRG1 ChIP experiments were performed on native Mnase-digested chromatin. 5 × 107 to 5 × 108

freshly harvested 501Mel cells were resuspended in 2 ml ice-cold hypotonic buffer (0.3M Sucrose,

60 mM KCl, 15 mM NaCl, 5 mMMgCl2, 0.1 mM EDTA, 15 mM Tris–HCl [pH 7.5], 0.5 mM DTT, 0.1 mM

PMSF, protease inhibitor cocktail) and cytoplasmic fraction was released by incubation with 2 ml of

lysis-buffer (0.3M sucrose, 60 mM KCl, 15 mM NaCl, 5 mMMgCl2, 0.1 mM EDTA, 15 mM Tris–HCl [pH

7.5], 0.5 mM DTT, 0.1 mM PMSF, PIC, 0.5% (vol/vol) IGEPAL CA-630) for 10 min on ice. The

suspension was layered onto a sucrose cushion (1.2 M sucrose, 60 mM KCl, 15 mM NaCl, 5 mM

MgCl2, 0.1 mM EDTA, 15 mM Tris–HCl [pH 7.5], 0.5 mM DTT, 0.1 mM PMSF, PIC) and centrifuged for

25 min at 4700 rpm in a swing rotor. The nuclear pellet was resuspended in digestion buffer (0.32M
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sucrose, 50 mM Tris–HCl [pH 7.5], 4 mM MgCl2, 1 mM CaCl2, 0.1 mM PMSF) and subjected to

Micrococcal Nuclease digestion for 5 min at 37˚C. The reaction was stopped by addition of EDTA and

suspension chilled on ice for 10 min. The suspension was cleared by centrifugation at 10,000 rpm (4˚C)

for 10 min and supernatant (chromatin) was used for further purposes. Chromatin was digested to

around 80% of mono-nucleosomes as judged by extraction of the DNA and agarose gel

electrophoresis. SOX10 and 3HA-MITF ChIP experiments were performed on 0.4% PFA-fixed

chromatin isolated from 501Mel and Cl8 cells, respectively according to standard protocols as

previously described (Strub et al., 2011). ChIP-seq libraries were prepared as previously described

and sequenced on the Illumina Hi- seq2500 as single-end 50-base reads (Herquel et al., 2013). After

sequencing, peak detection was performed using the MACS software ([Zhang et al., 2008] http://

liulab.dfci.harvard.edu/MACS/). Peaks were then annotated with GPAT (Krebs et al., 2008) using

a window of ±10 kb (or as indicated in the figures) relative to the transcription start site of RefSeq

transcripts. Global clustering analysis and quantitative comparisons were performed using seqMINER

([Ye et al., 2011] http://bips.u-strasbg.fr/seqminer/) and R (http://www.r-project.org/). The public

human foreskin melanocyte H3K27ac data were taken from the Geo entry GSM958157.

De novo motif discovery on FASTA sequences corresponding to windowed peaks was performed using

MEME-ChIP. Motif correlation matrix was calculated with in-house algorithms using JASPAR database.

mRNA preparation, quantitative PCR and RNA-seq
mRNA isolation was performed according to standard procedure (Qiagen kit, Venlo, Holland). qRT-PCR

was carried out with SYBR Green I (Qiagen) and Multiscribe Reverse Transcriptase (Invitrogen) and

monitored by a LightCycler 480 (Roche). Detection of Actin gene was used to normalize the results. RNA-

seq was performed essentially as previously described (Herquel et al., 2013). Gene ontology analyses were

performed using the functional annotation clustering function of DAVID (http://david.abcc.ncifcrf.gov/).

Primers for RT-qPCR and ChIP-qPCR were designed using Primer 3 and are listed in Supplementary file 5.

Motif analysis
Searching of known TF motifs from the Jaspar 2014 motif database at BRG1-bound sites was made

using FIMO (Grant et al., 2011) within regions of 200 bp around peak summits, FIMO results were

then processed by a custom Perl script which computed the frequency of occurrence of each motif. To

assess the enrichment of motifs within the regions of interest, the same analysis was done 100 times

on randomly selected regions of the same length as the BRG1 bound regions and the results used to

compute an expected distribution of motif occurrence. The significance of the motif occurrence at the

BRG1-occupied regions was estimated through the computation of a Z-score (z) with z = (x − μ)/σ,
where: − x is the observed value (number of motif occurrence), − μ is the mean of the number of

occurrences (computed on randomly selected data), − σ is the standard deviation of the number of

occurrences of motifs (computed on randomly selected data). The source code is accessible at https://

github.com/slegras/motif-search-significance.git.

Immunostaining
Biopsies of dorsal skin were isolated and fixed overnight in 4% paraformaldehyde, washed with PBS,

dehydrated, paraffin embedded, and sectioned at 5 μm. For antigen retrieval, the sections were

incubated with 10 mM sodium citrate buffer, within a closed plastic container placed in a boiling

waterbath, for 20 min. Sections were permeabilised with 3 × 5 min 0.1% Triton in PBS, blocked for 1 hr

in 5% skim milk in PBS, and incubated overnight in 5% milk with primary antibodies. The following

antibodies were used: goat anti-Dct at dilution of 1/1000 (Santa Cruz Biotechnology, sc-10451) and

rabbit anti-Sox10, at 1/2000 (Abcam, ab155279). Sections were washed 3 × 5 min 0.1% Triton in PBS,

and incubated with secondary antibodies, Alexa 488 donkey-anti-goat, and Alexa 555 donkey-anti-

rabbit (Invitrogen) for 2 hr. Sections were subsequently incubated with 1/2000 Hoechst nuclear stain

for 10 min, washed 3 × 5 min in PBS, dried and mounted with Vectashild.

Senescence-associated β-galactosidase assay
The senescence-associated β-galactosidase staining kit from Cell signaling technology (Beverly, MA,

USA) was used according to the manufacturer’s instructions to histochemically detect β-galactosidase
activity at pH 6.
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· Supplementary file 3. Excel spread sheet of genes with associated BRG1 occupancy (either ±10 kb,

or ±30 kb with respect to TSS) and regulated in shBRG1 along with the appropriate gene ontology as
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· Supplementary file 4. Excel spread sheet of genes associated with BRG1 and MITF co-occupied

sites or MARES along with their gene ontology.
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