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Deep neural networks (DNNs) have recently been applied suessfully to brain decoding
and image reconstruction from functional magnetic resonace imaging (fMRI) activity.
However, direct training of a DNN with fMRI data is often avded because the size of
available data is thought to be insuf cient for training a coplex network with numerous
parameters. Instead, a pre-trained DNN usually serves as arpxy for hierarchical visual
representations, and fMRI data are used to decode individud®NN features of a stimulus
image using a simple linear model, which are then passed to a&construction module.
Here, we directly trained a DNN model with fMRI data and the aoesponding stimulus
images to build an end-to-end reconstruction model. We acconplished this by training a
generative adversarial network with an additional loss tar that was de ned in high-level
feature space (feature loss) using up to 6,000 training datsamples (natural images and
fMRI responses). The above model was tested on independentatasets and directly
reconstructed image using an fMRI pattern as the input. Reaustructions obtained
from our proposed method resembled the test stimuli (nhaturaand arti cial images) and
reconstruction accuracy increased as a function of trainigrdata size. Ablation analyses
indicated that the feature loss that we employed played a dical role in achieving
accurate reconstruction. Our results show that the end-toend model can learn a direct
mapping between brain activity and perception.

Keywords: brain decoding, visual image reconstruction, func tional magnetic resonance imaging, deep neural

networks, generative adversarial networks

INTRODUCTION

Advances in the deep learning have opened new directionsdodeand visualize the information
present in the human brain. In the past few years, deep neuralorgs (DNNs) have been
successfully used to reconstruct visual content from braitividly measured by functional
magnetic resonance imaging (fMRIB(iclutirk et al., 2017; Han et al., 2017; Seeliger et al.,; 2018
Shenetal., 20)9

The reconstruction studies avoid training a DNN model ditgcon the fMRI data because
of limited dataset size in fMRI studies. To solve the limitedadat size issue, the feature
representation from a DNN pre-trained on a large scale imagas# is usually used as a proxy
for the neural representations of the human visual systermddethese decoded-feature-based
methods involve two independent steps, (1) decoding DNN fesstirom fMRI activity and (2)
reconstruction using the decoded DNN features.
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Shen et al. End-to-End Deep Image Reconstruction

Di erent from fMRI studies, DNNs in computer vision for the original image. Adversarial losS&¢odfellow et al., 20)4
image generation are usually trained in the end-to-end nme&nn constrains the distribution of the reconstructed images ® b
with large datasets. For instanééansimov et al. (2015yained close to the distribution of natural images. In a subsequent
a caption-to-image model on Microsoft COCO dataset thatstudy, Dosovitskiy and Brox (2016bhave also showed that
consists of 82,783 images, each annotated with at leastibresipt reconstruction from features is improved by introducing tig@
Dosovitskiy and Brox (2016&ained a DNN model on ImageNet and adversarial loss terms. Thus, we adopted this latter approa
training dataset (over 1.2 million images) to reconstrunages for reconstructing perceived stimuli directly from the fMRI
from corresponding DNN features. Due to availability of larg activity. Speci cally, we modi ed their model to take input
scale image datasets, the above image-generation stuaties directly from the fMRI activity and trained the model from
train DNNs using an end-to-end approach to directly generatescratch with the dataset frohen et al. (2019)
images from a modality correlated with the images. In costtira Here, we present a novel approach to visualize perceptual
the largest fMRI dataset used for reconstruction &hen content from human brain activity by an end-to-end deep ireag
et al. (2019)consisted of only 6,000 training samples. Thusreconstruction model which can directly map fMRI activity in
training a DNN to reconstruct images directly from fMRI the visual cortex to stimuli observed during perception. Our
data is often avoided and considered infeasible becauseeof tand-to-end deep image reconstruction model was accomplished
smaller datasets. by directly training a deep generative adversarial netwaitk

Learning a direct mapping between brain activity anda perceptual loss term with fMRI data and the corresponding
perception of the outside world or subjective experiencestimulus images. We demonstrated that the reconstructions
would be advantageous over the previous decoded-featigedba obtained from our proposed method resembled the original
methods due to the following reason. Decoding features fronstimulus images. We further explored the generalizabilftpur
fMRI is constrained by the pre-trained DNN features which werereconstruction model (trained solely with natural imagesda
optimized in a prior without brain data that may not be optimal fMRI responses) to arti cial images. To understand the e ect
for decoding them from brain activity. Therefore, inforni@t  of training-dataset size on reconstruction quality, we conega
loss occurs in the decoding process which a ects the qualityeconstruction results across gradually increasing @atazes
of reconstruction. A direct mapping can help in reducing the(from 120 to 6,000 samples). Finally, to investigate the e etts
information loss mentioned above. di erent loss functions used in the reconstruction, we perfath

In this study, we sought to evaluate the potential of thean ablation study that objectively and subjectively comgare
end-to-end approach for directly mapping fMRI activity to reconstruction results as loss functions were removed dne a
stimulus space given a limited training dataset. In the emd-t atime.
end approach, the input to the DNN is the fMRI activity and
the output of the DNN is the reconstruction of the perceived\JATERIALS AND METHODS
stimulus. If reconstruction using the end-to-end approach is
successful, we can avoid the feature-decoding step (stepvBR  |n this section, we brie y describe the methods we used for
that leads to information loss. our experiments and the details of the dataset. For more Hetai

For designing an end-to-end DNN model to reconstructregarding image reconstruction, please refebtusovitskiy and

images from fMRI data, we considered the models that transforngrox (2016b)and for details regarding the dataset, please refer to
image representations such as DNN features to original imagghen et al. (2019)

as the potential candidates. The motivation behind this iatth

the fMRI activity is the neural representation of the perceivedProblem Statement

image and thus can be considered as an image representatiotx 2 R¥ " 3be the stimulus image displayed in the perception

Also, in previous studiesAgrawal et al., 2014; Khaligh-Razaviexperiment, wherev and h are width and height of the stimulus

and Kriegeskorte, 2014; Gucli and van Gerven, 2015a,by Cicimage and 3 denotes the number of channels (RGB) of the color

et al., 2016; Horikawa and Kamitani, 201fMRI activity has image. Letv 2 RP be the corresponding preprocessed fMRI

already been shown to be correlated to DNN features. Thegefo vector for the brain activity recorded during the perceptioh o

for this study, we adopted the model frobosovitskiy and Brox  the image, wittD being the number of voxels in the visual cortex

(2016Db)to reconstruct the image from fMRI activity. (VC). We are interested in obtaining a reconstruction of the
For the end-to-end image reconstruction model used instimulus from fMRI vectow.

this study, the model needs to be optimized with suitable To solve this problem, we use a DNBI with parameters',

choice of loss functions relevant to our probleMosovitskiy — which performs non-linear operations onto obtain a plausible

and Brox (2016a)rst proposed a DNN-based method for reconstructionG-.v/ of the stimulus image.

reconstructing original images from their correspondingtieres

by optimization within image space. Loss in image space usuallynage Reconstruction Model

results in poor reconstruction because it generates an geesh  To reconstruct stimulus images from fMRI data, we modi ed the

all possible reconstructions having the same distance irgéma DNN model proposed byposovitskiy and Brox (2016b)

space, and hence the reconstructed images are blurred. TheFor each fMRI data vectov corresponding to a stimulus

feature loss in high dimensional space, also called perceptuaiage X, the model was trained to generate a plausible

loss, constrains the reconstruction to be perceptually simib  reconstructed imagés-(v). In the training step, the network
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FIGURE 1 | Schematics of our reconstruction approach.(A) Model training. We use an adversarial training strategy ag¢ed from Dosovitskiy and Brox (2016b,)
which consists of three DNNs: a generator, a comparator, anc discriminator. The training images are presented to a hunmasubject while brain activity is measured
by fMRI. The fMRI activity is used as input to the generator. Bhgenerator is trained to reconstruct the images from the fMRactivity to be as similar as possible to the
presented training images in both pixel and feature space.fle adversarial loss constrains the generator so that reconsicted images fool the discriminator into
classifying them as the true training images. The discrimétor is trained to distinguish between the reconstructed irage and the true training image. The comparator
is a pre-trained DNN that was trained to recognize objects imatural images. Both the reconstructed and true training imges are used as input to the comparator,
which compares the image similarity in feature spaceB) Model test. In the test phase, the images are reconstructed byroviding the fMRI activity associated with

Reconstructed image

architecture Figure 1A) consisted of three convolutional reconstructed image with the original image in feature sp@be

neural networks: a generatdg- that transformed the fMRI

parameters of the comparator were not updated during training

vector v to G+(v), a discriminatorDg that discriminated the of the reconstruction model.

reconstructed images-(v) from the natural imagex, and a
comparatorC that compared the reconstructed ima@e(v) with

The discriminatorDg consisted of ve convolutional layers
followed by an average pooling layer and two fully connected

the original stimulus image in feature space. During test time, layers. The output layer of the discriminator was a 2-waymsak
we only need the generatoFigure 1B) to reconstruct images and the network was trained to discriminate the reconstrdcte

from fMRI data.
The input to the generator was the fMRI vector

image from the original image. The generator was trained
concurrently to optimize the adversarial loss function, vihic

from the VC and the output was the reconstructed imagefooled the discriminator into classifying the reconstructethge
G- (v). The generator consisted of three fully connected layeras the real stimulus image. The adversarial loss forces the
followed by six upconvolution layers that generated the nalgenerator to generate more realistic images that are closéet

reconstruction imageG-(v). The comparator networkC was

Caenet (Krizhevsky et al., 20)2which was trained on the

image distribution of the training data.
The generator was modi ed to take its input from fMRI

ImageNet dataset for the image classi cation task. The Caten data instead of DNN features. The discriminatoriimsovitskiy
model is a replication of the Alexnet model with the order ofand Brox (2016b)was provided two inputs, the image and

pooling and normalization layers switched and without rbtigg
data-augmentation during training. The network consistefd

corresponding feature from the comparator, however, we
modi ed the discriminator to receive only the image as thpin.

ve convolutional and three fully connected layers. We usedlhe architecture of the comparator network was the same as in
the last convolutional layer of the comparator to compare theédosovitskiy and Brox (2016Db)
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Let X; denote thei th stimulus image in the dataseY/ To analyze the size of the dataset, we trained the
denote the corresponding fMRI data, ar@ (Vi) denote the reconstruction model with a variable number of training
corresponding reconstructed output image of the generatbe T samples for 1,000 epochs with a batch size of 60. The rest of the
generatoiG+ had parameter$, which were updated to minimize hyperparameters were the same as in the previous analysis.
the weighted sum of three loss terms for a mini-batch thatduse
stochastic gradient descent: loss in image spagg feature loss Dataset From Shen et al. (2019)

Ltear and adversarial lods,qy: We used an fMRI dataset from our previous reconstruction
study Shen et al., 20)9This dataset was used to reconstruct
L(".8) D imgLimg(") C tealteal") C advlad/".8) stimulus images from the visual features of a deep conmiati
neural network that was decoded from the brain. The dataset
where analyzed for this study can be found in the OpenNeuro (https://
X openneuro.org/datasets/ds001506) repository.
Limg(") D G (Vi) X The dataset comprises fMRI data from three human subjects.
« i For each subject, the stimulus images in the dataset are
. 2 categorized into four types: training and test natural ingge
Ltea(") D _ C G(V) C.XiI; arti cial shapes, and alphabetical letters. The natural iesagsed
: X for the experiment were selected from 200 representative bbjec
Laa(",8) D logDg ( G- (V})) categories in the ImageNet dataset (2011, fall releBse)q et al.,
i 2009. The training dataset of natural images were 1,200 images
that were taken from 150 object categories and the test éatas
and img, feas and gy denote the weights of the loss of natural images were 50 images from the remaining 50 object
in image spackimg, feature loskfy, and adversarial loss categories. Thus, the categories used in the training and tes

Ladw respectively. datasets did not overlap. The arti cial shapes were 40 images
The discriminator was trained concurrently with the obtained by combining 8 colors and 5 shapes. The arti ciapgsa
generator to minimize_gjscr: stimuli set was controlled by shape and color, but gure-gndu
X separation and brightness were consistent across all the Istimu
Liscr-8/ D log.Dg .Xi// Clog.1 Dg . G-.Villl . The alphabetical letters were 10 black letters from the Bmglis

alphabet. The alphabetical letters stimuli set had consistdat,c
brightness and gure ground separation. The only variabléis
The parameters of the comparat@rwere xed throughout the stimuli set was the shape of the alphabet.
training because it was only used for the comparison in featur The image presentation experiments comprised four distinct
space, and thus did not require any update. types of sessions that corresponded to the four categories of
We trained the system using the Ca e frameworka et al., stimulus images described above. In one training-session se
2019 and modi ed the implementation of the model provided (natural images), 1,200 images were each presented once. Thi
by Dosovitskiy and Brox (2016bJThe weights of the generator set of training session was repeated ve times. In each test-
and discriminator were initialized using MSRAH¢ et al., session (natural image, arti cial shape, and alphabeti¢edris),
2019 initialization. The comparator weights were initializegt b 50, 40, and 10 images were presented 24, 20, and 12 times
Caenet weights trained on ImageNet classi cation. We useceach, respectively. The presentation order of the images was
Adam solver Kingma and Ba, 20)with momentum 1 D 0.9, randomized across runs.

2 D 0.999 and an initial learning rate 0.0002 for optimization. The fMRI data obtained during the image presentation
We used a batch size of 64 and trained for 500,000 mini-batcbxperiment were preprocessed for motion correction followsgd b
iterations in all experiments. Following this training prattge co-registration to the within-session high-resolution &oraical
similar to Dosovitskiy and Brox (2016pwe temporarily stopped images of the same slices and subsequently to T1-weighted
updating the discriminator if the ratio df 4iscr to Lagy Was below anatomical images. The coregistered data were then re-
0.1. This was done to prevent the discriminator from oventji.  interpolatedas2 2 2 mm voxels.

The weights of the individual loss functiongmg, feas and adv The fMRI data samples were created by rst regressing out
were setto jmg D 2 10°, teatD 0.01, and 44, D 100. nuisance parameters from each voxel's amplitude for each run,
We applied image jittering during the training for data including a linear trend and temporal components proportional
augmentation and to take into account subject's eye movémeno six motion parameters. These were calculated by the SPM

during the image presentation experiment. Generally, eyéhttp://www. l.ion.ucl.ac.uk/spm) motion correction procene.
movement was approximately one degree of visual angle for After that, voxel amplitudes were normalized relative to theam
typical subject. The viewing angle for the stimulus images waamplitude of the initial 24 s rest period of each run, and were
12 . All training images were resized to 248248 pixels before despiked to reduce extreme values (beyond SD for each
training. During training, we randomly cropped a 227 227 run). The voxel amplitudes were then averaged within each 8s
pixel window from each training image to use as the target ienag(training sessions) or 12 s (test sessions) stimulus bldmbr (

for each iteration. This ensured that the largest jittersipe was or six volumes), after shifting the data by 4s (two volumes) t
approximately one degree viewing angle. compensate for hemodynamic delays.
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The voxels used for reconstruction were selected from the VC  For the objective assessment, we conducted pairwise sityilari
which consisted of lower-order visual areas (V1, V2, V3,94)l comparison analysis based on two metrics separately: Pearson
as well as higher-order visual areas (the lateral occipit@iptex, correlation coe cient and structural similarity index ($9)
fusiform face area, and parahippocampal place area). The lowdiA/ang et al., 2004 We computed the two metrics between the
order regions were identi ed using retinotopy experimentgdan reconstructed image and each of the two candidate images. Fo
the higher-order areas were identi ed using functionaldtizer the pairwise similarity comparison, we selected the candidate
experiments§hen et al., 20)9 image with the higher Pearson correlation coe cient or high

The fMRI data from the training image dataset were furtherSSIM, respectively.
normalized to have zero mean and unit standard deviation for For computing pixel-wise Pearson correlation coe cients, we
each voxel. The mean and standard deviation of the trainingst reshaped an image (a 3D array with dimensions of height,
fMRI data were then used to normalize the test fMRI data. width, and RGB color channels) into a 1-dimensional vector.

We performed trial-averaging for the test fMRI data while weDuring this reshaping, the pixels of dierent color channels
considered each trial as an individual sample for the trainingare concatenated in a vector. Then we calculated the Pearson
fMRI data. Therefore, to compensate for the statistical di eren correlation coe cient between the reshaped reconstructed an
between training.and test fMRI data, we rescaled the test fMRlandidate images.
data by a factor gﬁ? nwherenis number of trials averaged, before  Since Pearson correlation coe cient considers each pixehas a
we use the test fMRI data as the input to the generator. independent variable, we also used SSIM to take into account the

We train reconstruction models with the training natural similarity of local structures of the spatially close pixelsi@stn
images and their corresponding fMRI data for each individuakwo given images. We computed SSIM between the reconstructed
subject, and test reconstruction models with the test {IMRbdat and candidate images in the original 2D form for each of the
of the corresponding subject. For training in the dataseesiz RGB color channels, and then average the SSIM across the RGB
analysis, we initially selected a xed number of trainingaiges color channels.
and their corresponding fMRI data from ve trials. As we For both assessments, we calculated the percentage of trials
increased the size of the dataset, we added more trainingesia in which the original stimulus image was selected, and used
and fMRI data. Speci cally, we gradually increased the size dhis value as the reconstruction accuracy of each recortsiiuc
the training dataset from 120 (5 24) to 6,000 (5 1,200) image. Trials for each reconstructed image were conducted by
training samples. pairing the original stimulus image with every other stimsilu

image of the same type. For the study of dataset size, we

reduce the trials for each reconstructed image by randomly
Evaluation selected 500 trials (10 trials for each test image) from all th
We evaluated the quality of reconstruction using both otijec  possible trials, while the selected trials are xed for all the
and subjective assessment methods. For both methods, wenditions (here the modes trained with di erent number of
performed a pairwise similarity comparison, following previoussamples) to be compared. For each type of test images (natural
studies Cowen et al., 2014; Lee and Kuhl, 2016; Seeliger et dmages, arti cial shapes and alphabetical letters), we used th
2018; Shen et al., 2019n which one reconstructed image mean reconstruction accuracy as the quality measure, whigsh
was compared with two candidate images: the original stimuluobtained by averaging across all the samples after pooling the
image from which the reconstruction was derived and a “lure’three subjects.
image, which was a di erent test image. The lure image was We compliment the evaluation using pairwise similarity
randomly selected from the test dataset of the same type asmparison with modied RV coe cient Smilde et al,
the original stimulus image. For each reconstructed imalge, 2009. We compute the modi ed RV coe cient between two
pairwise similarity comparison was conducted for all possiblenatrices: matrix of the reconstructed images and matrix of
combinations of candidate images: the original stimulusg® the true images. The rows of both these matrices correspond
and every other stimulus image of the same type in the tesb test samples and columns correspond to individual pixels.
dataset. For example, to evaluate the reconstruction quiality With this setting, the modied RV coe cient evaluates the
one of the 50 test natural images, the lure image is randomlgorrelation between similarity relation within the true ages
selected from the remaining 49 test natural images. Themedoh and within the reconstructed images. We compared the
reconstructed natural image, the pairwise similarity conigan  results with a baseline of modied RV coe cient computed
is conducted for all 49 pairs of candidate images. with randomly shued ordered of reconstructed images

For the subjective assessment, we conducted a behavioesid correctly ordered true images to see whether the
experiment similar toShen et al. (2019)n this experiment, a reconstructions preserve the similarity relation among the
group of 13 raters (6 females and 7 males, aged between 19 anake images.

48 years) were presented with a reconstructed image and two We conducted another behavioral experiment to study the
candidate images and were asked to select the candidate imagect of di erent loss terms in the proposed approach. Another
that appeared more similar to the reconstructed image. Thastri group of 5 raters (2 females and 3 males, aged between 25 and
for di erent testimages were presented in arandomized order f 37 years) were presented with one original stimulus image and
each rater to prevent them from memorizing the correspondencevo reconstructed images that were generated from di erent
between reconstructed and the true images. combinations of loss terms. The raters were asked to judgehwh
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FIGURE 2 | Reconstruction of natural images(A) Stimulus and reconstructed natural images. The stimulus iages (in black frames) are shown in the top row. Three
corresponding reconstructed images (in gray frames) fromaeh of the three subjects are shown underneath(B) Reconstruction accuracy for natural images in terms
of the accuracy of pairwise similarity comparison based on €arson correlation, structural similarity index (SSIM) arftiman judgment (error bars, 95% con dence
interval (Cl) across samples; three subjects pooled, the nuber of samples (N) D 150; chance level, 50%).

of the reconstructions more resembled the original stinsulu input to the trained generatorHigure 1B). Figure 2A shows
image. This pairwise comparison was conducted for 6 pairs sf log@xample images from the natural image test dataset and their
term combinations for each stimulus image in the test ddtasecorresponding reconstructions from three dierent subjects
We used the winning percentage as the quantitative measure fdhe reconstructions from all three subjects closely resechbl
comparing reconstructions that were generated using di érenshape of the object in the natural image stimuli. The color,
combinations of loss terms. The winning percentage was thieowever, was not preserved in some of the reconstructions. The
percentage of trials in which the reconstruction from onereconstruction results from our model show that despiteizitilg
combination was judged better than that of the other. Fora small dataset, training a model from scratch and reconsitigc
computing the winning percentage from objective metricsyisually similar images from fMRI data was possible with high
the reconstructions with higher similarity (Pearson cdatéon  accuracy Figure 2B) The mean reconstruction accuracy (three
coe cients or SSIM) were selected. For more details regagdinsubjects pooledN D 150) is 78.1% by Pearson correlation
the design of the behavioral experiments, please refer (8.9, 75.3, and 79.9% for Subject 1, 2, and 3), 62.9% by SSIM

Shen et al. (2019) (63.0, 61.9, and 63.8% for Subject 1, 2, and 3), and 95.7% by
human judgment (95.6, 95.1, and 96.4% for Subject 1, 2, and
3). Additionally, we calculated modi ed RV coe cient, whit

RESULTS evaluates the correlation between the similarity relatiathin

Image Reconstruction the true images and the reconstructed images to see whether

We trained the reconstruction model on thghen et al. (2019) the reconstructions preserve the similarity relation wittthe
training-session samples of fMRI visual perception data. In th&ue images. The higher modi ed RV coe cients (0.34, 0.3Ada
training session, each stimulus image had been presentextto e 0.32 for Subject 1, 2, and 3) for natural image test dataset as
subject ve times. Here, we treated each stimulus presemtati compared to the baseline calculated by random permutation (

as a separate training sample for the reconstruction modef).0001 for all three subjects, permutation test) demonstize
Therefore, the training dataset we used consisted of 6,00@constructed images from our approach preserve the simylarit
(5 1,200) samples. relation within the true images.

We evaluated reconstruction quality using three test detias ~ Further, we evaluated the generalizability of our
natural images, arti cial shapes and alphabetical lette. F reconstruction model (trained solely with natural images
generating reconstructions, fMRI samples corresponding to thgnd fMRI responses) using articial images as similarly
same image (24 samples for the natural image session, performed byShen etal. (2014Figure 3A). Using the proposed
for the arti cial shapes session, and 12 for the alphabeticapproach, articial shapes were reconstructed with high
letters session) were averaged across trials to increase tkccuracy figure 3B 69.3% by Pearson correlation, 56.9% by
signal to noise ratio. The averaged fMRI samples were used 86IM, and 92.7% by human judgment) and alphabetical letters
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FIGURE 3 | Reconstruction of arti cial images.(A) Reconstruction of arti cial shapes. The stimulus images (iblack frames) are shown in the top row. Three
corresponding reconstructed images (in gray frames) fromaeh of the three subjects are shown underneath(B) Reconstruction accuracy for arti cial shapes.

(C) Reconstruction accuracy for both shape and color(D) Reconstruction of alphabetical letters(E) Reconstruction accuracy for alphabetical letters. Fo(B,C,E),
reconstruction accuracy is assessed in terms of the accurag of pairwise similarity comparison based on Pearson corrafion, structural similarity index (SSIM) and
human judgment (error bars, 95% CI across samples; three sybcts pooled, N D 120 for arti cial shapes, N D 30 for alphabetical letters; chance level, 50%).

were also reconstructed with high accuradyiglires 3D,E  accuracy of the proposed method with that®fien et al. (2019)
95.9% by Pearson correlation, 79.6% by SSIM, and 96.4% toyanalyze the di erence between the two methods. We observed
human judgment), even though the model was trained orthat our new method achieved almost same performance as
natural images. Shen et al. (2019n the Pearson correlation metric (natural
From the results for articial shape reconstruction, weimages: ours 78.1 vs. 76.1%; two-sided signed-rank test, no
observed that the shape of the stimulus was well preserveein tsigni cantly di erence,N D 150), whereas our new method did
reconstructions. However, the color was preserved onlyfier t not outperform Shen et al. (2019n the subjective judgment
red-colored shapes. To evaluate reconstruction qualityimse (natural images: ours 95.7 vs. 99.1%; two-sided signedtesk
of shape and color, we compared reconstructed images of thie< 0.006N D 150).Shen et al. (201%sed a natural image prior
same colors and shapes, respectively. The quantitativeasesal that helps their reconstructions look more natural, whichulzb
shown inFigure 3C(shape: 76.5% by Pearson correlation, 57.3%xplain why that method outperforms our new method in terms
by SSIM, and 95.0% by human judgment; color: 56.7% by Pearsohhuman judgment. We tried to introduce a natural image prior
correlation, 50.7% by SSIM, and 75.6% by human judgment) arttirough use of a discriminator, but the reconstructions didtn
con rm that the reconstructed images were more similar impk  appear as natural as those fréshen et al. (2019)
to the original images than in color.
While the main purpose of this study is to evaluate theEffect of Dataset Size
potential of the end-to-end method in learning direct mapping The results of the previous analyses show that it is possible
from fMRI data to visual images, we compared the reconstructiofo reconstruct images from human brain activity by training
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FIGURE 4 | Effect of training-dataset size (A) Reconstruction from brain activity (Subject 1) using modsltrained with different dataset sizes. The stimulus imagegn
black frames) are shown in the rst column. The correspondingeconstructed images (in gray frames) are shown to the righif each stimulus image (from left to right,
the number of training samples increases)B) Reconstruction accuracy in terms of the accuracy of pairwis similarity comparison based on Pearson correlation,
structural similarity index (SSIM) and human judgment (emrbars, 95% Cl across samples; three subjects pooledN D 150, chance level, 50%). The horizontal axis is
scaled using a base 2 logarithm.

an end-to-end model from scratch with only 6,000 trainingquality of di erent models in the ablation study, the winning
samples. Next, we sought to investigate the e ect of dataspercentage of the pairwise similarity comparisons based on
size on reconstruction quality. We checked how many samplesither objective or human judgment was used. The di erence in
are enough to achieve recognizable reconstruction angsssde winning percentage between the model optimized with all three
the possibility of improving reconstruction quality using neor loss terms and the model optimized with one loss term removed
training samples. indicates the importance of the corresponding loss term. From
We increased the training dataset from 120 to 6,000 (12@sigure 5B we can observe that the model trained with all three
300, 600, 1,500, 3,000, and 6,000) samplegire 4 shows a lossterms showed the highest winning percentage followekdy
qualitative comparison of reconstructionfigure 4A) and the model where the loss in the image space is removed. The results
quantitative objective and human judgment scoregy(ire 4B).  demonstrate that the model trained with all three loss temas
Through visual inspection of the reconstruction results inpreferred by the human raters.
Figure 4A, we can see that reconstruction quality improved with  Removing the loss in image space resulted in a moderate
the number of training samples. Objective and human judgmentirop for both objective and subjective assessments (Pearson
scores quantitatively con rm this trend. The results shavtbat  correlation 7.3% decrease, SSIM 13.8% decrease, and human
the increasing trend in the reconstruction quality is notwwatted  judgment 18.5% decrease), but the dierence in human
for our reconstruction model, which suggests that althoughudgement was not as pronounced as it was for the other two
we can obtain highly accurate reconstructions with only06,0 loss functions. Removing feature loss produced the highest
training samples, better reconstruction quality might beieaged drop in winning percentage for human judgment (36.9%

if larger datasets are available. decrease) and a moderate drop in Pearson correlation (5.6%
decrease) and SSIM (11.1% decrease). This demonstrates the
Effect of Loss Functions: Ablation Study importance of optimization in high dimensional feature space,

We performed an ablation study to understand the e ects ofas it not only enhances the spatial details, but also makes the
the di erent loss functions used in training the reconstrimst  reconstruction more perceptually similar to its corresporglin
model. We removed one loss function at a time and comparedriginal stimulus image. Although removing adversarial
the reconstructions with those obtained using all threeslosdramatically reduced human judgement scores (30.0% dseyea
functions. Visual inspection showed that the best resentgan and SSIM (41.8% decrease), it surprisingly showed improvement
to the original images was obtained using all three los# Pearson correlation (10.9% increase). This suggests tha
terms Figure 5A). To quantitatively compare the reconstruction optimizing adversarial loss forces the reconstruction to appea
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FIGURE 5 | Ablation of loss terms.(A) Reconstruction from brain activity (Subject 1) using recairuction models with some loss components removed. The stulus
images (in black frames) are shown in the rst column. The coesponding reconstructed images (in gray frames) obtained ith different models are shown to the right
of each stimulus image (from right to left, the model is: futeconstruction model Eul), with image loss removed ( Limg ), with feature loss removed ( Lteqr), and with
adversarial loss removed ( Lagy). (B) Reconstruction accuracy in terms of winning percentage of girwise similarity comparison based on Pearson correlatip
structural similarity index (SSIM) and human judgment (ermrbars, 95% Cl across samples; three subjects pooledN D 150, chance level, 50%). The winning
percentage is the percentage of pairwise similarity compé#son trials in which the reconstruction from one model was jged better than that of the other.

closer to a natural image distribution and preserve struakur in winning percentage calculated from behavioral experiment
similarity but has a negative impact on preservation of theand both objective measures (Pearson correlation and SSIM).
spatial details. The removal of feature loss resulted in a drop in all the three
types of winning percentage, although the drop in human
ratings was more pronounced. Although removal of adversaria
loss showed signi cant increase in winning percentage based
. n Pearson correlation, winning percentage based on human
Here, we have demonstrated that end-to-end training of a DNI\Eatings and SSIM dropped signi cantly. This suggests that the

model can directly map fMRI activity in the visual cortex addition of adversarial loss in the optimization process craiss

imuli rvi rin r ion, and thus reconstr .
to St. u _obse ed during perception, and t us reco St uc:tthe reconstructed images so that their distribution is closer
perceived images from fMRI data. The reconstructions of naturato that of the training images (natural images). The incesas

images were highly similar to the perceived stimuli in shapelh Pearson correlation winning percentage, however, sugges
and in some cases in coloFigure 2). Although trained only 9p ge, A

. . that adversarial loss has negative impact on preserving the
on natural images, the model generated accurate recorginsc . - .
o . . spatial details of the reconstructed image. The results stigge
of articial shapes and alphabetical letter&idure 3), thus . i
. N R that both the perceptual and adversarial losses are critaral f
showing generalizability that is similar tehen et al. (2019We . . .
. L our end-to-end deep image reconstruction model to achieve
also demonstrated that reconstruction quality improved as th _ -
. . . perceptually similar reconstructions.
number of training samples increaseligure 4), and thus we

may be able to further improve reconstruction accuracy with Earlier studies on decoding stimuli in pixel space either
Y S P y searched for a match in the exemplar setéelaris et al., 2009;
even more training samples.

We performed an ablation studv by removing one |OSSNIShIm0tO et al.,, 201)Lor tried to reconstruct the stimulus
© periorm y by 9 Miyawaki et al., 2008; Wen et al., 2016; Gigliitirk et al., 2017

function at a time to understand the importance of each los ] . i

o . an et al.,, 2017; Seeliger et al., 2018; Shen et al.).2019
term used for training the proposed modeFigure 5. The . . o

. . the exemplar matching methods, visualization is limited he t
results showed that the model trained with all three lossnter .
. - - amples in the exemplar set and hence these methods cannot be
achieved the best performance in terms of human judgemen . o . .
&;enerallzed to stimuli that are not included in the exemplarise

while the model trained without the adversarial loss showe . . .
. . contrast, reconstruction methods are more robust in generaj
the best performance in terms of Pearson correlation. Th : .
0 a new stimulus domainFigure 3).

removal of loss in image space resulted in moderate changes

DISCUSSION
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DNN-based reconstruction methods have typically avoidleETHICS STATEMENT
directly training a DNN model for reconstructionucluturk
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2019. Instead, they have used decoded features as a proxy f&commendations of the Ethics Committee of Advanced
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plugged into known image reconstruction/generation metkod Declaration of Helsinki.
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vision datasets used for end-to-end training of vision gsKhe
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brain activity to stimulus space di cult without over ttingto ~ reconstruction methods. TH performed the experiments.
the training dataset. Thus, developing a way to learn thisatir GS performed the analyses. KD and YK wrote
mapping from limited numbers of training samples was the mairthe paper.
motivation for this work.

A potential advantage of direct mapping is that it avoidsFUNDING
information loss that occurs in the feature-decoding stegerkE
though the decoded features are correlated with the originalhis research was supported by grants from the New Energy
image features, inlorikawa and Kamitani (201 7he maximum  and Industrial Technology Development Organization (NEDO)
correlation coe cient on average was 0.5. Thus, we argue JSPS KAKENHI Grant number JP15H05710, JP15H05920,
that information in the decoded features is not all the visuaJP26870935, and JP17K12771, and the ImPACT Program of
information that can be decoded from the brain. Thereforfe, i Council for Science, Technology and Innovation (Cabinete@,
enough training samples are available, direct mapping may hefgovernment of Japan).
in preventing this information loss.
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generate reconstructions of multiple modalities simultamgly. ac) for editing a draft of this manuscript. This study was
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