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Abstract

Aberrant splice variants are involved in the initiation and/or
progression of glial brain tumors. We therefore set out to
identify splice variants that are differentially expressed
between histologic subgroups of gliomas. Splice variants were
identified using a novel platform that profiles the expression
of virtually all known and predicted exons present in the
human genome. Exon-level expression profiling was done on
26 glioblastomas, 22 oligodendrogliomas, and 6 control brain
samples. Our results show that Human Exon arrays can
identify subgroups of gliomas based on their histologic
appearance and genetic aberrations. We next used our
expression data to identify differentially expressed splice
variants. In two independent approaches, we identified 49
and up to 459 exons that are differentially spliced between
glioblastomas and oligodendrogliomas, a subset of which
(47% and 33%) were confirmed by reverse transcription-PCR
(RT-PCR). In addition, exon level expression profiling also
identified >700 novel exons. Expression of f67% of these
candidate novel exons was confirmed by RT-PCR. Our results
indicate that exon level expression profiling can be used to
molecularly classify brain tumor subgroups, can identify
differentially regulated splice variants, and can identify novel
exons. The splice variants identified by exon level expression
profiling may help to detect the genetic changes that cause or
maintain gliomas and may serve as novel treatment targets.
[Cancer Res 2007;67(12):5635–42]

Introduction

Diffuse gliomas are the most common primary central nervous
system tumors in adults (1, 2), and it is estimated that 43,800 new
patients are diagnosed in 2005 with a primary brain tumor in the
United States.4 Based on their histologic appearance, gliomas can
be divided into astrocytic tumors, pure oligodendroglial tumors,
and mixed oligoastrocytic tumors according to standard WHO
classification (3). Despite advances in neurosurgery, chemotherapy,
and radiotherapy, the prognosis for most glioma patients remains
dismal (4, 5).

There is strong evidence that aberrant splice isoforms are
involved in the initiation and/or progression of glial brain tumors
(6). For example, glioblastomas with epidermal growth factor

receptor (EGFR) amplification frequently (32 of 48) express
EGFRvIII, a tumor-specific, ligand-independent, constitutively
active isoform of the EGFR that lacks exons 2 to 7 (7). Expression
of this splice variant can induce glioma formation in mice (8) and is
associated with response to EGFR kinase inhibitors in human (9).
Other, (activating) aberrant EGFR splice variants are also frequently
observed in gliomas (10). In addition, many nervous system cancer–
related spice variants were identified using a gene-centric (11–16) or
bioinformatical approach screening public domain databases (17).

Because aberrant splice isoforms are involved in the initiation
and/or progression of glial brain tumors, we initiated a screen to
identify splice variants expressed in gliomas. Our screen was done
by profiling the expression of virtually all known and predicted
exons in the human genome (1.4 million). Splice variants were then
calculated from the expression level of exons relative to its
transcript. Our results indicate that exon level expression profiling
can classify brain tumor subgroups based on their histologic
appearance, can identify differentially regulated splice variants, and
can identify novel exons.

Materials and Methods

Samples. All glioma samples were derived from patients treated within

the Erasmus MC. Patient data, histologic diagnosis, and chromosomal

aberrations are summarized in Supplementary Table S1. Samples were
collected immediately after surgical resection, snapped frozen, and stored at

�80jC. All samples were visually inspected on 5-Am H&E–stained frozen

sections by the neuropathologist (J.M.K.). We selected 48 glioma samples

including (a) classic oligodendrogliomas with loss of heterozygosity (LOH)
on 1p and 19q (n = 22, of which 20 WHO grade III and 2 WHO grade II;

ref. 3); (b) primary glioblastoma with EGFR amplification (n = 18); and (c)

secondary glioblastoma without EGFR amplification (n = 8). Six control

brain samples from patients with no history of neurologic disease were also
included. All but one sample (GBM 77) contained >70% tumors. Tissue

adjacent to the inspected sections was subsequently used for nucleic acid

isolation. Microsatellite analysis on 1p and 19q and amplification of the
EGFR were done as described (18).

Nucleic acid isolation, cDNA synthesis, and array hybridization.
Total RNA and genomic DNA was isolated from 20 to 40 cryostat sections of

40-Am thickness (50–100 mg) using Trizol (Invitrogen) according to the
manufacturer’s instructions (see also ref. 18). Total RNA was then further

purified on RNeasy mini columns (Qiagen). RNA quality was assessed on

a Bioanalyser (Agilent). High-quality RNA (i.e., RNA integrity number >7.0;

ref. 19) was used for our experiments. rRNA reduction, first round double-
strand–cDNA synthesis, cRNA synthesis, second round single-strand (ss)–

cDNA synthesis, ss-cDNA fragmentation, and labeling was done according

to the Affymetrix GeneChip Whole-Transcript Sense Target–Labeling Assay

manual. Affymetrix Human Exon 1.0 ST microarrays were hybridized
overnight with 5-Ag biotin–labeled ss-cDNA.

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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Data analysis. Signal intensity estimate and P value for each probe set
were extracted from the arrays in Affymetrix ExACT 1.0 software using the

PLIER and DABG algorithm, respectively. PLIER expression data were

normalized using the quantile method in R statistical software v2.2.1. DABG

P values allow calculation of false positive and negative probe sets at
various PLIER expression level cutoff values. The results are summarized in

Supplementary Fig. S1 and show that a PLIER expression level of 30 is close

to the cutoff that results in the least amount of falsely called probe sets at

DABG P values of <0.05. A higher cutoff level close to PLIER expression
70 seems to result in the least amount of falsely called probe sets at the

more stringent DABG P value of <0.01. All values were then imported into

Omniviz v3.9 (Omniviz) software for further analysis. For each probe set, the

geometric mean of the hybridization intensities of all samples from the

patients was calculated with expression values of <30 set to 30 (close to
the optimal cutoff with least amount of falsely called probe sets at DABG

P value of <0.05).

The expression level of each probe set in every sample was determined

relative to the geometric mean and logarithmically transformed (base 2 of
scale) to ascribe equal weight to gene expression levels. Deviation from the

geometric mean reflects differential probe set expression. Pearson’s

correlation plots were generated using all probe sets that differed 4-fold

from the geometric mean in at least one sample (97175 probe sets in total,
Fig. 1) or with DABG P < 0.01 in at least five samples (yielding virtually

identical similar results, data not shown). Ordering of samples is done

according to the algorithm present in Omniviz software as described (20).

This method reveals patterns of homologous samples based on Pearson’s

Figure 1. Correlation plot of all samples. Samples are plotted against each other as Pearson’s correlation to determine the degree of similarity based on expressed
exons. All exons with 4-fold expression difference from the geometric mean are included in the clustering. Red, high correlation; blue, low correlation. Below the
correlation plot is a graphic representation of histologic and patient data. Tissue . Origin of sample: control cortex; anaplastic oligodendroglioma (WHO grade III);
oligodendroglioma (WHO grade II); and glioblastoma. Genomic aberrations . Genomic aberrations of the sample: 5 control sample; LOH on 1p and 19q, no

amplification of EGFR; no LOH on 1p and 19q but amplification of EGFR; no LOH on 1p and 19q, no amplification of EGFR. EGFRvIII : expression of EGFRvIII as
determined by RT-PCR: 5 no expression; expression. Subgroups identified by Pearsons’s correlation plot (right ; I–III).
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correlation. The ordering algorithm sorts all samples into correlated blocks
through an iterative process and starts with the most highly correlated pair

of samples. Each sample is joined to a block, resulting in a correlation trend

within a block. The most correlated samples are at the center of each block.

The blocks are then positioned along the diagonal of the plot in a similar
ordered manner.

Splice variant detection. We used pattern-based correlation (PAC) as

an algorithm to identify differentially regulated splice variants. PAC predicts

the expression of a probe set in a given sample by the product of its

metaprobe set level (a metaprobe set is a collection of probe sets that

belong to the same transcript; the metaprobe set level is the calculated

transcript level based on the expression level of these probe sets) and the

probe set/transcript ratio of all samples:

Expa;c¼ Trb;c�Exave�a=Trave�b

where Expa,c is the predicted expression of probe set a in sample c, Trb,c is

the calculated metaprobe set level of transcript b (of which probe set a is

part) in sample c, Exave-a is the measured expression average of probe set a

in all samples, and Trave-b is the expression average of transcript b in all

samples. In absence of alternative splicing or when a similar ratio of

alternative splicing is observed in all samples, the predicted expression

value should be identical to the measured PLIER expression levels:

Exma;c�Expa;c ¼ 0

where Exma,c is the measured PLIER expression data from the array. Any

deviation from 0 in this formula is a predictor for alternative splicing: nega-

tive values predict the exon is spliced out in a given sample; positive values

predict the exon is spliced in. PAC values were calculated using log2

transformed expression data.

Because splice variant detection requires an accurate estimation of
metaprobe sets, we used two independent approaches to calculate

metaprobe set levels. The first metaprobe set levels were calculated using

ExACT 1.0 software based on probe sets determined by Affymetrix. The
second metaprobe set calculations required two iterations: We first

determined metaprobe set levels by averaging all probe sets with PLIER

expression levels >30, >50, or >80. We next hypothesized that differentially

spliced exons will result in a metaprobe set level that is lower than when
calculated using constitutive exons only. For example, an exon that is

spliced out in subgroup A can reduce its metaprobe set level so that

constitutive exons are identified as exons that are differentially spliced-out

in subgroup B. Therefore, transcript levels should be calculated only using
constitutively incorporated (i.e., not differentially spliced between defined

subgroups) exons. We defined those constitutive exons (probe sets) as those

that are highly correlated (correlation coefficient >0.7, >0.8, or >0.9) with the
first round transcript calculations. A total of five metaprobe set

calculations were done using cutoff values: (a) PLIER 50, correlation 0.8;

(b) PLIER 30, correlation 0.8; (c) PLIER 80, correlation 0.8; (d) PLIER 50,

correlation 0.7; and (e) PLIER 50, correlation 0.9. This two-step metaprobe
set calculation not only excludes differentially spliced exons but also

excludes ‘‘nonlinear’’ probe sets (probe sets that are outside the linear

detection range of arrays) and ‘‘a-specific’’ probe sets (probe sets that bear

no relation to its transcript).
Statistical analysis was done using standard t tests. Identical filtering and

statistical analysis was done on 10 randomized groups to test for type I

errors and estimate the false-discovery rate.
Reverse transcription-PCR. Candidate differentially regulated splice

variants identified by PAC analysis were analyzed by reverse transcription-

PCR (RT-PCR) to confirm differential regulation. All RT-PCR experiments

were done on cDNA that was independently reverse transcribed from the

cDNA that was used for array hybridization. rRNA (0.5 Ag)–depleted (ribo-

minus RNA) total RNA (the remainder of RNA that was used for array

hybridization) was reverse transcribed for 1 h at 42jC in the presence of

200 units of Superscript II, 50 ng T7-(N)6 primers, 0.5 mmol/L deoxy-

nucleotide triphosphates, 10 mmol/L DTT, and RNase inhibitor. Primers

were designed using Primer35 and are listed in Supplementary Table S2.

Amplified PCR products from novel exon analysis were sequence verified

using the Big Dye Terminator Cycle Sequencing kit (Applied Biosystems).

Reactions were run on an ABI 3100 genetic analyzer.

Results

Human Exon arrays performance and unsupervised clus-
tering. In this study, we performed exon level expression profiling
to identify differentially expressed splice variants in glial brain
tumors. Profiling was done using Human Exon 1.0 Arrays
(Affymetrix), a novel platform that determines the expression of
virtually all exons present in the human genome. These arrays are
designed to target all well-annotated (RefSeq) exons (core exons),
less well-characterized exons [e.g., derived from unique EST
sequences that are not included in the RefSeq database (extended
exons)] and all predicted exons ( full exons) for which no expression
data is present in public domain databases. In total, f1.4 million
probe sets (a set of up to four oligonucleotide probes that examines
the expression of a single exon) are spotted on Human Exon 1.0
arrays: 284,000 core , 523,000 extended , and 580,000 full probe sets.
Multiple probe sets may be directed against the same exon, thus,
allowing identification of alternative splice-acceptor or splice-
donor sites. Exon arrays also allow calculation of whole-transcript
levels based on the expression level of probe sets that belong to the
same transcript. Calculated transcript levels are called metaprobe
set levels. In our experiments, the DABG significant expression
(P < 0.01) of 23.7 F 4.5% of all 1.4 million probe sets were detected.
Core exons are detected at higher signal intensities than extended
and full exons (Supplementary Fig. S2). Individual sample perfor-
mance for all array quality control variables is stated in Supple-
mentary Table S3.

This platform has thus far not been characterized, and we
therefore first validated the performance of these arrays using
unsupervised clustering analysis. Unsupervised clustering was done
using probe sets with PLIER expression levels of >30 that differed
4-fold from the geometric mean in at least one sample (Fig. 1). A
first subgroup (I) consists of all control samples and GBM 77, a
sample that contained a low amount (<10%) of tumor. A second
subgroup (II) consists of most (20 of 22) of the oligodendrogliomas
with LOH on 1p and 19q. The final subgroup (III) predominantly
(25 of 27) consists of glioblastomas but also includes two
oligodendrogliomas with 1p and 19q LOH (OD20 and OD170).
Interestingly, OD20 also did not cluster with the majority of
oligodendrogliomas with 1p/19q LOH using expression profiling on
HU133 plus 2 microarrays (18). Identical subgroups were identified
by principle components analysis, using all core probe sets or core
metaprobe sets (Supplementary Fig. S2). Unsupervised clustering
therefore indicates that exon expression profiling can identify brain
tumor subgroups based on their histologic appearance. Our data
therefore confirm the observation that histologically defined
glioma subgroups are molecularly distinct ( for review, see ref. 21)
and indicates that, on a global scale, this novel platform performs
similar to other expression profiling platforms.
Identification of differentially regulated splice variants. We

next examined whether Human Exon arrays can detect glioma
subgroup–specific splice variants. The identification of splice
variants was done using PAC. PAC values represent a predicted
level of expression for each probe set. Therefore, differences

5 http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
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between PAC and expression values are indicative for alternative
splicing. Negative values predict that the exon is, compared with
the other 53 samples, being spliced out. However, PAC requires a
complete linearity of all probe sets within a single transcript: if a
transcript is up-regulated 2-fold in one subgroup, all of the probe
sets that belong to this transcript should be up-regulated exactly
2-fold. Any probe set that does not exhibit this linearity in
expression detection (nonlinear probe sets) or bear no correlation
whatsoever with its native transcript (a-specific probe sets) will be
identified as a false positive differentially spliced candidate.
Examples of such nonlinear and a-specific probe sets are shown
in Supplementary Fig. S3. Any strategy to identify differentially
expressed splice variants therefore requires filtering out nonlinear
and a-specific probe sets.

We adopted two independent strategies to identify candidate
splice variants that are differentially regulated between oligoden-
drogliomas and glioblastomas. In the first strategy, we calculated
PAC values for every probe set in all samples using metaprobe sets
predetermined by Affymetrix. For our second strategy, we
calculated PAC values using recalculated metaprobe set expression
levels (see Materials and Methods) with metaprobe set levels (and
subsequent PAC values) derived at varying PLIER expression level
and/or correlation coefficient cutoff values. We then aimed to
exclude nonlinear and a-specific probe sets using the filtering steps
outlined in Fig. 2 and Table 1. These filtering steps resulted in final
set of 49 ( first strategy) and 254 to 459 candidate differentially

regulated splice variants (second strategy). Table 1 summarizes the
results at each step in our strategy to identify candidate splice
variants. Supplementary Table S4 contains a list of all candidates.

To estimate the false discovery rate, we randomly assigned a
group number to each tissue sample and then repeated the filtering
and statistical analysis (Table 1). This scrambling procedure was
repeated 10 times and failed to identify any candidate splice
variant in the first strategy and 1.8 candidates splice variants
(range, 0–7) in the second strategy.

Altering the variables used for metaprobe set calculation often
resulted in significant overlap between candidates identified: many
candidates identified at cutoff values PLIER 50, and correlation
coefficient 0.8 are also found when the PLIER expression cutoff is
reduced to 30 (88%), increased to 80 (83%), or the correlation cutoff
is reduced to 0.7 (93%). In contrast, increasing the correlation
cutoff to 0.9 results in a set of candidates that contains only 50% of
the probe sets identified by PLIER 50 correlation 0.8 with 46
additional probe sets identified.

We did RT-PCR using exon spanning primers to confirm the
differential expression of candidate splice variants. RT-PCR was
done on 15 candidates from the first screen and 21 candidates from
the second screen (PLIER 50, correlation 0.8). RT-PCR candidates
were randomly selected from the total number of candidates but
omitted candidates with alternative 5¶- or 3¶-end exons. We con-
firmed 7 of 15 (47%) from the first screen and 7 of 21 (33%) from
the second analysis (Fig. 2). Three of the confirmed candidates

Figure 2. Identification of differentially expressed splice variants. A, summary of filtering steps used to identify 49 and 254 to 459 candidate differentially
expressed exons, see also Table 1. B, RT-PCR of identified candidates using exon-spanning primers. ATP2B4, CaMKII, NLGN4Y, and UNC84A were confirmed
hits identified in set 1. BIN1, MPZL1, and NRCAM were confirmed hits from sets 1 and 2. Other candidates were confirmed from set 2. In NLGN4Y, an exon 5¶ to the
exon identified by PAC also shows alternative splicing, although this exon (exon 3) does not seem to be differentially expressed between oligodendrogliomas and
glioblastomas. Top arrowhead, transcripts lacking only exon 4; bottom arrowhead, transcripts lacking both exons 3 and 4. RT-PCR products of PKM2 were digested
with pstI : the differentially spliced exon is mutually exclusive with a 5¶ exon of identical length. This exon however does not contain a pstI restriction site. C, model
of alternative splicing of MPLZ1 . In oligodendrogliomas, exon 5 is spliced out, identified by PAC analysis, and confirmed by RT-PCR. PAC values are stated in the
represented exons. OD, oligodendrogliomas; GBM, glioblastomas.
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were identified in both analysis; the total number of differentially
expressed splice variants equaled 11. All differentially expressed
splice variants belonged to the core probe set list. Public domain
databases (EMSEMBL, UCSC, HOLLYWOOD) also indicated that
most (9 of 11) RT-PCR confirmed candidates are subject to
alternative splicing. It is possible that the percentage of regulated
splice variants is higher than the RT-PCR–confirmed 47% to 33%:
rare splice variants or splice variants that show only minor
differential regulation may not have been detected by RT-PCR.
Nevertheless, our results show that exon level expression profiling
can identify splice variants that are differentially regulated between
histologically defined subgroups of gliomas.
Identification of novel exons. We finally examined whether

Human Exon arrays can be used to identify novel exons. We
screened for novel exons using the full probe set list (580,000 probe
sets) because all full exons lack evidence for expression in public
domain databases. Full probe sets are composed of exons that can
be predicted (e.g., based on the presence of consensus splice
acceptor and donor sites) and of sequences that are conserved
between human, mouse, and rat. Candidate novel exons met the
following criteria (see Fig. 3): (a) show significant expression
(PLIER expression levels z5 0); (b) are part of a core metaprobe set
as many full probe sets are part of poorly characterized and single-
exon transcripts; and (c) should have a high (>0.8) correlation
coefficient with its metaprobe set (i.e., the probe set is highly
expressed in those samples in which the metaprobe set is highly
expressed). These criteria resulted in a final set of 715 full probe
sets as candidate novel exons. More candidates are identified using

less stringent criteria (exon/transcript correlation z 0.7, identifies
1482 full exons). In silico analysis of the first 158 full probe sets
confirmed that 127 of 158 (80%) are indeed novel exons; they are
not present in the RefSeq database and no spliced EST has thus far
been identified. Of the remaining probe sets, 18 of 158 (11%) were
incorrectly annotated and are in fact part of a RefSeq gene, and 13
of 158 (8%) were identified as part of (rare) spliced ESTs.

We next used RT-PCR to verify that candidate novel exons are
indeed expressed as part of a known gene. Primers were designed
to span >2 kb intronic sequence to exclude false positives due to
amplification of genomic DNA or pre-mRNA sequence. RT-PCR
confirmed the expression of 6 of 9 (67%) full exons, for which no
expression data is present in public domain databases (Fig. 3B).
These PCRs were done using one of the primers within the novel
exon. We used direct sequencing to confirm that the novel exons
are indeed expressed as part of a known transcript and not due to
amplification of a-specific products (Fig. 3C). In all cases, products
that contain the (RefSeq) known flanking exons and the novel exon
were identified. Furthermore, direct sequencing enabled us to
confirm the presence of consensus splice acceptor/donor sequen-
ces surrounding the novel exons.

RT-PCR also confirmed the expression of 3 of 3 (100%) full exons
that, in public domain databases, were part of rare spliced ESTs. All
three exons could be identified in all examined samples. For
KDHRBS2 and DTNA, RT-PCR was done using exon-spanning
primers; for PDE1C, RT-PCR was done with the forward primer in
the candidate novel exon because the novel exon may represent a
novel 5¶ exon. Identification of transcripts that have incorporated

Table 1. Filtering steps used to identify candidate differentially expressed exons

Second strategy Probe sets PAC values PAC t test PLIER t test PLIER f test Correlation Expr. Overlap

PLIER 50 corr 0.8 1,400,000 622,971 33,580 7,754 4,696 443 414
Random sampling 1,400,000 622,971 2,012 20 7.5 1.8

Range 1150–3203 2–56 0–20 0–7

FDR 6% 0.25% 0.15% 0.40%

PLIER 50 corr 0.9 1,400,000 338,970 22,190 5,364 3,199 267 254 208/254
PLIER 50 corr 0.7 1,400,000 850,382 52,820 9,826 5,737 492 459 388/459

PLIER 30 corr 0.8 1,400,000 701,535 34,799 7,016 4,034 418 390 360/390

PLIER 80 corr 0.8 1,400,000 567,410 32,294 8,358 4,989 418 397 346/397

NOTE: Our first strategy made use of core exons only using metaprobe sets predetermined by Affymetrix. For our second strategy, we calculated PAC

values using recalculated metaprobe set expression levels (as outlined in Materials and Methods) with metaprobe set levels and the subsequent PAC

values being recalculated at various probe set inclusion criteria. PAC values represent the number of probe sets in which PAC values could be calculated,

omitting all probe sets with absent metaprobe set levels. Transcript GBMfOD: all probe sets in which metaprobe set levels differed <3-fold between
oligodendrogliomas and glioblastomas. Diff exp ex-tr: remaining candidates were further selected by probe sets in which the direction of expression is

differential between probe sets and metaprobe sets. If the average probe set level expression in OD>GBM, then the average metaprobe set expression

should be OD<GBM and vice versa. This filter is likely to exclude many true positive candidates but will also rigorously exclude most nonlinear and

a-specific candidates. <3 ex/tr: all probe sets with three or more candidates within a single transcript were excluded because these are likely to be false
positive candidates due to incorrect metaprobe set calculation. Correlation: probe sets with high correlation between probe set and metaprobe set

expression were excluded (correlation coefficient > 0.65). This filter is based on the hypothesis that regulated splice variants are expected to have an

exon/transcript correlation that is less than constitutively incorporated exons. Overlap: number of candidates that were also identified using PLIER 50,
correlation 0.8.

First strategy Probe sets PAC values PAC t test Transcr GMBfOD Diff exp ex-tr <3 ex/tr

Affy metaprobesets core 286,000 188,419 7,776 5,934 65 49

Random sampling 286,000 188,419 16 16 0 0

Range 6–35 6–35
FDR 0.20% 0.30%
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the novel exon using exon-spanning primers suggests that a
significant percentage of transcripts have incorporated the
full exon in adult brain (Fig. 3B).

Discussion

In this study, we did exon level expression profiling on a set of
glial brain tumors. To our knowledge, we are among the first to
describe the use of Human Exon 1.0 arrays as an expression
profiling platform. Our results show that Human Exon arrays can
identify subgroups of gliomas based on their histologic appearance
and genetic aberrations, can identify differentially expressed splice
variants, and can identify novel exons.

The molecular subgroups identified using exon level expression
profiling is highly similar to the subgroups that are identified in
other studies using 3¶ biased expression profiling (18, 22–27). Our
data therefore confirm the observation that histologically defined
glioma subgroups are molecularly distinct ( for review, see ref. 21).
Furthermore, the similarity in glial tumor classification indicates
that, at least on a global scale, this novel platform performs similar
to other expression-profiling platforms.

The additional complexity of exon level expression profiling over
transcript-level expression profiling is the ability to identify splice
variants that are differentially expressed between tumor subgroups.
Our data indicate that the identification of differentially expressed
splice variants requires rigorous filtering steps to exclude nonlinear
and a-specific probe sets. In the two independent approaches
adopted by us, we identified 49 and 254 to 459 candidate splice
variants that are differentially expressed between OD and GBM. The
list of candidates differs significantly between the two approaches.
Furthermore, candidates identified by our second approach
(recalculated metaprobe set level) are dependent on the inclusion
criteria used to recalculate metaprobeset levels. It remains to be
determined which variables are optimal for spice variant detection.
However, all candidate lists generated by our second approach
contain a similar percentage of known splicing events (f12%;
range, 10.4–13.8%; see Supplementary Table S4) as determined by
screening public domain databases on a subset of candidates.

RT-PCR confirmed the differential regulation of a subset of these
candidate splice variants. The select number of differentially
expressed splice variants identified by us may reflect the similarity
in splice variant expression between OD and GBM. Indeed, a

Figure 3. Identification of novel exons by exon level expression profiling. A, filtering steps used to identify 715 candidate novel exons. Candidate novel exons are
expressed (PLIER) >50 as part of a well-characterized transcript and have a correlation coefficient of >0.8 with its transcript. B, RT-PCR of a subset of identified
candidates on independent samples (lanes 1–4). DTNA, KHDRBS2, and PDE1C were identified as part of a rare splice variant in public domain databases. Expression
of DTNA and KHDRBS2 full exons was confirmed using exon spanning primers, other full exons were confirmed using one primer within the candidate novel exon.
Products were sequence verified to exclude a-specific amplifications. C, model of splicing of the novel identified exon in USP54 . Direct sequencing confirmed the
presence of the novel exon expressed as part of USP54 .
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limited number (591) of differentially expressed splice variants
between mouse brain and immune tissue were identified by Ule
and coworkers using exon-junction arrays (28). In contrast,
experimental evidence exists for the regulated expression of a
large number of splice variants: many splice variants show some
degree of tissue specificity (29–31). It is therefore also possible that
the strong filtering used in this study has led to the identification of
only a subset of differentially regulated splice variants.

The differential expression of splice variants between two tumor
subtypes may be caused by a differential expression of proteins that
regulate alternative splicing. Indeed, a large number of proteins
have been identified to play a role in the regulation of alternative
splicing ( for review, see refs. 32–34). However, the expression of
glioma subgroup–specific splice variants may also be a result of
genetic changes. For example, glioblastomas with EGFR amplifica-
tions frequently carry an intragenic deletion of exons 2 through 7,
resulting in expression of the tumor specific, constitutively active
EGFRvIII isoform (35). Such aberrant splice isoforms have been
shown to play a role in the initiation and/or progression of glial
brain tumors (6). Identifying glioma-specific splice variants may
therefore help identify the causative genetic changes of glial brain
tumors.

Apart from exon expression arrays, other techniques have been
used to analyze splice variant expression. These include exon-
junction arrays (36), RNA-mediated annealing, selection and
ligation (37) and digital polony (polymerase colony) exon profiling
(38). Recently, arrays containing a combination of exon expression
and exon junction probes have also been used to identify
alternative splicing events (39, 40). Although all approaches can
detect alternative splicing events, many are limited either by
screening on a predetermined set of exon-junctions or screening on
a per-gene base. Our data shows that exon expression profiling is a
suitable alternative for genome-wide screening of regulated
splicing events between two distinct subgroups.

Our study has also identified 715 full exons that are expressed as
part of a well-annotated transcript. In silico analysis (screening
public domain databases) of a subset of candidates indicated that
80% are indeed novel exons; they are not present in the RefSeq

database and no spliced EST has thus far been identified. We
confirmed the expression of f67%, suggesting a total of f446
(0.78*0.8*715) novel exons are expressed as part of a well-annotated
transcript. Candidates that were not confirmed by RT-PCR (33%)
may be falsely identified, for example when the exon array detects
unspliced, pre-mRNA species (see e.g., ref. 41). The majority (5 of 6)
of RT-PCR confirmed novel exons are expressed in normal adult
human brain, indicating they are not aberrant, cancer-specific
splice isoforms. Furthermore, most (5 of 6) of the RT-PCR
confirmed novel exons result in changes at the protein level: the
novel exons are often found within the protein coding region.

Many of the full probe sets on the Human Exon arrays are based
on evolutionary sequence conservation between human, mouse,
and rat. Other studies have also found novel exons based on such
sequence conservation. For example, f150 candidate novel human
exons were identified in a screen based on the expression of ESTs
in mouse/rat (42). Furthermore, a bioinformatical approach using
sequence conservation has identified up to 2,300 novel, rodent-
specific exons (43). In a separate study, bioinformatical analysis
based on exon expression profiles from adult mouse tissue has
suggested the presence of a large number (40–70,000) of novel
exons (44). Although our study identified fewer novel exons, both
studies argue for the presence of novel exons in human/mouse
genomes and that such novel exons can be identified using exon
expression profiling.

In summary, our results indicate that exon level expression
profiling can be used to molecularly classify brain tumor subgroups,
can identify differentially regulated splice variants, and can identify
novel exons. The splice variants identified by exon level expression
profiling may lead to the identification of causative genetic changes
in glial brain tumors. Furthermore, glioma-subgroup specific splice
variants may serve as novel treatment targets.
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