Fractional permissions and non-deterministic evaluators in interval temporal logic

Brijesh Dongol1 John Derrick1 Ian J. Hayes2

1Department of Computer Science,
The University of Sheffield

2School of Information Technology and Electrical Engineering,
The University of Queensland

October 15, 2012
Background and goals

- We are after a method for reasoning about fine-grained atomicity
- Assume sequential consistency, but expression evaluation potentially takes several steps
 - Multiple processes may read the same variable at any time
 - A single process may read at most one variable atomically
 - A single process may write to at most one variable atomically
 - A write to a variable blocks all access to the variable
- There can be interference from other processes while an expression is being evaluated
- Expression evaluation is potentially non-deterministic
Background and goals

- We are after a method for reasoning about fine-grained atomicity.
- Assume *sequential consistency*, but expression evaluation potentially takes several steps.
 - Multiple processes may read the same variable at any time.
 - A single process may read at most one variable atomically.
 - A single process may write to at most one variable atomically.
 - A write to a variable blocks all access to the variable.
- There can be *interference* from other processes while an expression is being evaluated.
- Expression evaluation is potentially *non-deterministic*.
- **Goal:** Can we develop a high-level semantics that formalises the interference that may occur during expression evaluation?
Example

Consider the parallel execution:

<table>
<thead>
<tr>
<th>Init: (u, v = 0, 0)</th>
</tr>
</thead>
</table>
| \hline
| Process A | Process B |
|\hline
| \(A_1: \textbf{if } u < v \textbf{ then} \) | \(B_1: \ u := 1 \; ; \) |
| \(A_2: \quad \textit{Statement}_1 \) | \(B_2: \ v := 1 \) |
| \(A_3: \quad \textbf{else } \textit{Statement}_2 \) | |
| \(\textbf{fi} \) | |

- In a coarse-grained interpretation, process \(A \) will always execute \textit{Statement}_2 regardless of the state of process \(B \)
- The values of \((u, v)\) prior to guard evaluation at \(A_1 \) are \((0, 0)\), \((1, 0)\) and \((1, 1)\) and hence \(u < v \) always evaluates to false
Example

Consider the parallel execution:

\[
\begin{array}{|c|c|}
\hline
\text{Init: } & u, v = 0, 0 \\
\text{Process } A & \text{Process } B \\
A_1: & \textbf{if } u < v \textbf{ then} \\
A_2: & \textit{Statement}_1 \\
A_3: & \textbf{else } \textit{Statement}_2 \\
& \textbf{fi} \\
B_1: & u := 1 ; \\
B_2: & v := 1 \\
\hline
\end{array}
\]

In reality, expression evaluation takes time and there may be interference while an expression is evaluated.

Consider the following sequence after initialisation:

1. Process A reads \(u \) (i.e., \(u = 0 \))
2. Process B executes \(B_1 \) and \(B_2 \)
3. Process A reads \(v \) (i.e., \(v = 1 \))
4. \(u < v \) evaluates to true!
Lesson learnt: There is a distinction between actual vs. apparent states.

In previous example:

- Actual values of \((u, v)\) during evaluation at \(A_1\) are in the set

 \[
 \{(0, 0), (1, 0), (1, 1)\}
 \]

- States of \((u, v)\) apparent to process \(A\) during evaluation at \(A_1\)

 are in the set

 \[
 \{(0, 0), (1, 0), (1, 1), (0, 1)\}
 \]

Can we define semantics of commands to capture apparent states evaluation?
Actual vs. observable states

- **Lesson learnt:** There is a distinction between actual vs. apparent states
- In previous example:
 - Actual values of \((u, v)\) during evaluation at \(A_1\) are in the set
 \[\{(0, 0), (1, 0), (1, 1)\} \]
 - States of \((u, v)\) apparent to process \(A\) during evaluation at \(A_1\) are in the set
 \[\{(0, 0), (1, 0), (1, 1), (0, 1)\} \]
- Can we define semantics of commands to capture apparent states evaluation?
 - We know expression evaluation takes time (multiple steps)
 - We consider Moszkowski’s *Interval Temporal Logic*
Interval Temporal Logic: Basics

Note that our setup is different from Moszkowski et al.

\[
\begin{align*}
\text{Time} & \triangleq \mathbb{Z} \\
V & \subseteq \text{Var} \\
\text{State}_V & \triangleq V \rightarrow \text{Val} \\
\text{Stream}_V & \triangleq \text{Time} \rightarrow \text{State}_V \\
\text{Interval} & \triangleq \left\{ \Delta \subseteq \text{Time} \mid \forall t_1, t_2 \in \Delta, t \in \text{Time} \cdot t_1 \leq t \leq t_2 \Rightarrow t \in \Delta \right\} \\
\text{StatePred}_V & \triangleq \text{State}_V \rightarrow \mathbb{B} \\
\text{IntvPred}_V & \triangleq \text{Interval} \rightarrow \text{Stream}_V \rightarrow \mathbb{B}
\end{align*}
\]
Interval predicate operators

- Use ‘.’ for function application
- Pointwise lift boolean operators to interval predicates, e.g.,

\[
\begin{align*}
false.\Delta.s & \triangleq false \\
(p_1 \lor p_2).\Delta.s & \triangleq p_1.\Delta.s \lor p_2.\Delta.s
\end{align*}
\]

- Also have additional operators
 - ‘;’ (to model sequential composition)
 - ‘ω’ (to model both finite and infinite iteration)
Chop

$(p_1 ; p_2).\Delta.s$ iff either

- Δ can be split into adjoining intervals Δ_1 and Δ_2 and $p_1.\Delta_1.s$ and $p_2.\Delta_2.s$, or
- $\text{lub}.\Delta = \infty$ and $p_1.\Delta.s$
Chop

\((p_1 ; p_2).\Delta.s\) iff either

- \(\Delta\) can be split into adjoining intervals \(\Delta_1\) and \(\Delta_2\) and \(p_1.\Delta_1.s\) and \(p_2.\Delta_2.s\), or
- \(lub.\Delta = \infty\) and \(p_1.\Delta.s\)
Define interval predicate \(\text{Empty}\.\Delta.s \triangleq (\Delta = \{\}) \)

Order interval predicates using ‘\(\Rightarrow \)’

\[
p_1 \Rightarrow p_2 \triangleq \forall \Delta, s \cdot p_1.\Delta.s \Rightarrow p_2.\Delta.s
\]

Iteration of \(p \) is defined as:

\[
p^\omega \triangleq \nu z \cdot (p ; z) \lor \text{Empty}
\]
Commands

Definition
For a state predicate b, variable v and expression e, the abstract syntax of commands is given by Cmd below, where $C, C_1, C_2 \in Cmd$.

$$Cmd ::= False \mid True \mid Idle \mid [b] \mid v := e \mid C_1 ; C_2 \mid C_1 \sqcap C_2 \mid C^\omega \mid C_1 \parallel C_2$$
Interval-based behaviour

- Define behaviour of a command as an interval predicate
- Use \(\text{beh}_X \in \text{Cmd} \rightarrow \text{IntvPred} \) where \(X \) is the set of processes executing the command
- Some behaviours:

\[
\begin{align*}
\text{beh}_X.\text{False} & \triangleq \text{false} \\
\text{beh}_X.\text{True} & \triangleq \text{true} \\
\text{beh}_X.(C_1 ; C_2) & \triangleq \text{beh}_X.C_1 ; \text{beh}_X.C_2 \\
\text{beh}_X.(C_1 \cap C_2) & \triangleq \text{beh}_X.C_1 \lor \text{beh}_X.C_2 \\
\text{beh}_X.C^\omega & \triangleq (\text{beh}_X.C)^\omega \\
\text{beh}_X.(C_1 \parallel C_2) & \triangleq \exists X_1, X_2 \cdot (X_1 \cup X_2 = X) \land (X_1 \cap X_2 = \emptyset) \land \text{beh}_{X_1}.(C_1 ; \text{Idle}) \land \text{beh}_{X_2}.(C_2 ; \text{Idle})
\end{align*}
\]
Semantics of guard evaluation and assignment

- What about semantics of Idle, guard evaluation \([b]\) and assignment \(\nu := e\)?

- To model fine-grained atomicity, we must evaluate expressions using states apparent to a process (as opposed to actual states)

- For our example, semantics must reflect that \(u < \nu\) possibly evaluates to \(true\) even though \(\neg(u < \nu)\) in all actual states
Semantics of guard evaluation and assignment

- What about semantics of Idle, guard evaluation \([b]\) and assignment \(v := e\)?

- To model fine-grained atomicity, we must evaluate expressions using states apparent to a process (as opposed to actual states)

- For our example, semantics must reflect that \(u < v\) possibly evaluates to \(true\) even though \(\neg(u < v)\) in all actual states

- **But first:** Need a method for reasoning about read/write access to shared variables
Fractional permissions

Solution: Boyland’s fractional permissions

\[\Pi_{x.v.t} \] denotes the permission for process \(x \) to access variable \(v \) at time \(t \)

\[\Pi_{x.v.t} \] is a rational number such that \(0 \leq \Pi_{x.v.t} \leq 1 \)

Define:

\[\mathcal{D}_{x.v.t} \equiv (\Pi_{x.v.t} = 0) \] to mean \(x \) is denied permission to access \(v \) at time \(t \)

\[\mathcal{R}_{x.v.t} \equiv (0 < \Pi_{x.v.t} < 1) \] to mean \(x \) has read permission to \(v \) at time \(t \)

\[\mathcal{W}_{x.v.t} \equiv (\Pi_{x.v.t} = 1) \] to mean \(x \) has write permission to \(v \) at time \(t \)
Healthiness conditions

- We have a number of healthiness conditions on permissions.
- E.g., the sum of the permissions of the processes for any variable v in any state of stream s is at most 1, i.e.,

$$\forall v \in \text{Var}, t \in \text{Time} \cdot (\sum_{x \in \text{Proc}} \Pi_x.v.t) \leq 1$$

- These can become part of the rely condition of a program.
- Hence,
 - at most one process can have write permission at any time.
 - read permission at any time can be distributed arbitrarily.
Actual states over an interval

▶ Straightforward to reason about states that actually occur over an interval
▶ Recall

\[\text{StatePred} \triangleq \text{State} \to \mathbb{B} \]
\[\text{IntvPred} \triangleq \text{Interval} \to \text{Stream} \to \mathbb{B} \]

▶ Define \(\text{states.} \Delta . s \triangleq \{ \sigma : \sum | \exists t : \Delta \cdot \sigma = s . t \} \)
▶ For a state predicate \(c \), interval \(\Delta \) and stream \(s \), we define:

\[
(\square c).\Delta . s \triangleq \forall \sigma : \text{states.} \Delta . s \cdot c.\sigma \\
(\diamond c).\Delta . s \triangleq \exists \sigma : \text{states.} \Delta . s \cdot c.\sigma
\]
States apparent to a process

To reason about the states apparent to a process x, we define function $\text{apparent}_{x,W}$ where W is a set of variables

$$\sigma \in \text{State}_W \mid \forall v \in W \bullet \exists t \in \Delta \bullet (\sigma.v = s.t.v) \land R_{x.v.t}$$

We then define:

$$\forall \sigma : \text{apparent}_{x,\text{vars}}, c.\Delta.\hat{s} = \exists \sigma : \text{apparent}_{x,\text{vars}}, c.\Delta.\hat{s}$$
States apparent to a process

- To reason about the states apparent to a process x, we define function $\text{apparent}_{x,W}$ where W is a set of variables.
- W corresponds to the set of variables whose values x needs to determine to fully evaluate an expression.
States apparent to a process

- To reason about the states apparent to a process x, we define function $apparent_{x,W}$ where W is a set of variables.
- W corresponds to the set of variables whose values x needs to determine to fully evaluate an expression.

$$apparent_{x,W}.\Delta.s \triangleq \begin{cases}
\sigma \in State_{W} | \\
\forall v \in W \cdot \exists t \in \Delta \cdot (\sigma.v = s.t.v) \land R_{x}.v.t \end{cases}$$
States apparent to a process

- To reason about the states apparent to a process \(x \), we define function \(\text{apparent}_{x,W} \) where \(W \) is a set of variables.
- \(W \) corresponds to the set of variables whose values \(x \) needs to determine to fully evaluate an expression.

\[
\begin{align*}
\text{apparent}_{x,W}.\Delta.s & \equiv \left\{ \sigma \in \text{State}_W \mid \forall v \in W \cdot \exists t \in \Delta \cdot (\sigma.v = s.t.v) \land R_x.v.t \right\} \\
\end{align*}
\]

- We then define
\[
\begin{align*}
(\Box_x c).\Delta.s & \equiv \forall \sigma: \text{apparent}_{x,\text{vars}.c}.\Delta.s \cdot c.\sigma \\
(\Diamond_x c).\Delta.s & \equiv \exists \sigma: \text{apparent}_{x,\text{vars}.c}.\Delta.s \cdot c.\sigma
\end{align*}
\]
Behaviour of idle, guard evaluation and assignment

\[beh_{\{x\}}.\text{Idle} \triangleq (\forall v \cdot \Box \neg W_{x}.v) \]
Behaviour of idle, guard evaluation and assignment

\[beh\{x\}.\text{Idle} \equiv (\forall v \cdot \Box \neg W_x.v) \]

\[beh\{x\}.[b] \equiv (\Diamond_x b) \land beh\{x\}.\text{Idle} \]
Behaviour of idle, guard evaluation and assignment

\[beh_{\{x\}}.\text{Idle} \equiv (\forall v \cdot \Box \lnot \mathcal{W}_x.v) \]

\[beh_{\{x\}}.[b] \equiv (\#_x b) \land beh_{\{x\}}.\text{Idle} \]

\[beh_{\{x\}}.(v := e) \equiv \exists k: Val \cdot beh_{\{x\}}.[e = k] ; \\
\left(\Box (v = k \land \mathcal{W}_x.v) \land \\
(\forall u: \text{Var} \setminus \{v\} \cdot \Box \lnot \mathcal{W}_x.u) \land \\
\lnot \text{Empty} \right) \]
Example: Apparent states evaluation

\[
\begin{array}{|c|c|}
\hline
\text{Init: } u, v = 0, 0 \\
\hline
\text{Process } A & \text{Process } B \\
\hline
A_1: \textbf{if } u < v \textbf{ then} & B_1: u := 1 \\
A_2: \text{Statement}_1 & B_2: v := 1 \\
A_3: \textbf{else } \text{Statement}_2 & \\
A_4: \textbf{fi} & \\
\hline
\end{array}
\]

We can prove both of the following properties

\[
\square (pc_A = A_1) \implies \square (u \geq v)
\]

\[
\square (pc_A = A_1) \land \Diamond R_A.u \land \Diamond R_A.v \implies \Box_A (u < v) \land \Box_A (u \geq v)
\]
Compositional reasoning

- Use rely/guarantee-style reasoning where *rely* specifies behaviour of the environment (formalised as an interval predicate)

- $\text{beh}_X. (\text{RELY } r \cdot C).\Delta \equiv r.\Delta \Rightarrow (\text{beh}_X. C).\Delta$

- Unlike Jones,
 - the rely condition holds in the *same interval* as the command
 - *fractional permissions* can be used to ensure that a program and its environment do not simultaneously modify the same variable
Refinement

Definition
We say A is refined by C with respect to set of processes X (denoted $A \subseteq_X C$) iff

$$beh_X.C \Rightarrow beh_X.A$$
Decomposition theorems

Definition
$$(\square p).\Delta.s \equiv \forall\Delta' \in \text{Interval} \cdot \Delta' \subseteq \Delta \Rightarrow p.\Delta'.s$$

Definition
r splits iff $r \Rightarrow \square r$
Decomposition theorems

Definition
\[(\square p).\Delta.s \equiv \forall \Delta' \in Interval \cdot \Delta' \subseteq \Delta \Rightarrow p.\Delta'.s\]

Definition
r splits iff \(r \Rightarrow \square r\)

Theorem
If r splits, then both of the following hold.

\[\begin{align*}
(\text{Rely } r \cdot C_1 ; C_2) & \sqsubseteq_X (\text{Rely } r \cdot C_1) ; (\text{Rely } r \cdot C_2) \quad (1) \\
\text{Rely } r \cdot C^\omega & \sqsubseteq_X (\text{Rely } r \cdot C)^\omega \quad (2)
\end{align*}\]
Decomposition theorems

Theorem
If there exist $X_1, X_2 \subseteq X$ where $X = X_1 \cup X_2$ and $X_1 \cap X_2 = \emptyset$ and rely conditions r_1 and r_2, such that both of the following hold

$$\left(\text{RELY } r \land r_1 \cdot A_1 \right) \sqsubseteq_{X_1} C_1 \land \left(\text{RELY } r \land r_2 \cdot A_2 \right) \sqsubseteq_{X_2} C_2$$

$$\left(r \land \text{beh}_{X_2}.C_2 \Rightarrow r_1 \right) \land \left(r \land \text{beh}_{X_1}.C_1 \Rightarrow r_2 \right)$$

then

$$\left(\text{RELY } r \cdot A_1 \parallel A_2 \right) \sqsubseteq_X C_1 \parallel C_2$$
\[(\text{RELY } r \land r_1 \cdot A_1) \sqsubseteq_{X_1} C_1 \quad \land \quad (\text{RELY } r \land r_2 \cdot A_2) \sqsubseteq_{X_2} C_2\]
\[(r \land \text{beh}_{X_2}.C_2 \Rightarrow r_1) \quad \land \quad (r \land \text{beh}_{X_1}.C_1 \Rightarrow r_2)\]

then

\[(\text{RELY } r \cdot A_1 \parallel A_2) \sqsubseteq_X C_1 \parallel C_2\]

Proof.

\[(3) = \text{definition of } \sqsubseteq_X, \text{logic } (a \Rightarrow (b \Rightarrow c)) = (a \land b \Rightarrow c)\]
\[(r \land r_1 \land \text{beh}_{X_1}.C_1 \Rightarrow \text{beh}_{X_1}.A_1) \land (r \land r_2 \land \text{beh}_{X_2}.C_2 \Rightarrow \text{beh}_{X_2}.A_2)\]
\[\Rightarrow \quad \text{logic}\]
\[r \land r_1 \land \text{beh}_{X_1}.C_1 \land r_2 \land \text{beh}_{X_2}.C_2 \Rightarrow \text{beh}_{X_1}.A_1 \land \text{beh}_{X_2}.A_2\]
\[\Rightarrow \quad (4)\]
\[r \land \text{beh}_{X_1}.C_1 \land \text{beh}_{X_2}.C_2 \Rightarrow \text{beh}_{X_1}.A_1 \land \text{beh}_{X_2}.A_2\]

Hence we have:

\[\exists X_1, X_2 \cdot (X_1 \cup X_2 = X) \land (X_1 \cap X_2 = \emptyset) \land (3)\]
\[\Rightarrow \quad \text{calculation above and logic and definitions}\]
\[(\text{RELY } r \cdot A_1 \parallel A_2) \sqsubseteq_X C_1 \parallel C_2\]
Conclusions and future work

- Used interval-based reasoning and fractional permissions to formalise semantics that reflect fine-grained atomicity
- Interference is possible during interval of expression evaluation
- Evaluation is non-deterministic when multiple variables are accessed
- Evaluation takes place in states apparent to a process
- Can define rely/guarantee-style rules to allow compositional reasoning
Conclusions and future work

- Used interval-based reasoning and fractional permissions to formalise semantics that reflect fine-grained atomicity
- Interference is possible during interval of expression evaluation
- Evaluation is non-deterministic when multiple variables are accessed
- Evaluation takes place in states apparent to a process
- Can define rely/guarantee-style rules to allow compositional reasoning

- We have encoded part of this theory in Isabelle/HOL
- Applying this theory to prove linearisability
- Can we define high-level command semantics for weaker memory models?
- Generalise interval-based rely/guarantee theory
Questions?