DARTS Literature:

1. DARTS homepage: http://www.ecs.tuwien.ac.at/projects/DARTS

Distributed Algorithms for Robust Tick Synchronization

Advantages:
- Fault-Tolerance: Tolerate F out of n > 3f+1 faulty nodes
- Synchrony: Global notion of time
- Graceful Degradation: Clocks adapt to environment conditions
- Reduced EM Radiation & Ground Bouncing: Individual clocks do not switch simultaneously

GALS Design:
- Globally Asynchronous Locally Synchronous
- Synchroynous islands communicate over handshake
- No global notion of time
- Application level synchronization
- Design of FUs synchronous
- Asynchronous communication between FUs
- Metastability at clock boundaries

DARTS Approach:
- Aims:
 - Attain fault tolerance
 - Make clock routing unITICAL
 - Maintain reasonable synchronous view
- Approach:
 - Partition chip into n functional units Fu
 - Attach one TS-Alg unit to every Fu
 - TS-Algs communicate via on-chip TS-Net
 - TS-Algs provide Fu with local clocks
 - No crystal oscillator needed

Experimental Results:
- Self-oscillating as expected
- Reasonable skew between clocks
- 22MHz on FPGA, more than 220MHz on ASIC expected

Threshold Modules:
- Evaluation of algorithm’s rules
- Count number of active inputs
- Generate clock transition if threshold is reached
- Constant propagation delay
- Hazard-free

Contact:
Markus Ferringer
Institute of Computer Engineering
Embedded Computing Systems Group
Treßstraße 3 - 2.Stock
1040 Wien
ferringer@ecs.tuwien.ac.at