Algorithmic reducibilities of algebraic structures

Kalimullin I.Sh.

Kazan State University
e-mail: Iskander.Kalimullin@ksu.ru

Workshop on Computability Theory 2009, Sofia
A countable algebraic structure \mathcal{M} is called (\(x\)-) computable, if for some $\mathfrak{N} \cong \mathcal{M}$ we have $|\mathfrak{N}| \subseteq \omega$ and the atomic diagram $D(\mathfrak{N})$ (\(x\)-) is computable.
A countable algebraic structure \(M \) is called \((x-)\) computable, if for some \(\mathcal{N} \cong M \) we have \(|\mathcal{N}| \subseteq \omega \) and the atomic diagram \(D(\mathcal{N}) \) is computable.

A countable algebraic structure \(M \) is called \((x-)\) decidable, if for some \(\mathcal{N} \cong M \) we have \(|\mathcal{N}| \subseteq \omega \) and the complete diagram \(D^*(\mathcal{N}) \) is \((x-)\) computable.
A countable algebraic structure \mathcal{M} is called \((\mathbf{x-}) \) computable, if for some $\mathcal{N} \cong \mathcal{M}$ we have $|\mathcal{N}| \subseteq \omega$ and the atomic diagram $D(\mathcal{N})$ (\(\mathbf{x-} \)) is computable.

A countable algebraic structure \mathcal{M} is called \((\mathbf{x-}) \) decidable, if for some $\mathcal{N} \cong \mathcal{M}$ we have $|\mathcal{N}| \subseteq \omega$ and the complete diagram $D^*(\mathcal{N})$ is \((\mathbf{x-}) \) computable.
The degree spectrum of an algebraic structure \mathcal{M} is the collection $\text{Sp} (\mathcal{M})$ of all Turing degrees x such that \mathcal{M} is x-computable.

The strong degree spectrum of an algebraic structure \mathcal{M} is the collection $\text{Ssp} (\mathcal{M})$ of all Turing degrees x such that \mathcal{M} is x-decidable.

If the degree spectrum of an algebraic structure \mathcal{M} has a least element a (that is, if $\text{Sp} (\mathcal{M}) = \{x | x \geq a\}$), then we say that \mathcal{M} has the degree a.

Kalimullin I.Sh. Reducibilities of algebraic structures
The degree spectra

- The **degree spectrum** of an algebraic structure \mathcal{M} is the collection $\text{Sp}(\mathcal{M})$ of all Turing degrees x such that \mathcal{M} is x-computable.

- The **strong degree spectrum** of an algebraic structure \mathcal{M} is the collection $\text{Ssp}(\mathcal{M})$ of all Turing degrees x such that \mathcal{M} is x-decidable.

If the degree spectrum of an algebraic structure \mathcal{M} has a least element a (that is, if $\text{Sp}(\mathcal{M}) = \{x | x \geq a\}$), then we say that \mathcal{M} has the degree a.

Kalimullin I.Sh.
Reducibilities of algebraic structures
The degree spectra

- The **degree spectrum** of an algebraic structure \mathcal{M} is the collection $\text{Sp}(\mathcal{M})$ of all Turing degrees x such that \mathcal{M} is x-computable.

- The **strong degree spectrum** of an algebraic structure \mathcal{M} is the collection $\text{Ssp}(\mathcal{M})$ of all Turing degrees x such that \mathcal{M} is x-decidable.

- If the degree spectrum of an algebraic structure \mathcal{M} has a least element a (that is, if $\text{Sp}(\mathcal{M}) = \{x \mid x \geq a\}$), then we say that \mathcal{M} has the degree a.

Kalimullin I.Sh.
Reducibilities of algebraic structures
Fact 1. (Richter, 1981) Each Turing degree is the degree of some algebraic structure.
The degree spectra

- **Fact 1.** (Richter, 1981) Each Turing degree is the degree of some algebraic structure.
- **Fact 2.** (Richter, 1981) There are structures, which do not have a degree, e.g. non-computable linear orders.
The degree spectra

- Fact 1. (Richter, 1981) Each Turing degree is the degree of some algebraic structure.
- Fact 2. (Richter, 1981) There are structures, which do not have a degree, e.g. non-computable linear orders.
- Fact 3. (Folklore) The union of spectra of two structures, which have incomparable degrees, is not a degree spectrum, that is \(\{x \mid x \geq b\} \cup \{x \mid x \geq c\} \) is not a degree spectrum if \(b \) and \(c \) are incomparable.
The degree spectra

- **Fact 1.** (Richter, 1981) Each Turing degree is the degree of some algebraic structure.

- **Fact 2.** (Richter, 1981) There are structures, which do not have a degree, e.g. non-computable linear orders.

- **Fact 3.** (Folklore) The union of spectra of two structures, which have incomparable degrees, is not a degree spectrum, that is \(\{ x | x \geq b \} \cup \{ x | x \geq c \} \) is not a degree spectrum if \(b \) and \(c \) are incomparable.

- In fact, for each countable \(M \) and every incomparable \(b, c \in \text{Sp}(M) \) there is a \(a, a' \leq c' \), incomparable with \(b \) and \(c \) s.t. \(a \in \text{Sp}(M) \).
We say that a structure \mathfrak{A} is reducible to a structure \mathfrak{B} ($\mathfrak{A} \leq_r \mathfrak{B}$), if $\text{Sp} (\mathfrak{B}) \subseteq \text{Sp} (\mathfrak{A})$.
We say that a structure \mathcal{A} is \textbf{reducible} to a structure \mathcal{B} ($\mathcal{A} \leq_r \mathcal{B}$), if $\text{Sp}(\mathcal{B}) \subseteq \text{Sp}(\mathcal{A})$.

We say that a structure \mathcal{A} is \textbf{uniformly reducible} to a structure \mathcal{B} ($\mathcal{A} \leq_{ur} \mathcal{B}$), if there is an uniform procedure which builds a copy of the structure \mathcal{A} given any copy of the structure \mathcal{B}. That is, there is a Turing operator Φ such that for all \mathcal{N}, $|\mathcal{N}| \subseteq \omega$,

$$\mathcal{N} \cong \mathcal{B} \implies (\exists \mathcal{M} \cong \mathcal{A})[|\mathcal{M}| \subseteq \omega \& D(\mathcal{M}) = \Phi^{D(\mathcal{N})}]$$.
For $A \subseteq \omega$ define the undirected graph $\text{Enum}(A)$, consisting from disjoint $n + 3$-cycles, where $n \in A$.
For $A \subseteq \omega$ define the undirected graph $\text{Enum}(A)$, consisting from disjoint $n + 3$-cycles, where $n \in A$.

Then (Selman, 1971) $\text{Enum}(A) \leq_r \text{Enum}(B) \iff \text{Enum}(A) \leq_{ur} \text{Enum}(B) \iff A \leq_e B$.

For $A \subseteq \omega$ define the undirected graph $\mathcal{Enum}(A)$, consisting from disjoint $n + 3$-cycles, where $n \in A$.

Then (Selman, 1971) $\mathcal{Enum}(A) \leq_r \mathcal{Enum}(B) \iff \mathcal{Enum}(A) \leq_{ur} \mathcal{Enum}(B) \iff A \leq_e B$.

$\mathcal{Enum}(A)$ has a degree $\iff A \equiv_e \text{graph } (f)$, f is a total function. In this case, the e-degree of the set A is called total.
For $A \subseteq \omega$ define the undirected graph $\mathcal{E}num(A)$, consisting from disjoint $n + 3$-cycles, where $n \in A$.

Then (Selman, 1971) $\mathcal{E}num(A) \leq_r \mathcal{E}num(B) \iff \mathcal{E}num(A) \leq_{ur} \mathcal{E}num(B) \iff A \leq_e B$.

$\mathcal{E}num(A)$ has a degree $\iff A \equiv_e \text{graph} (f)$, f is a total function. In this case, the e-degree of the set A is called total.

(Knight, Ash) A structure \mathcal{A} has a degree iff there are a finite collection \vec{a} from \mathcal{A} and a total function f such that $\text{Th}_\exists (\mathcal{A}, \vec{a}) \equiv_e \text{graph} (f)$ and $\text{deg}(f) \in \text{Sp} (\mathcal{A})$.
For $A \subseteq \omega$ define the undirected graph $\text{Enum}(A)$, consisting from disjoint $n + 3$-cycles, where $n \in A$.

Then (Selman, 1971) $\text{Enum}(A) \leq_r \text{Enum}(B) \iff \text{Enum}(A) \leq_{\text{ur}} \text{Enum}(B) \iff A \leq_e B$.

$\text{Enum}(A)$ has a degree $\iff A \equiv_e \text{graph}(f)$, f is a total function. In this case, the e-degree of the set A is called total.

(Knight, Ash) A structure \mathfrak{A} has a degree iff there are a finite collection \vec{a} from \mathfrak{A} and a total function f such that $\text{Th}_\exists(\mathfrak{A}, \vec{a}) \equiv_e \text{graph}(f)$ and $\text{deg}(f) \in \text{Sp}(\mathfrak{A})$.

Hence, if \mathfrak{A} has a degree and $\mathfrak{B} \leq_r \mathfrak{A}$, then $\mathfrak{B} \leq_{\text{ur}} (\mathfrak{A}, \vec{a})$ for some \vec{a} from \mathfrak{A}.
Theorem. (2009). If a structure \mathcal{A} has a jump degree but has not a degree, then there is a structure \mathcal{B} such that $\mathcal{B} \leq_r \mathcal{A}$ and $\mathcal{B} \not\leq_{ur} (\mathcal{A}, \bar{a})$ for every \bar{a} from \mathcal{A}.

The jump degree of a structure \mathcal{A} is the least Turing jump of the elements of $Sp(\mathcal{A})$.

(Do wney, Coles, Slaman, 2000) The structure $Enum(\mathcal{A})$ always has a jump degree.

Corollary. The following conditions are equivalent:
1) The e-degree of a set \mathcal{A} is total;
2) $(\forall \mathcal{B})(\mathcal{B} \leq_r Enum(\mathcal{A}) \Rightarrow \mathcal{B} \leq_{ur} Enum(\mathcal{A}))$.

Kalimullin I.Sh. Reducibilities of algebraic structures
Theorem. (2009). If a structure \mathcal{A} has a jump degree but has not a degree, then there is a structure \mathcal{B} such that $\mathcal{B} \leq_r \mathcal{A}$ and $\mathcal{B} \not\leq_{ur} (\mathcal{A}, \bar{a})$ for every \bar{a} from \mathcal{A}.

- The **jump degree** of a structure \mathcal{A} is the least Turing jump of the elements of $\text{Sp}(\mathcal{A})$.

\[\text{Theorem. (2009).} \quad \text{If a structure } \mathcal{A} \text{ has a jump degree but has not a degree, then there is a structure } \mathcal{B} \text{ such that } \mathcal{B} \leq_r \mathcal{A} \text{ and } \mathcal{B} \not\leq_{ur} (\mathcal{A}, \bar{a}) \text{ for every } \bar{a} \text{ from } \mathcal{A}. \]

- The **jump degree** of a structure \mathcal{A} is the least Turing jump of the elements of $\text{Sp}(\mathcal{A})$.

\[\text{Theorem. (2009).} \quad \text{If a structure } \mathcal{A} \text{ has a jump degree but has not a degree, then there is a structure } \mathcal{B} \text{ such that } \mathcal{B} \leq_r \mathcal{A} \text{ and } \mathcal{B} \not\leq_{ur} (\mathcal{A}, \bar{a}) \text{ for every } \bar{a} \text{ from } \mathcal{A}. \]

- The **jump degree** of a structure \mathcal{A} is the least Turing jump of the elements of $\text{Sp}(\mathcal{A})$.

\[\text{Theorem. (2009).} \quad \text{If a structure } \mathcal{A} \text{ has a jump degree but has not a degree, then there is a structure } \mathcal{B} \text{ such that } \mathcal{B} \leq_r \mathcal{A} \text{ and } \mathcal{B} \not\leq_{ur} (\mathcal{A}, \bar{a}) \text{ for every } \bar{a} \text{ from } \mathcal{A}. \]
Uniformity vs. non-Uniformity

Theorem. (2009). If a structure \mathcal{A} has a jump degree but has not a degree, then there is a structure \mathcal{B} such that $\mathcal{B} \leq_r \mathcal{A}$ and $\mathcal{B} \not\leq_{ur} (\mathcal{A}, \bar{a})$ for every \bar{a} from \mathcal{A}.

- The **jump degree** of a structure \mathcal{A} is the least Turing jump of the elements of $\text{Sp}(\mathcal{A})$.

- (Downey, Coles, Slaman, 2000) The structure $\text{Enum}(\mathcal{A})$ always has a jump degree.
Uniformity vs. non-Uniformity

Theorem. (2009). If a structure \mathcal{A} has a jump degree but has not a degree, then there is a structure \mathcal{B} such that $\mathcal{B} \leq_r \mathcal{A}$ and $\mathcal{B} \not\leq_{ur} (\mathcal{A}, \vec{a})$ for every \vec{a} from \mathcal{A}.

- The **jump degree** of a structure \mathcal{A} is the least Turing jump of the elements of $Sp(\mathcal{A})$.
- (Downey, Coles, Slaman, 2000) The structure $Enum(\mathcal{A})$ always has a jump degree.

Corollary. The following conditions are equivalent:
1) The e-degree of a set \mathcal{A} is total;
2) $(\forall \mathcal{B})[\mathcal{B} \leq_r Enum(\mathcal{A}) \implies \mathcal{B} \leq_{ur} Enum(\mathcal{A})]$.
Let $D_e = 2^\omega / \equiv_e$ be the upper semilattice of e-degrees with the least element 0_e.

(Sorbi, 1997) D_e is not a lattice.

(Sorbi?) Each non-principal ideal in the D_e has no supremum.

What about the upper semilattices D_r and D_u?
Let $D_e = 2^\omega / \equiv_e$ be the upper semilattice of e-degrees with the least element 0_e.

There is no least element in $D_e \setminus \{0_e\}$.
Let $D_e = 2^\omega / \equiv_e$ be the upper semilattice of e-degrees with the least element 0_e.

There is no least element in $D_e \setminus \{0_e\}$.

(Sorbi, 1997) D_e is not a lattice.
Let $D_e = 2^\omega / \equiv_e$ be the upper semilattice of e-degrees with the least element 0_e.

There is no least element in $D_e \setminus \{0_e\}$.

(Sorbi, 1997) D_e is not a lattice.

(Sorbi, 1997) Every countable distributive lattice is emebeddable into D_e preserving sups and infs.
Enumeration degrees

- Let $D_e = 2^\omega / \equiv_e$ be the upper semilattice of e-degrees with the least element 0_e.
- There is no least element in $D_e \setminus \{0_e\}$.
- (Sorbi, 1997) D_e is not a lattice.
- (Sorbi, 1997) Every countable distributive lattice is embeddable into D_e preserving sups and infs.
- (Sorbi?) Each non-principal ideal in the D_e has no supremum.
Let $D_e = 2^\omega / \equiv_e$ be the upper semilattice of e-degrees with the least element 0_e.

There is no least element in $D_e \setminus \{0_e\}$.

(Sorbi, 1997) D_e is not a lattice.

(Sorbi, 1997) Every countable distributive lattice is embeddable into D_e preserving sups and infs.

(Sorbi?) Each non-principal ideal in the D_e has no supremum.

What about the upper semilattices D_r and D_{ur}?
Let $D_e = 2^\omega / \equiv_e$ be the upper semilattice of e-degrees with the least element 0_e.

There is no least element in $D_e \setminus \{0_e\}$.

(Sorbi, 1997) D_e is not a lattice.

(Sorbi, 1997) Every countable distributive lattice is embeddable into D_e preserving sups and infs.

(Sorbi?) Each non-principal ideal in the D_e has no supremum.

What about the upper semilattices D_r and D_{ur}?
Lempp’s Question

Let a structure \(\mathcal{M} \) is \(X \)-computable for every non-computable \(X \). Must \(\mathcal{M} \) be computable?
Let a structure M is X-computable for every non-computable X. Must M be computable?

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures M such that $\text{Sp}(M) = \{x | x > 0\}$ and
Lempp’s Question

Let a structure \mathcal{M} is X-computable for every non-computable X. Must \mathcal{M} be computable?

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathcal{M} such that $\text{Sp}(\mathcal{M}) = \{x | x > 0\}$ and $T\text{h}(\mathcal{M})$ has no computable models.

Corollary. Both \mathcal{D} and \mathcal{D}_r contain the least nonzero element.
Lempp’s Question

Let a structure \mathcal{M} is X-computable for every non-computable X. Must \mathcal{M} be computable?

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathcal{M} such that $\text{Sp}(\mathcal{M}) = \{x | x > 0\}$ and

1) (Slaman). $\text{Th}(\mathcal{M})$ has not computable models.

2) (Wehner). $\text{Th}(\mathcal{M})$ has computable models.

Corollary. Both $\mathcal{D}r$ and $\mathcal{D}ur$ contain the least nonzero element.
Let a structure \mathcal{M} is X-computable for every non-computable X. Must \mathcal{M} be computable?

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathcal{M} such that $\text{Sp}(\mathcal{M}) = \{x | x > 0\}$ and

1) (Slaman). $\text{Th}(\mathcal{M})$ has not computable models.

2) (Wehner). $\text{Th}(\mathcal{M})$ has computable models.

3) (Hirschfeldt). $\text{Ssp}(\mathcal{M}) = \{x | x > 0\}$.

Corollary. Both \mathcal{D}_r and \mathcal{D}_u contain the least nonzero element.
Lempp’s Question

Let a structure \mathcal{M} is X-computable for every non-computable X. Must \mathcal{M} be computable?

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007).
There are structures \mathcal{M} such that $\text{Sp}(\mathcal{M}) = \{x | x > 0\}$ and
1) (Slaman). $\text{Th}(\mathcal{M})$ has not computable models.
2) (Wehner). $\text{Th}(\mathcal{M})$ has computable models.
3) (Hirschfeldt). $\text{Ssp}(\mathcal{M}) = \{x | x > 0\}$.

Corollary. Both Dr and Dur contain the least nonzero element.

Theorem (2009). There is a computable structure \mathcal{M} such that $\text{Sp}(\mathcal{M}) = \{x | x > 0\}$.

Kalimullin I.Sh. Reducibilities of algebraic structures
Lempp’s Question

Let a structure \mathcal{M} is X-computable for every non-computable X. Must \mathcal{M} be computable?

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathcal{M} such that $\text{Sp}(\mathcal{M}) = \{x | x > 0\}$ and

1) (Slaman). $\text{Th}(\mathcal{M})$ has not computable models.

2) (Wehner). $\text{Th}(\mathcal{M})$ has computable models.

3) (Hirschfeldt). $\text{Ssp}(\mathcal{M}) = \{x | x > 0\}$.

Corollary. Both D_r and D_{ur} contain the least nonzero element.
Lempp’s Question

Let a structure \mathcal{M} is \mathcal{X}-computable for every non-computable \mathcal{X}. Must \mathcal{M} be computable?

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007).
There are structures \mathcal{M} such that $\text{Sp}(\mathcal{M}) = \{ x | x > 0 \}$ and
1) (Slaman). $\text{Th}(\mathcal{M})$ has not computable models.
2) (Wehner). $\text{Th}(\mathcal{M})$ has computable models.
3) (Hirschfeldt). $\text{Ssp}(\mathcal{M}) = \{ x | x > 0 \}$.

Corollary. Both D_r and D_{ur} contain the least nonzero element.

Theorem (2009). There is a computable structure \mathcal{M} such that $\text{Ssp}(\mathcal{M}) = \{ x | x > 0 \}$.

Kalimullin I.Sh. | Reducibilities of algebraic structures
We say that the structure \mathcal{M} is almost computable, if
$\mu(\{X \mid \deg(X) \in \text{Sp}(\mathcal{M})\}) = 1$ in the uniform probability space 2^ω.

Kalimullin I.Sh.
Reducibilities of algebraic structures
We say that the structure \mathcal{M} is **almost computable**, if
$$\mu(\{X \mid \deg(X) \in \text{Sp}(\mathcal{M})\}) = 1$$
in the uniform probability space 2^ω.

(Kalimullin, Csima, 2007). There are almost computable structures \mathfrak{A} such that $D \setminus \text{Sp}(\mathfrak{A})$ is uncountable.
Almost computable structures

- We say that the structure \mathcal{M} is almost computable, if $\mu(\{X \mid \deg(X) \in \text{Sp}(\mathcal{M})\}) = 1$ in the uniform probability space 2^ω.

- (Kalimullin, Csima, 2007). There are almost computable structures \mathfrak{A} such that $D \setminus \text{Sp}(\mathfrak{A})$ is uncountable.

- (Goncharov, McCoy, Miller, Knight, Solomon, Harizanov, 2005). There are almost computable non-arithmetical structures.
We say that the structure \mathcal{M} is almost computable, if
$\mu(\{X \mid \deg(X) \in \text{Sp}(\mathcal{M})\}) = 1$ in the uniform probability space 2^ω.

(Kalimullin, Csima, 2007). There are almost computable structures \mathfrak{A} such that $D \setminus \text{Sp}(\mathfrak{A})$ is uncountable.

(Goncharov, McCoy, Miller, Knight, Solomon, Harizanov, 2005). There are almost computable non-arithmetical structures.

Question. Is there an arithmetical degree which computes every almost computable structure?
The relativized Lempp’s question I

Let a structure \mathcal{M} is X-computable for every $X \not\in \Delta^0_n$. Must \mathcal{M} be Δ^0_n-computable?
The relativized Lempp’s question I

- Let a structure \mathcal{M} is X-computable for every $X \not\in \Delta^0_n$. Must \mathcal{M} be Δ^0_n-computable?

- Let a structure \mathcal{M} is X-computable for every $X \not\in_T A$. Must \mathcal{M} be A-computable?
The relativized Lempp’s question I

Let a structure \mathcal{M} is \mathcal{X}-computable for every $\mathcal{X} \not\in \Delta^0_n$. Must \mathcal{M} be Δ^0_n-computable?

Let a structure \mathcal{M} is \mathcal{X}-computable for every $\mathcal{X} \not\leq_T A$. Must \mathcal{M} be A-computable?

Theorem. (2008). There is a degree $a \leq 0''$ such that $\text{Sp}(\mathcal{M}) \neq \{\mathcal{x} | \mathcal{x} \not\leq a\}$ for every \mathcal{M}.
The relativized Lempp’s question I

- Let a structure \mathcal{M} is X-computable for every $X \not\in \Delta^0_n$. Must \mathcal{M} be Δ^0_n-computable?
- Let a structure \mathcal{M} is X-computable for every $X \not\preceq_T A$. Must \mathcal{M} be A-computable?

Theorem. (2008). There is a degree $a \leq 0''$ such that $\text{Sp}(\mathcal{M}) \neq \{x \mid x \not\leq a\}$ for every \mathcal{M}.

To find such an $a \leq 0^{(4)}$ we prove that for every incomparable b and c there exists an $a \leq (b \cup c)^{(4)}$ such that for each \mathcal{M}

$$\{b, c\} \subseteq \text{Sp}(\mathcal{M}) \implies a \in \text{Sp}(\mathcal{M}).$$
The relativized Lempp’s question I

Let a structure \mathcal{M} is X-computable for every $X \notin \Delta^0_n$. Must \mathcal{M} be Δ^0_n-computable?

Let a structure \mathcal{M} is X-computable for every $X \not\leq_T A$. Must \mathcal{M} be A-computable?

Theorem. (2008). There is a degree $a \leq 0''$ such that $\text{Sp}(\mathcal{M}) \neq \{x | x \not\leq_a\}$ for every \mathcal{M}.

To find such an $a \leq 0^{(4)}$ we prove that for every incomparable b and c there exists an $a \leq (b \cup c)^{(4)}$ such that for each \mathcal{M}

$$\{b, c\} \subseteq \text{Sp}(\mathcal{M}) \implies a \in \text{Sp}(\mathcal{M}).$$

To make $a \leq 0''$ we prove that for every $c > 0$ there exist $a, b \leq c''$ such that for each \mathcal{M}

$$\{b, c\} \subseteq \text{Sp}(\mathcal{M}) \implies a \in \text{Sp}(\mathcal{M}).$$
Let a structure \mathcal{M} is X-computable for every $X \not\in \Delta^0_n$. Must \mathcal{M} be Δ^0_n-computable?
The relativized Lempp’s question II

- Let a structure \mathcal{M} is X-computable for every $X \notin \Delta^0_n$. Must \mathcal{M} be Δ^0_n-computable?
- Let a structure \mathcal{M} is X-computable for every $X \not\leq_T A$. Must \mathcal{M} be A-computable?
The relativized Lempp’s question II

- Let a structure \mathcal{M} is X-computable for every $X \not\in \Delta^0_n$. Must \mathcal{M} be Δ^0_n-computable?
- Let a structure \mathcal{M} is X-computable for every $X \not\in_T A$. Must \mathcal{M} be A-computable?

Theorem. (2007, 2008). If a degree a is low or c.e. then there is a structure \mathcal{M} such that $\text{Sp}(\mathcal{M}) = \{x | x \not\leq a\}$.

Kalimullin I.Sh. | Reducibilities of algebraic structures
The relativized Lempp’s question II

- Let a structure \mathcal{M} is X-computable for every $X \not\in \Delta^0_n$. Must \mathcal{M} be Δ^0_n-computable?

- Let a structure \mathcal{M} is X-computable for every $X \not\leq_T A$. Must \mathcal{M} be A-computable?

Theorem. (2007, 2008). If a degree a is low or c.e. then there is a structure \mathcal{M} such that $\text{Sp}(\mathcal{M}) = \{x | x \not\leq a\}$.

Theorem. Let C be a uniformly Δ^0_2 family which is closed downwards under \leq_1. Then there is a structure \mathcal{M} such that $\text{Sp}(\mathcal{M}) = \{\text{deg}(X) | X' \not\in C\}$.
Let a structure \(M \) is \(X \)-computable for every \(X \not\in \Delta^0_n \). Must \(M \) be \(\Delta^0_n \)-computable?

Let a structure \(M \) is \(X \)-computable for every \(X \not\leq_T A \). Must \(M \) be \(A \)-computable?

Theorem. (2007, 2008). If a degree \(a \) is low or c.e. then there is a structure \(M \) such that \(\text{Sp}(M) = \{ x | x \not\leq a \} \).

Theorem. Let \(C \) be a uniformly \(\Delta^0_2 \) family which is closed downwards under \(\leq_1 \). Then there is a structure \(M \) such that \(\text{Sp}(M) = \{ \text{deg}(X) | X' \not\in C \} \).

In particular, \(\text{Sp}(M) \) can consist from the non-superlow degrees.
The idea of the proofs

- $\text{Sp}(\mathcal{M}) = \{x|x > 0\}$: (Wehner, 1999)

 $$S = \{\{n\} \oplus U | U \text{ is finite } \& U \neq W_n\}.$$
The idea of the proofs

- \(\text{Sp}(M) = \{ x | x > 0 \} \): (Wehner, 1999)
 \[
 S = \{ \{ n \} \oplus U | U \text{ is finite } \& U \neq W_n \}.
 \]

- \(\text{Sp}(M) = \{ x | x \not\leq a \} \): \(a = \deg(A) \) is low
 \[
 S = \{ \{ n \} \oplus U | U \text{ is finite } \& U \neq W_n^A \}.
 \]
The idea of the proofs

- \(\text{Sp}(\mathcal{M}) = \{ x | x > 0 \} \): (Wehner, 1999)

\[
S = \{ \{ n \} \oplus U | U \text{ is finite } \& U \neq W_n \}.
\]

- \(\text{Sp}(\mathcal{M}) = \{ x | x \not\leq a \} \): \(a = \deg(A) \) is low

\[
S = \{ \{ n \} \oplus U | U \text{ is finite } \& U \neq W_n^A \}.
\]

- \(\text{Sp}(\mathcal{M}) = \{ x | x' \not\in C \} \): \(C = \text{rng}(\nu), \nu \in \Delta^0_2 \)

\[
S = \{ \{ n \} \oplus U | U \text{ is finite } \& U \neq \nu(n) \}.
\]

For the Uniformity vs. non-Uniformity result \(\nu(n) = W_n^{X_n} \).
The idea of the proofs

- \(\text{Sp}(M) = \{ x | x > 0 \} \): (Wehner, 1999)

 \[
 S = \{ \{ n \} \oplus U | U \text{ is finite } \& U \neq W_n \}.
 \]

- \(\text{Sp}(M) = \{ x | x \not\preceq a \} \): \(a = \deg(A) \) is low

 \[
 S = \{ \{ n \} \oplus U | U \text{ is finite } \& U \neq W^A_n \}.
 \]

- \(\text{Sp}(M) = \{ x | x' \not\in C \} \): \(C = \text{rng}(\nu), \nu \in \Delta^0_2 \)

 \[
 S = \{ \{ n \} \oplus U | U \text{ is finite } \& U \neq \nu(n) \}.
 \]

 For the Uniformity vs. non-Uniformity result \(\nu(n) = W_{X_n}^n \).

- \(\text{Sp}(M) = \{ x | x \not\preceq a \} \): \(a = \deg(A) \), \(A \) is c.e.

 \[
 S = \{ \{ n \} \oplus U | U \text{ is the image of an increasing p.r.f } \& U \neq W^A_n \}.
 \]
If \(a = b \cap c \) for low degrees \(a, b \) and \(c \), then
\[
\{ x \mid x \not\leq c \} = \{ x \mid x \not\leq a \} \cup \{ x \mid x \not\leq b \}.
\]
Hence, \(D_r \) possess nontrivial infs.
Properties of D_r and D_{ur}

- If $a = b \cap c$ for low degrees a, b and c, then
 \[\{ x | x \not\in c \} = \{ x | x \not\in a \} \cup \{ x | x \not\in b \}. \]
 Hence, D_r possess nontrivial infs.

- Each countable distributive lattice is embeddable into D_r preserving sups and infs.
Properties of D_r and D_{ur}

- If $a = b \cap c$ for low degrees a, b and c, then
 \[
 \{ x \mid x \not\leq c \} = \{ x \mid x \not\leq a \} \cup \{ x \mid x \not\leq b \}.
 \]
 Hence, D_r possess nontrivial infs.

- Each countable distributive lattice is embeddable into D_r preserving sups and infs.

- If both two structures have degrees which are low and incomparable to each other, then these two structures have no infimum in D_r and D_{ur}. Hence, D_r and D_{ur} are not lattices.
Properties of D_r and D_{ur}

- If $a = b \cap c$ for low degrees a, b and c, then
 \[\{ x | x \not\in c \} = \{ x | x \not\in a \} \cup \{ x | x \not\in b \}. \]
 Hence, D_r possess nontrivial infs.

- Each countable distributive lattice is embeddable into D_r preserving sups and infs.

- If both two structures have degrees which are low and incomparable to each other, then these two structures have no infimum in D_r and D_{ur}. Hence, D_r and D_{ur} are not lattices.

- There are nonprincipal ideals in D_r and D_{ur} which have supremum.
For a structure \mathcal{M} and an e-degree \mathbf{x} we write $\mathcal{M} \leq_{e} \mathbf{x}$, if for some $\mathcal{N} \cong \mathcal{M}$, $|\mathcal{N}| \subseteq \omega$ we have $D(\mathcal{N}) \leq_{e} \mathbf{x}$.

The e-spectrum of algebraic structure \mathcal{M} is the collection $e\text{-Sp}(\mathcal{M})$ of all e-degrees \mathbf{x} such that $\mathcal{M} \leq_{e} \mathbf{x}$.

We say that a structure \mathcal{A} is e-reducible to a structure \mathcal{B} ($\mathcal{A} \leq_{er} \mathcal{B}$), if $e\text{-Sp}(\mathcal{B}) \subseteq e\text{-Sp}(\mathcal{A})$.

We say that a structure \mathcal{A} is uniformly e-reducible to a structure \mathcal{B} ($\mathcal{A} \leq_{uer} \mathcal{B}$), if there is an e-operator Φ such that for all \mathcal{N}, $|\mathcal{N}| \subseteq \omega$, $\mathcal{N} \cong \mathcal{B} \Rightarrow (\exists \mathcal{M} \cong \mathcal{A})[|\mathcal{M}| \subseteq \omega \& D(\mathcal{M}) = \Phi(D(\mathcal{N}))]$.

Kalimullin I.Sh.

Reducibilities of algebraic structures
For a structure \mathcal{M} and an e-degree \mathbf{x} we write $\mathcal{M} \leq_e \mathbf{x}$, if for some $\mathcal{N} \cong \mathcal{M}$, $|\mathcal{N}| \subseteq \omega$ we have $D(\mathcal{N}) \leq_e \mathbf{x}$.

The e-spectrum of algebraic structure \mathcal{M} is the collection $e\text{-Sp}(\mathcal{M})$ of all e-degrees \mathbf{x} such that $\mathcal{M} \leq_e \mathbf{x}$.
For a structure \mathcal{M} and an e-degree x we write $\mathcal{M} \leq_e x$, if for some $\mathcal{N} \cong \mathcal{M}$, $|\mathcal{N}| \subseteq \omega$ we have $D(\mathcal{N}) \leq_e x$.

The e-spectrum of algebraic structure \mathcal{M} is the collection $\text{e-Sp}(\mathcal{M})$ of all e-degrees x such that $\mathcal{M} \leq_e x$.

We say that a structure \mathcal{A} is e-reducible to a structure \mathcal{B} ($\mathcal{A} \leq_{er} \mathcal{B}$), if $\text{e-Sp}(\mathcal{B}) \subseteq \text{e-Sp}(\mathcal{A})$.

Kalimullin I.Sh.
Reducibilities of algebraic structures
For a structure \(M \) and an e-degree \(x \) we write \(M \leq_e x \), if for some \(N \cong M \), \(|N| \subseteq \omega \) we have \(D(N) \leq_e x \).

The e-spectrum of algebraic structure \(M \) is the collection \(e\text{-}Sp(M) \) of all e-degrees \(x \) such that \(M \leq_e x \).

We say that a structure \(A \) is e-reducible to a structure \(B \) (\(A \leq_{er} B \)), if \(e\text{-}Sp(B) \subseteq e\text{-}Sp(A) \).

We say that a structure \(A \) is uniformly e-reducible to a structure \(B \) (\(A \leq_{uer} B \)), if there is an e-operator \(\Phi \) such that for all \(N \), \(|N| \subseteq \omega \),

\[N \cong B \implies (\exists M \cong A)[|M| \subseteq \omega \land D(M) = \Phi(D(N))]. \]
Theorem. (2009). There is a structure \mathcal{M} such that
$e\text{-Sp}(\mathcal{M}) = \{x \in D_e | x > 0\}$.
In fact \mathcal{M} codes the family $S = \{\{n\} \oplus U | U \text{ is c.e.} \land U \neq W_n\}$.

Kalimullin I.Sh.
Reducibilities of algebraic structures
Theorem. (2009). There is a structure \mathcal{M} such that $\text{e-Sp}(\mathcal{M}) = \{x \in D_e | x > 0\}$.
In fact \mathcal{M} codes the family $S = \{\{n\} \oplus U | U \text{ is c.e. } \& U \neq W_n\}$.

Corollary. D_{er} contains the least nonzero element.
(Stukachev, 2007).

\[A \text{ is } \Sigma \text{-definable in } \mathbb{HF}(\mathcal{B}) \text{ without parameters} \]

\[\Downarrow \]

\[A \leq_{uer} \mathcal{B} \implies A \leq_{er} \mathcal{B} \]

\[\Downarrow \]

\[A \leq_{ur} \mathcal{B} \implies A \leq_{r} \mathcal{B} \]
Theorem.

1. $A \leq_{uer} B$ does not imply that A is Σ-definable in $\mathbb{HF}(B)$;
2. $A \leq_{ur} B$ does not imply $A \leq_{er} B$;
3. $A \leq_{er} B$ does not imply $A \leq_{ur} B$;
4. $A \leq_{er} B$ and $A \leq_{ur} B$ do not imply $A \leq_{uer} B$;
5. $A \leq_{r} B$ does not imply $A \leq_{er} M$ or $A \leq_{ur} B$.

Everything above is correct up to finite constant enrichments.
Relationships between the reducibilities, III

Are the counterexamples from above are natural?
Are the counterexamples from above are natural?

1. $\mathcal{A} \leq uer \mathcal{B}$ does not imply that \mathcal{A} is Σ-definable in $\mathbb{HF}(\mathcal{B})$; \mathcal{A} codes the family $\{\{n\} \oplus U \mid U \text{ is c.e.} \& U \neq W_n\}$. \mathcal{B} codes the family of all infinite c.e. sets.
Are the counterexamples from above are natural?

1. \(\mathcal{A} \leq_{uer} \mathcal{B} \) does not imply that \(\mathcal{A} \) is \(\Sigma \)-definable in \(\mathbb{HF}(\mathcal{B}) \);
 \(\mathcal{A} \) codes the family \(\{ \{ n \} \oplus U \mid U \text{ is c.e.} \& \ U \neq W_n \} \).
 \(\mathcal{B} \) codes the family of all infinite c.e. sets.

2. \(\mathcal{A} \leq_{ur} \mathcal{B} \) does not imply \(\mathcal{A} \leq_{er} \mathcal{B} \);
 \(\mathcal{A} \) codes the family of all graphs of computable functions.
 \(\mathcal{B} \) codes the family of all infinite c.e. sets.

3. ?

4. ??

5. ???