
Slide 1/16

TOSThreads:
Thread-Safe and Non-Invasive

Preemption in TinyOS

Kevin Klues, Chieh-Jan Liang, Jeongyeup Paek, Razvan Musaloiu-E,

Philip Levis, Andreas Terzis, and Ramesh Govindan

Published in SenSys’09

Presented by

Jinkyu Koo

Slide 2/16

Event-driven vs. Multi-threaded

• Thread-based execution

– A process runs concurrently two or more tasks typically by 

time-division multiplexing

– One stack per thread

• Event-based execution

– Flow of the program is determined by events

– Single stack



Slide 3/16

Inconvenience with event-driven model

• Event-driven programming model of TinyOS provides 

greater concurrency for motes

– Memory constraint � single stack

– Each event typically perform short computation

• Long-running computation may cause a problem in 

event-driven model

– We cannot do anything else while processing an event

– e.g., data compression

Slide 4/16

Goals of TOSThreads

• Combine the ease of a threaded programming model with 

the efficiency of an event-based kernel

– Provide application threads

– However, the application threads do not affect the event-based 

kernel

• Thread-safety: Thread preemption does not cause the kernel to fail

• Non-invasive preemption: Thread priorities are always preserved; kernel 

operations are top priority.



Slide 5/16

The Challenge of Preemption

• Concurrently running threads need the ability to invoke 

kernel functions

• Concurrency of kernel invocations must be managed in 

some way

• Three basic techniques

– Cooperative threading

– Kernel Locking

– Message Passing

Slide 6/16

Cooperative threading

• One thread yields a processor to other threads

– Avoid challenge of kernel reentrancy � simple kernel

• The correctness of the entire system depends upon 

application code voluntarily yielding the processor at 

specific intervals

– If a thread does not relinquish the processor for a long time, 

then other threads may be unable to service requests

• Determining the right strategy for inserting yield points 

in a long running computation is a non-trivial exercise

– Computations are data dependent, so the commonly-used 

strategy of placing fixed yield points in the code can result in 

highly-variable inter-yield intervals



Slide 7/16

Kernel locking

• Entire kernel has a single lock around it such that only 

one thread can be executing a system call at any time

• More fine-grained locking is also possible

– Each subsystem (radio, sensors, flash) can have its own lock

• The kernel is more complex

• The locks reduce performance due to the absence of 

parallelism

Slide 8/16

TOSThreads architecture

•Lower Priority Threads

•Application logic

•High Priority 

Thread

•Core TinyOS 

services

•Highly concurrent / 

timing sensitive 

application code

Message Passing Interface



Slide 9/16

TOSThreads architecture

• TinyOS runs inside the kernel 

thread dedicated to running 

the standard TinyOS task 

scheduler

• A system call from an 

application thread posts a task 

onto the kernel thread.

• Only the kernel thread ever 

directly executes TinyOS 

code

– allow core TinyOS code 

to execute unchanged

• TinyOS concurrency model: synchronous 

(tasks) and asynchronous (interrupts)

• Asynchronous code can preempt 

synchronous code but synchronous code is 

run-to-completion.

• Application threads exist at the lowest level 

of the hierarchy and are prohibited from 

preempting either synchronous code or 

asynchronous code

Slide 10/16

Modifications to TinyOS

• Limited to three small changes

– Pre-amble in the boot sequence

• Encapsulates TinyOS inside high priority kernel thread

– Small change in the TinyOS task scheduler

• Invokes the thread scheduler when TinyOS thread falls idle

– Post-ambles in each interrupt handler

• Ensures TinyOS thread woken up if interrupt handler posts tasks



Slide 11/16

Boot Sequence

Slide 12/16

Task Scheduler



Slide 13/16

Interrupt Handlers

Slide 14/16

Evaluation (1/3)



Slide 15/16

Evaluation (2/3)

Slide 16/16

Evaluation (3/3)

Two Tenet tasks concurrent

TakeLong: 10ms

TakeSample: every 50ms



Slide 17/16

Q & A


