

Handbook CATLoG: Climate adaptation decision support tool for local governments

Handbook

HANDBOOK CATLOG: CLIMATE ADAPTATION DECISION SUPPORT TOOL FOR LOCAL GOVERNMENTS

Prioritising climate change adaptation investments for local governments with particular focus on extreme events

Macquarie University

AUTHORS

Stefan Trück (Macquarie University)

Supriya Mathew (Macquarie University)

Ann Henderson-Sellers (Macquarie University)

Ros Taplin (University of New South Wales)

Tim Keighley (Macquarie University)

WoonChoo Chin (Macquarie University)

Published by the National Climate Change Adaptation Research Facility

ISBN: 978-1-925039-61-0 NCCARF Publication 90/13

Australian copyright law applies. For permission to reproduce any part of this document, please approach the authors.

Please cite this report as:

Trück, S, Mathew, S, Henderson-Sellers, A, Taplin, R, Keighley, T & Chin, W 2013, Handbook CATLoG: Climate adaptation decision support tool for local governments. Prioritising climate change adaptation investments for local governments with particular focus on extreme events, National Climate Change Adaptation Research Facility, Gold Coast, 38 pp.

Acknowledgement

This work was carried out with financial support from the Australian Government (Department of Climate Change and Energy Efficiency) and the National Climate Change Adaptation Research Facility (NCCARF).

The role of NCCARF is to lead the research community in a national interdisciplinary effort to generate the information needed by decision-makers in government, business and in vulnerable sectors and communities to manage the risk of climate change impacts.

Disclaimer

The views expressed herein are not necessarily the views of the Commonwealth or NCCARF, and neither the Commonwealth nor NCCARF accept responsibility for information or advice contained herein.

Cover image: Mission Beach, post-Cyclone Yasi © Paul Toogood, Castaways Resort Mission Beach

Table of Contents

B	ACKGROUND	1
1.	INTRODUCTION	2
	A. Economic analysis of options	3
	a. Analysis of Extreme Events	3
	b. Assessment of economic damage	4
	b. Cost-Benefit Analysis	5
	c. Multi-Criteria Analysis	5
2.	STARTING CATLoG	6
3.	ECONOMIC ANALYSIS	7
	Input window 1: Frequency of events	7
	Input window 2: Severity of events	8
	Input window 3: Simulating the total loss due to the extreme events	9
	Sensitivity tests: Economic damage	. 10
4.	COST-BENEFIT ANALYSIS	. 13
	Sensitivity tests: Cost-Benefit Analysis	. 14
5.	MULTI-CRITERIA ANALYSIS	. 15
	Output and Sensitivity Tests	. 18
	Sensitivity	. 18
	Scores	. 18
Α	PPENDIX A	. 19
	Quantitative Analysis – Feature A of the Tool	. 21
	Sensitivity test parameters	. 25
	Risk Reduction Options	. 27
	Multi-Criteria Analysis – Feature B of the Tool	. 31
	Scores	.32
	Sensitivity tests	. 33
A	PPENDIX B – Linking XLA solver in Microsoft Excel	. 35
G	LOSSARY	.37
D	ISCLAIMER	.38

LIST OF FIGURES

Figure 1 Snapshot of input window where user enters details on the frequency of the extreme event8
Figure 2 Snapshot of severity input window where users enter details on the damage caused by an extreme event9
Figure 3 Snapshot of input simulation window where users enter details on parameters required for modelling the damage accumulated over a period of time10
Figure 4 Snapshot of sensitivity test window where users changes input parameters (different from base-case parameters) to understand the significance of each parameter value on the outputs
Figure 5 Snapshot of input window where users enter details on adaptation options such as its costs. By default, the input values for time horizon and discount rate are retained as in the base-case for proper comparison with the base-case simulation
Figure 6 Snapshot of input window where local experts enter details on frequency and severity reduction due to each adaptation option14
Figure 7 Snapshot of input window where users enter details on qualitative criteria used for evaluation16
Figure 8 Snapshot of input window where users enter details on options as well as number of experts involved17
Figure 9 Snapshot of table created by CATLoG where the involved experts can enter a scores for each adaptation option against each criterion17
Figure 10 Snapshot of Table that allows t change the for considered criteria to conduct sensitivity analysis18
Figure 11 Snapshot of input window where user enters details on the frequency of the extreme event21
Figure 12 Snapshot of input window where users enter details on the severity of damage caused by an extreme event22
Figure 13 Snapshot of input simulation window where users enter details on parameters required for modelling the damage accumulated over a period of time23
Figure 14 Plot of a simulated Loss Distribution for discounted present value of total losses (DPVL) during the conidered time horizon24
Figure 15 Yearly damage accumulated over the time horizon considered24
Figure 16 Loss distributions for the conducted sensitivity tests26

Figure 17 Cumulative loss in sensitivity tests	26
Figure 18 Snapshot of input window for costs of adaptation option (left panel), Snapshof input window for benefits of adaptation option, i.e. reduction in risk (right panel)	
Figure 19 Benefit with respect to the average damage	30
Figure 20 Benefit with respect to the worst case damage	30
Figure 21 All 3 experts give a score for each adaptation option against each criteria, well as scores indicating their confidence level or expertise	
Figure 22 Snapshot of summary table created after each user has entered scores options against each criterion as well as scores indicating their confidence levels	
Figure 23 Criteria scores for each adaptation option	32
Figure 24 Scores grouped by criteria	33
Figure 25 Multi-Criteria Analysis sensitivity tests	33
Figure 26 Graph of sensitivity tests	34
LIST OF TABLES	
Table 1 Functionality of start buttons: 'Economic Analysis' and 'Multi-Criteria Analysis	s' 6
Table 2 Risk reduction options for bushfires	20
Table 3 Results for simulated loss distribution under the base case scenario	23
Table 4 Example Scenarios for Sensitivity Analysis	25
Table 5 Results for simulated loss distribution for sensitivity analysis scenarios	25
Table 6 Loss distribution for risk reduction options	29

BACKGROUND

Development of CATLoG (Climate Adaptation decision support Tool for Local Governments) is a National Climate Change Adaptation Research Facility (NCCARF) funded project specifically meant to assist decision makers in comparing and prioritising climate change adaptation investments with particular reference to extreme events. The Microsoft Excel-based Tool is specifically developed for Local Government use and is a result of contributions from a multi-disciplinary research team at Macquarie University and University of New South Wales and partner Councils Ku-ring-gai and Gosford.

The analysis of climate extremes is particularly important because of their high impact nature. Unfortunately, often end users do not entirely understand the range of uncertainties surrounding the research outputs they use for extreme event climate adaptation decision-making.

The theoretical framework followed for the quantitative part of the tool developed in this research is a risk management framework that includes three steps: risk identification, risk analysis and risk reduction. Risk identification includes identifying location-relevant climate extremes and exploring specific vulnerabilities of the location that are likely to be worsened if the extreme event occurs. Risk analysis and evaluation focuses on determining the frequency and potential negative consequences due to event occurrences.

The tool focuses on low frequency, high severity climate impacted events where historical data is scarce. Due to the lack of historical data, the tool relies on expert judgements on the frequency and severity of such events. It is important to point out that the results of the analysis are highly dependent on the quality of these judgements such that the reliability of the results depends on finding appropriate experts in the field who can provide appropriate estimates for frequency and impact of the considered events.

CATLoG will equip end users with an Excel-based software Tool to analyse and rank adaptation options with the help of a combination of quantitative and qualitative evaluation methods. This handbook comprises guidelines to assist stakeholders' usage of the CATLoG Tool. A simple worked out example is given as Appendix A and potential solutions to compile errors of the Tool are given as Appendix B.

1. INTRODUCTION

In CATLoG the evaluation of adaptation investment options is conducted in two main steps:

- A. Economic (or financial) analysis of options (quantitative evaluation of options):
 - a. Analysis of extreme events
 - b. Assessment of economic damage
 - c. Cost-Benefit Analysis (CBA) of adaptation options
- B. Multi-Criteria Analysis (MCA) of adaptation options (qualitative evaluation of options)

It is important to point out that the results of the quantitative analysis in A are highly dependent on the quality of the judgements provided by consulted experts. The reliability of the results for this feature of the tool depends heavily on finding appropriate experts in the field who can provide estimates for frequency and severity of the considered events. The quantitative analysis also requires expert judgements on how the considered adaptation options will reduce the frequency and/or severity of the considered climate impacted events (risk reduction). Also appropriate estimates for costs of the considered adaptation options as well the time horizon considered for the investment, growth rates, discount rates are required. Finally, an estimate on how climatic change will impact on the considered events, i.e. increase the frequency or severity of the events will be helpful.

Further details on how to conduct a financial analysis of available adaptation options are provided in the next Section 'A – Economic Analysis of Options' as well as in Section 3 and 4 of this document.

Note that if such information is not available to the user or impossible to obtain, it is more appropriate to only use the Multi-Criteria Analysis (MCA) option (feature B) of CATLoG that conducts a qualitative evaluation of the options. MCA can be conducted independently of feature A and allows the user to rank adaptation options also in the absence of detailed quantitative information on the considered catastrophic events. MCA is a qualitative evaluation method and can also evaluate less tangible impacts of climate extremes and benefits of options such as e.g. environmental or social costs and benefits.

It is also important to note that there is not necessarily a recommended order for the application of feature A or B. Situations may arise where conducting MCA as a first step is the better option. For example, MCA can be used to identify only those adaptation options that will meet qualitative but important criteria before subsequently undertaking quantitative CBA only for these options. Clearly, the quantitative part of the tool (feature A) requires significant additional effort and work such as e.g. sourcing experts and data, quantifying impacts of the considered options, before the analysis can be conducted. On the other hand, situations may arise where CBA may be conducted as a first step and the

2 Handbook CATLoG

results for the economic and financial analysis can then be entered in a subsequently conducted MCA that also includes social or environmental impacts.

A. Economic analysis of options

a. Analysis of Extreme Events

Extreme events are characterised by little data and hence their analysis, i.e. frequency and severity predictions, usually requires additional sources of information such as expert opinions. This software tool determines the frequency of occurrence of events based on estimates provided by experts and past observations of the extreme event considered.

The method of combining expert opinions with historical data is known as Bayesian inference and has become quite popular in financial risk analysis when only a small number of observations is available, see e.g. Shevchenko and Wüthrich (2006) or Shevchenko (2011). In the current version of the tool, past observations of damage due to extreme events are not used for calculating the economic damage as it was observed that damage data was difficult to obtain and software modelling of the expert opinions and severity data together was complex and time consuming. Thus, in this version of the Tool economic damage (severity of events) is calculated based only on the estimates entered by experts.

Frequency of extreme events is modelled using the Poisson distribution (commonly used for frequency modelling) and the severity (damage) is modelled using the Lognormal, Weibull or Burr distributions in CATLoG. Thus, in short, analysis of extreme events requires entering details of frequency and severity of the extreme events.

To apply this feature of the tool the user is required to use:

- (i) Expert judgement on the frequency of the considered catastrophic event, and potentially historical data on the frequency of the considered event (if available).
- Judgements provided by an expert in the field on severity of the considered (ii) climate impacted events.
- (iii) Expert judgements on how the considered adaptation options will impact on the frequency and severity of the considered climate impacted events (risk reduction).
- Estimates on the costs of the adaptation options considered as well as estimates (iv) for economic growth rates and the discount rate that should be applied in the analysis.
- Finally, an estimate on the increase in frequency of climate impacted events due (v) to climatic change can be included. Also this estimate should be based on judgement provided by an expert in the field.

Note that the approach in feature A is designed to evaluate climate impacted events in terms of a frequency and severity distribution instead of analysing '1 in 10 year', '1 in 100 year' or '1 in 1000 year' events separately. Therefore, the specified frequency should refer to all significant events in a risk category such that events of different magnitude ('1 in 10 year', '1 in 100 year' or '1 in 1000 year' etc.) should be included. However, it is important to point out that all information provided on frequency, severity, costs and benefits of the adaptation options should only refer to the actual locality under assessment.

b. Assessment of economic damage

Economic assessment of damage includes calculation of the economic impact of the extreme event considered over a period of time. This requires entering values for input parameters such as time horizon, discount rate and growth rate. The time horizon represents the total time period over which the damage assessment is to be conducted (e.g. 40 years). The tool allows the analysis of events up to a 100 year time horizon. The considered time horizon depends on the planning periods of the Council conducting the assessment. At the Council level, it is usual to have short term planning periods, but we suggest a minimum time horizon of 20-40 years as the focus is on climate change impacts whose effects become evident at longer time scales than the planner periods. Next, discounting is necessary to convert future monetary units into present monetary amounts so that a valid comparison can be made with the costs incurred in present money terms.

Currently, there is a lot of debate around the appropriate choice of a discount rate for such analysis, with suggestions ranging from relatively low values around 0.5-1.5% per annum (social discount rate) up to the financial cost of borrowing what could be up to >10% (under a high interest rate scenario). To illustrate the so-called *time value of money* and the importance of the discount rate let us consider the following example: assume that John invests \$10,000 today into a risky asset with an annual interest rate of 10%. At the end of the year, John gets a return of \$11,000. This means that \$11,000 a year later is equivalent to having \$10,000 today and from an investor's point of view a discount rate of 10% may be apt here. The impacts of climate change on the other hand deal with ethical concerns as they extend to different generations. The ethical justifications for a low discount rate (near zero) are based on the thought that current and future generations should be treated equally and the idea that there is a need to preserve assets for future use as well.

The next input parameter, growth rate, may also be chosen to represent economic growth, i.e. rising costs for replacement of e.g. infrastructure, but also increase in exposure to risk or increase in economic damage due to the extremes along the time horizon considered. For instance, suppose an expert estimates a damage of 100 houses today in a bushfire risk zone which is likely to increase to 110 houses in ten years later due to more development in the bushfire risk zone, a growth rate of approximately 1% may be used to represent this increase in the Tool.

The values of parameters such as discount rate, growth rate, time horizon, frequency of events and severity of events are uncertain and hence the Tool provides option to understand the effect of these parameters on the final economic output uncertainty by conducting sensitivity tests. This will help to understand the importance of each parameter and also choose parameter values more carefully. One or more of the parameters: time horizon, discount rate, growth rate, frequency and severity may be changed to study the wide range of possible economic outputs.

b. Cost-Benefit Analysis

Cost-Benefit Analysis that calculates the costs and benefits of a number of alternative adaptation options is used to prioritise the adaptation options. The net benefits in monetary units determine the economic viability of options as well as identify the most preferred option. The benefit of each option is calculated based on the information entered by experts competent and familiar with the local extreme event under consideration. In this part of the Tool, information on the extent implementation of the adaptation options would reduce the median damage and the worst case damage has to be entered.

c. Multi-Criteria Analysis

The second main part of CATLoG includes qualitative evaluation of the adaptation options. This part is important as economic evaluation as described as the first main part of the tool may not be able to account for all the costs and benefits. Lack of a monetary estimate for climate impacts will not mean that the less tangible can be excluded from the assessment for choosing appropriate adaptation options (Metroeconomica, 2004). Reliance on qualitative tools becomes necessary if both the costs and/or benefits are not available in monetary units. This CATLoG tool uses Multi-Criteria Analysis (MCA) as a qualitative evaluation method to evaluate less tangible impacts of climate extremes and benefits of options.

Unlike the Cost-Benefit Analysis discussed earlier, where economic efficiency is the key objective, MCA evaluates adaptation options against multiple objectives such as net economic benefit, improvement of environmental quality, poverty alleviation etc. (Wegner and Pascual, 2011). It can thus also incorporate qualitative, quantitative, monetary and non-monetary data.

In summary, in MCA each expert gives a score (e.g. -100 to 100) to each adaptation option against a set of criteria (e.g. environmental benefit, social benefit). Similar to the economic assessments, sensitivity tests also play an integral part in understanding uncertainty in the decisions made using MCA. Sensitivity tests may be conducted by entering different weights for each criterion as well as different weights to the expert confidence attached to each scores.

2. STARTING CATLOG

The CATLoG Tool has been programmed using VBA script in Excel and has been tested to work on Microsoft Office 2003 and higher versions. To start CATLoG open (double-click) the Excel file CATLoG.xls (for Microsoft Office 2003) and CATLoG.xlsm (for Microsoft Office 2007 and higher versions) and follow procedure sections. Macros should be enabled for the Tool to work. If you are running CATLoG for the first time and getting a compile error, you may need to link XLA Solver to ensure the program is able to run in the Excel software installed on your computer (see Appendix B). In Office 2003, once the CATLoG Excel file is open select 'Tools' from the main menu and the buttons: Economic analysis and Multi-Criteria Analysis will be seen. In Office 2007 and higher versions, after opening the CATLoG.xlsm file, click on the 'Data' tab in the ribbon and then two menu items 'Economic Analysis' and Multi-Criteria Analysis will appear at the right end of the ribbon.

Table 1 Functionality of start buttons: 'Economic Analysis' and 'Multi-Criteria Analysis'

Economic Analysis	Simulate financial losses of extreme event over a period of time
	2. Conduct sensitivity tests using different input parameters3. Conduct Cost-Benefit Analysis of various adaptation options
	4. Conduct sensitivity for considered adaptation options
Multi-Criteria Analysis	1. Rank adaptation options based on qualitative scores given by experts against multiple criteria.
	2. Conduct sensitivity analysis of ranks subject to changes in importance assigned to the criteria and confidence attached to the scores of each expert.

3. ECONOMIC ANALYSIS

To conduct an economic impact assessment of damage caused by an extreme event over a period of time and/or to conduct Cost-Benefit Analysis of a list of adaptation options, click the 'Economic Analysis' button for Excel 2003 or select 'Economic Analysis' from the drop down menu of 'Economic Tool' for MS Excel[™] 2007 and higher versions. This will take you through 3 input windows before calculating the financial loss distribution. In the first window details on the frequency of occurrence of the events needs to be added. The approach applied in this tool for quantification of financial losses from the considered hazards is based on the loss distribution approach (LDA). Hereby, the frequency and severity of events are specified using distributions. The aggregate loss is then calculated by combining the 2 distributions. This approach has been extensively applied in financial risk management and the insurance industry.

Input window 1: Frequency of events

This input window consists of questions that help to collect information on the frequency (number of events per year) of the extreme event under study. Firstly, the users will have to enter details on how frequent the extreme event under study is on an average case. If the event occurs every 10 years, then events per year should be entered as 0.1, alternatively the number of events and number of years considered may be entered in the two input boxes below events per year and the number of events per year will be automatically calculated. If the event is once in every 20 years, then events per year should be entered as 0.05 or as 1 event per 20 years. Next, a range for the frequency of extreme events (upper and lower bounds) should be entered along with a probability that the average number of extreme events will fall under this range: default value is 0.66.

Note that the tool is designed to evaluate climate impacted events in terms of a frequency and severity distribution instead of analysing '1 in 10 year', '1 in 100 year' or '1 in 1000 year' events separately. Therefore, the specified frequency should refer to all significant events in a risk category such that events of different magnitude can be included.

Assume that an event occurs once in 10 years (0.1), then information of a range should also be given into which the average frequency will fall into. This means a range may be described as say there is a high chance (0.66 is used as default value) that the event occurs between once in 5 years (upper bound = 0.2) and once in 15 years (lower bound = 0.06667). Note that lower bound is less than upper bound and the average frequency is in between, that is lower bound < average < upper bound. In the above discussed example, upper bound = 0.2; average = 0.1lower bound = 0.06667. Finally, users should also enter information based on any previous events as the total number of events in a given time horizon considered. For instance, consider that there were 2 events in the past 40 years of historical data, then

enter number of years as 40 and number of events as 2. The Tool will automatically update the expert opinion with the information on the previous events.

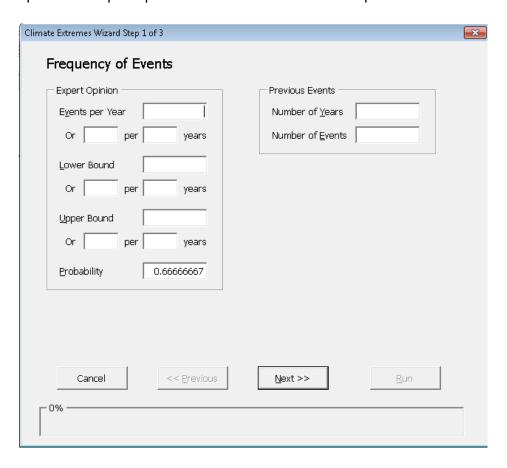


Figure 1 Snapshot of input window where user enters details on the frequency of the extreme event

Input window 2: Severity of events

In this input window details on the median (value that separates upper half of the data from the lower half data) expected damage of an event (in Australian dollars) as well as the expected worst-case damage are required. Apart from that users can choose type of distribution (Weibull, Lognormal and Burr distribution used to model less extreme damage to most extreme damage) to model the extreme event damage. For example, the user enters may enter median to be 10,000,000 (10 Million Australian dollars) and the worst-case as 15,000,000 (15 Million Australian dollars).

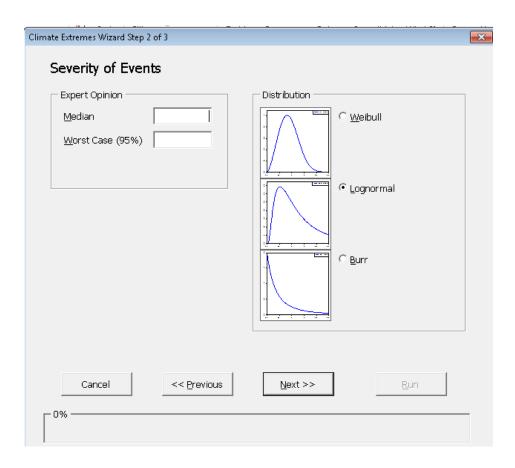


Figure 2 Snapshot of severity input window where users enter details on the damage caused by an extreme event

By default, the Lognormal distribution will be chosen as it is most commonly used for financial loss modelling. There is no shortcut method to determine the most suitable distribution, but other distributions may be chosen based on the opinion from the experts involved in the study. This may depend on the type of extreme considered and the level damage expected.

With respect to the choice of an appropriate distribution, the 'default' option in CATLoG is to use the Lognormal distribution. However, for potentially more severe events, the choice of the Burr distribution may be more recommendable. On the other hand, for less severe events the choice of a Weibull distribution may be more appropriate.

Input window 3: Simulating the total loss due to the extreme events

In this input window, values of parameters required to simulate the total loss caused by an extreme event over a period of time have to be entered. If the value of the discount rate chosen is 6%, then enter the value 6 should be entered and if the damage is likely to increase annually by 2%, then the value 2 should be entered in the input window. If there is no growth of the damage in the time horizon considered, then 0 should be entered. Under the input space years, enter the time horizon to which the total damage should be calculated, if it is 50 years, then 50 should be entered there.

Note that in order to keep results comparable, all losses are discounted and reported in present value dollars.

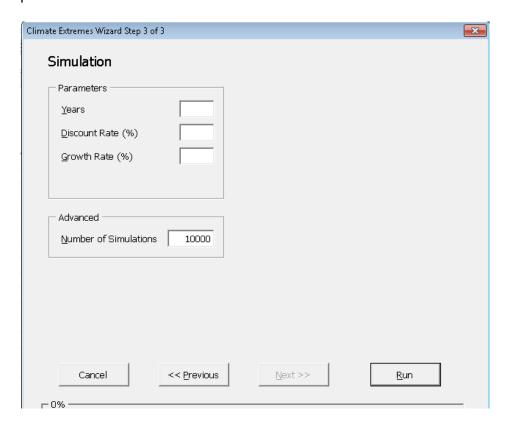


Figure 3 Snapshot of input simulation window where users enter details on parameters required for modelling the damage accumulated over a period of time.

Sensitivity tests: Economic damage

This completes all three input windows for the economic damage assessment and once the Run button is selected in the third window, results of this base-case will be shown in an Excel sheet named Simulation Output. Once the base-case is completed next sensitivity tests may be completed by selecting 'sensitivity test' from the drop down menu of the 'Economic Tool' for MS Office 2007 and higher versions. In particular, the impact of the following inputs as well as the sensitivity of the results with respect to the following input parameters can be examined:

- the time frame, i.e. the number of years that should be considered
- the discount rate
- the growth rate
- the frequency parameter
- the median of the severity of losses
- the 95th percentile of the severity of losses
- the shape of the applied distribution.

In this part of the analysis, the user can also examine the potential impacts of climatic change that may result in an increase of the frequency and/or severity of the considered events.

All base-case values will be automatically displayed in the sensitivity input window. Undertaking a series of sensitivity analyses is an essential part of using any planning tool. In everyday life we arrange our future plans by considering the 'what if' (e.g. what if my salary increases or my partner loses his/her job; what if we have to downsize our home to keep up with loan repayments / rent etc.). Using this planning tool it is also true that gaining an understanding of how important input is, is essential. For example, different economic rates may be chosen based on if loaned funds came free or were charged at 10% interest rates. The other benefit of running a number of sensitivity test is that a user can gain confidence in how the tool behaves and also begin to understand which input variables are very important and which less so. Once this is understood, extra effort can be focussed on obtaining correct values for parameters that are critical to predictions.

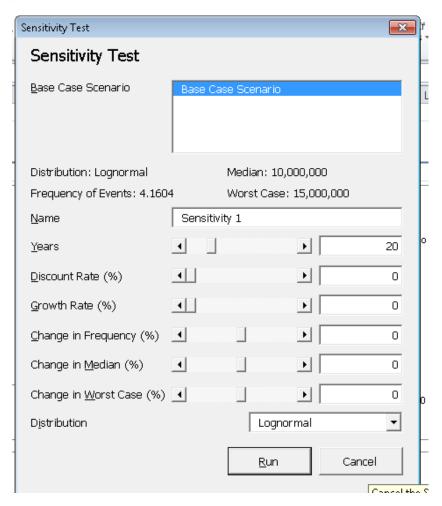


Figure 4 Snapshot of sensitivity test window where users changes input parameters (different from base-case parameters) to understand the significance of each parameter value on the outputs

If a discount rate of 6% is chosen then the damage is discounted annually by 6% and if a growth rate of 2% is chosen that would mean that the damage grows annually by 2%. Similarly, an increase in severity by 10% would mean that the severity is increased annually by this amount. A change in frequency by 10% is means that this increment happens uniformly over the chosen time horizon (not annual increment of 10%). For instance, assume that the current frequency is 1 event per year, then a 10% increase in frequency would mean that after 40 years the frequency will be 1 + 0.1 = 1.1. Here the 10% increment is uniformly distributed over the years with a change of 0.1 / 40 = 0.0025 every year.

4. COST-BENEFIT ANALYSIS

Councils may also want to evaluate the net benefit of adaptation options suitable for their location. A Cost-Benefit Analysis may be conducted by clicking on the 'Cost-Benefit Analysis' button that appears in the drop down menu of the 'Economic Tool'.

Note that in order to keep results comparable, all costs and benefits are discounted and reported in present value dollars. Therefore, the net benefit of a project is reported by as net present value (NPV) at time t=0 (today). In case the costs (expressed in present value dollars) are higher than the benefits (risk reduction expressed in present value dollars) the net benefit, i.e. the NPV of a project will be negative.

There will be two input windows for each adaptation option: a window to enter option name and costs and a window to enter benefit due to options as percentage damage reduced, snapshots of which are shown below.

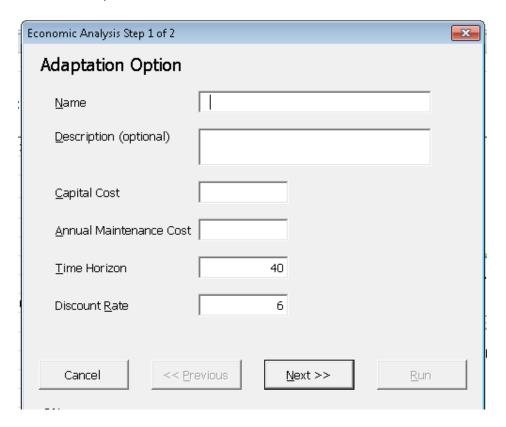


Figure 5 Snapshot of input window where users enter details on adaptation options such as its costs. By default, the input values for time horizon and discount rate are retained as in the base-case for proper comparison with the base-case simulation

In the window shown in Figure 6 the base-case values are automatically displayed. Not all options will reduce the frequency of the events and the severity of the events. The value 0 may be entered if an option does not vary say the frequency of events (with respect to the base case damage).

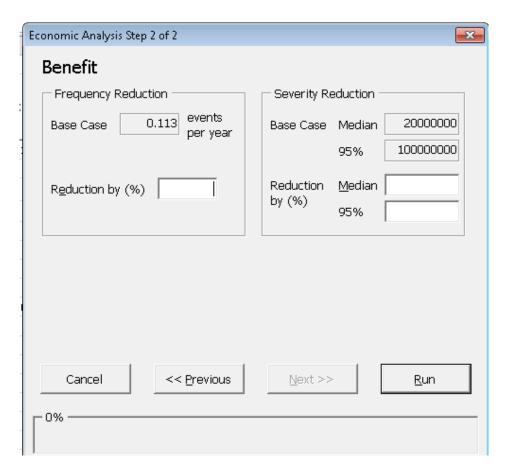


Figure 6 Snapshot of input window where local experts enter details on frequency and severity reduction due to each adaptation option.

Sensitivity tests: Cost-Benefit Analysis

Now that you have looked at the costs and benefits of your adaptation options, it is useful to see how sensitive they are to changes in the parameters. Open the sensitivity test window, as above, and select one of the cost-benefit analyses from the list. The parameters that were used for that analysis should be shown in the sensitivity analysis window.

The frequency and severity values used will be from after the adaptation option has been taken into account. So, for example, if the median severity in the base case is 1,000,000 and the adaptation option has a median severity reduction of 20%, the new value of the median severity will be 800,000. This value will also be used in the sensitivity test based on the adaptation option. Therefore, if you want to use this median severity value you should change the "Change in Median" value to 0.

After you have run the sensitivity analysis the numeric results will appear in the last column of the spreadsheet. The loss distribution and cumulative loss will appear on their respective graphs, and the net benefit graphs. Note that the benefit and net benefit are compared to the cost-benefit analysis you selected as the base case for this sensitivity analysis, not the initial scenario.

14 Handbook CATLoG

5. MULTI-CRITERIA ANALYSIS

The next evaluation option of the Tool includes qualitative evaluation of the adaptation options using Multi-Criteria Analysis. To conduct the criteria analysis, click the 'Data' tab on the ribbon in MS Office 2007 & higher versions / Tools menu in MS Office 2003. The 'Multi-Criteria Analysis' button will appear close to the 'Economic Tool' button. Click on the 'Multi-Criteria Analysis' button and follow the steps described below.

In general, in a Multi-Criteria Analysis a set of options are evaluated against a set of criteria with the help of scores. One or more experts may be involved in this process¹. In the first window, enter the criteria required for evaluation as well as the number of experts participating in the evaluation.

The default criteria are 'Economic', 'Environmental', 'Social' and 'Co-Benefit', as seen in Figure 7. These can be kept as is or removed by highlighting each criterion (by clicking on it) and clicking on the Remove button. Other criteria may be added by typing the name of the criterion in the Criterion Name box and clicking on the Add button. It will appear in the Criteria list. Each criterion can also have a longer description attached to it, but this is optional.

¹ An "expert" does not need to be a single person. It could be a panel of experts or a community consultation group, for example, who decide on a score together.

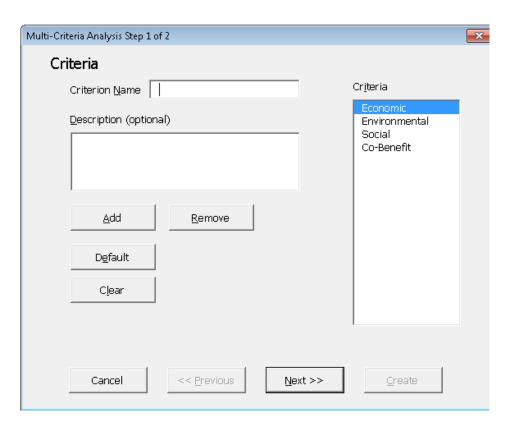


Figure 7 Snapshot of input window where users enter details on qualitative criteria used for evaluation

In the second window (see Figure 8), the name of adaptation options and number of experts involved may be entered.

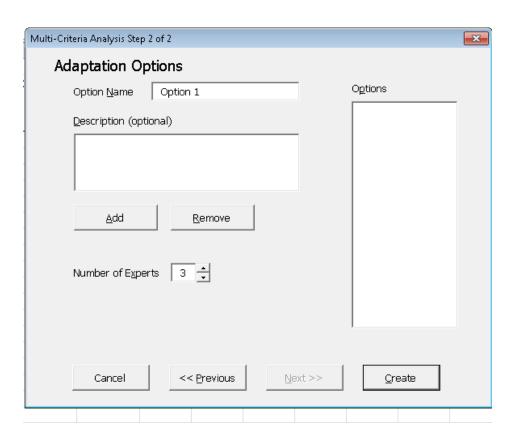


Figure 8 Snapshot of input window where users enter details on options as well as number of experts involved

When you click the Create button a new Excel workbook is created. The workbook has an Expert sheet for the number of experts you entered. The sheets are named Expert1, Expert2, etc., and appear similar to **Error! Reference source not found.** In this table, the involved experts can enter a score between -100 to 100 for each adaptation option against each criterion in the red space provided. Comments to justify the scores may also be given in this table. The comments are not used by the analysis but may be useful when coming back to an analysis or when writing a report.

Further, since we are likely to have experts who may be less confident on evaluating options against some of the criteria, there is space provided for the experts to rate their expertise or confidence level. This can be done by assigning a score between 0-100 for each criterion in the expertise row. This table has to be completed by each expert.

	Expert1	Economic		Enviro	Environmental		Social		Co-Benefit	
	Expertise	100	Comment	100	Comment	100	Comment	100	Comment	
	Option 1									
ns	Option 2	· `								
ption	Option 3	`								
Ö	Option 4									
	Option 5	Ì								

Figure 9 Snapshot of table created by CATLoG where the involved experts can enter a scores for each adaptation option against each criterion

17

Output and Sensitivity Tests

The Multi-Criteria Analysis tool has 2 sheets of output, named Sensitivity and Scores. The Sensitivity sheet gives the overall score and rank for each option and allows you to perform sensitivity tests. The Scores sheet shows the aggregated score for each option in each criterion.

Sensitivity

The primary output sheet from the Multi-Criteria Analysis is the Sensitivity sheet. This shows the overall rank of each option and is where you perform sensitivity tests.

By default the first sensitivity test is set with all criteria getting equal and full weight (100). The score and rank of the options under these weights are shown. You can alter these weights or perform sensitivity tests with other weights by using the other 6 columns. Up to 7 sensitivity tests are supported. Weights should be in the range of 0-100.

		Weight		Weight		Weight		Weight
	Economic	100						
eri	Environmental	100				`		
Criteria	Social	100		`		`		
	Co-Benefit	100		`		`		
		Score	Rank	Score	Rank	Score	Rank	Score
	Option 1							
Options	Option 2							
žį	Option 3							
ŏ	Option 4							

Figure 10 Snapshot of Table that allows t change the for considered criteria to conduct sensitivity analysis

Scores

The scores for each of the adaptation options are aggregated by the criteria, taking into account the expertise of each expert. They are ranked within each criterion. You should not usually need to use the Scores sheet, but it might be interesting to see how the options rank for each criteria.

APPENDIX A

Example 1: Responding to Bushfires in Council X using the Economic Tool

Recall that there is not necessarily a recommended order for the application of feature A or B. Situations may arise where conducting MCA in a first step is the better option. For example, MCA can be used to identify only those adaptation options that will meet qualitative but important criteria before subsequently undertaking quantitative CBA only for these options. Clearly, the quantitative part of the tool (feature A) requires significant additional effort and work such as e.g. sourcing experts and data, quantifying impacts of the considered options, before the analysis can be conducted. On the other hand, situations may arise where CBA may be conducted in a first step and the results for the economic and financial analysis can then be entered in a subsequently conducted MCA that also includes social or environmental impacts.

Context of analysis: Council X has a large proportion of land area designated as national parks, public parkland, bushland or reserves. Bushfires are thus one of the major extreme events of concern to Council X. The Council authorities want to assess the potential economic damage due to bushfires in their local government area. The main economic damage relevant for this location is damage to houses. Consider average price of a house in the area to be \$440,000 including its contents. This is likely to increase over the years, say by 2% annually which means the growth rate is 2%. Please note that in this case study we assume that house values will not go down despite potential regular losses. Another assumption for this particular example is also that owners will re-build like for like and potential mitigation measures undertaken by house owners are not considered in this example.

Records of past bushfire occurrences show that in the last 10 years 2 bushfires have occurred. Based on the past data and Council's bushfire expert estimates that if we assume that the current climate continues to say 2050, the Council area is likely to face a bushfire every 10 years (frequency is 1 in 10 years i.e. 0.1), and that the likelihood that this bushfire will fall between every 15 years (frequency is 1 in 15 years i.e. 0.067) and every 7 years (frequency is 1 in 7 years i.e. 0.143) with a probability of two thirds (2/3 or 0.667). In short, this means that the probability that there is a 66% probability that the 1 in 10 year event may occur between every 15 years and every 7 years. Based on historical occurrences of bushfires, Council experts expect that the median damage due to a bushfire to be \$20M (Million dollars) and in the worst-case this could be \$100M. Further the experts chose a Lognormal distribution for modelling the damage as the Poisson-Lognormal distribution is the most commonly used distribution. Their financial expert suggested that they use a discount rate of 6%, a growth rate of 2% and a 40 year time horizon. These were chosen because: 6% was their historic loan rate; CPI was running at around 2% and their Councils long-term planning extended to around 3 to 4 decades out. The local experts also wanted to investigate 4 possible options to reduce their risk. These were building a fire trail, building a fire control tower, rezoning the land in the at-risk area, and prescribed burning. The costs and risk reductions are summarised in Table 2.

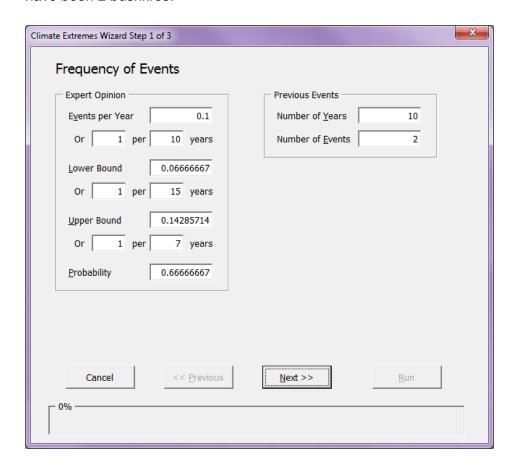
Table 2 Risk reduction options for bushfires

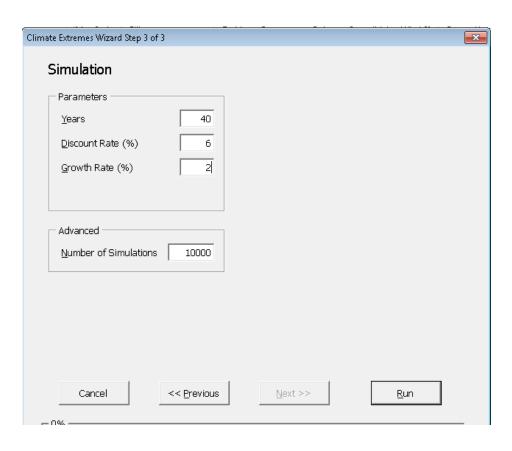
	Fire Trail	Fire Control Tower	Rezone Land	Prescribed Burning
Capital Cost	\$3,000,000	\$1,000,000	\$30,000	\$1,000,000
Annual Maintenance	\$5,000	\$600,000	\$2,000	\$1,200,000
Cost				
Frequency	0%	0%	0%	50%
Reduction				
Median Severity	20%	20%	50%	50%
Reduction				
Worst Case Severity Reduction	40%	40%	80%	80%

Quantitative Analysis – Feature A of the Tool

To start you will need an estimate of what the expected losses would be under current conditions. Open the 'Economic Tool', select 'Economic analysis' and enter the appropriate values in the three input windows. This will be considered the base-case scenario.

The bushfire expert has estimated that the frequency of bushfires will be 1 in 10 years, between 1 in 15 years and 1 in 7 years with a probability of 2/3. In the last 10 years there have been 2 bushfires.




Figure 11 Snapshot of input window where user enters details on the frequency of the extreme event

Climate Extremes Wizard Step 2 of 3 Severity of Events **Expert Opinion** Distribution <u>M</u>edian 20000000 ○ <u>W</u>eibull Worst Case (95%) 100000000 Log-normal ○ <u>B</u>urr Cancel << Previous Next >> Run 0%

The median severity is expected to be \$20M with the worst case being \$100M.

Figure 12 Snapshot of input window where users enter details on the severity of damage caused by an extreme event

We will simulate 40 years of events using a discount rate of 6% and a growth rate of 2%. Once we run the simulation the results will appear in a spread sheet named 'Simulation Output x' and are given below. All the input values will also be displayed in the Excel sheet.

Snapshot of input simulation window where users enter details on parameters required for modelling the damage accumulated over a period of time

Table 3 Results for simulated loss distribution under the base case scenario

Loss Distribution	Base Case Scenario
Mean	75,793,133
Median	60,492,650
Standard Deviation	63,544,988
90% of loss	149,781,011
95% of loss	192,167,392
99% of loss	304,690,002

Along with the simulated damage information, there will also be two graphs indicating loss distribution (Figure 14) and cumulative loss (Figure 15). The title and axis may be edited in the Excel sheet to represent each case. Note that Figure 9 provides a plot of the simulated loss distribution, i.e. based on 10,000 simulations it shows how frequently simulated total losses end up in a certain range. For the given example, it can be seen that the overall loss (expressed in net present value dollars) over the entire time horizon has a relatively high likelihood to be in a range between e.g. \$40,000,000 and \$80,000,000, while it is rather unlikely that the total will exceed values of \$300,000,000.

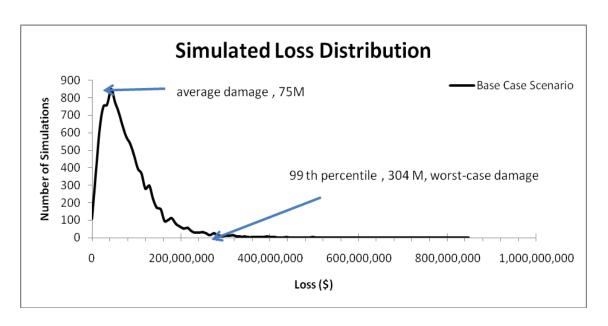


Figure 14 Plot of a simulated Loss Distribution for discounted present value of total losses (DPVL) during the conidered time horizon

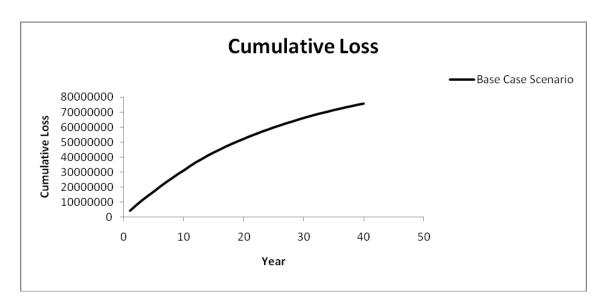


Figure 15 Yearly damage accumulated over the time horizon considered

Now that we have the loss distribution for the base case, we should do a sensitivity analysis to study the effect of the input parameters. As mentioned before, the parameters that can be varied are the number of years to simulate, discount rate, growth rate and change in frequency (positive or negative).

Sensitivity test parameters

Table 4 Example Scenarios for Sensitivity Analysis

	Ignore future	Protect future	Faster growth	Climate disruption	
Discount Rate	15%	1%	6%	6%	
Growth Rate	2%	2%	4%	2%	
Change in	0%	0%	0%	50%	
Frequency					
Change in Severity	0%	0%	0%	10% med &severity	dian

We now have a loss distribution for each of the sensitivity tests the values of which are given below.

Table 5 Results for simulated loss distribution for sensitivity analysis scenarios

Loss Distribution	Base Case Scenario	Ignore future	Protect future	Faster growth	Climate disruption
Mean	75,463,653	31,201,377	177,432,34 4	104,518,04 3	91,426,088
Median	60,402,577	20,356,496	146,454,44 7	85,931,644	75,337,155
Standard Deviation	62,348,561	35,407,972	137,343,58 1	81,277,021	71,725,238
90% of loss	154,558,94 9	71,467,275	349,937,38 1	205,159,71	180,510,07 5
95% of loss	195,849,78 6	97,620,586	433,261,13 4	257,920,39 1	224,654,04 4
99% of loss	287,491,79	171,126,81	651,021,36	377,222,38	336,900,93
	1	7	2	1	7

The loss distribution (Figure 16) and cumulative loss (Figure 17) are shown graphically.

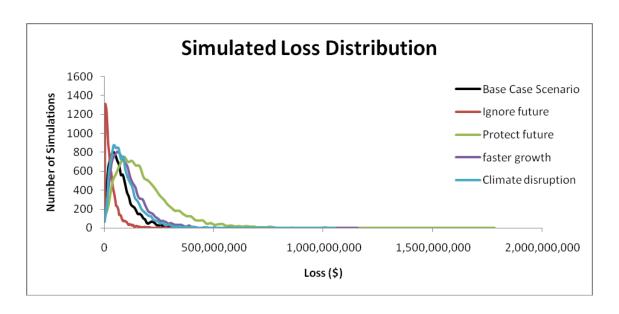


Figure 16 Loss distributions for the conducted sensitivity tests

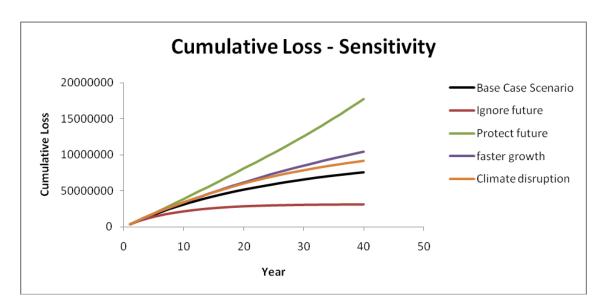


Figure 17 Cumulative loss in sensitivity tests

These sensitivity tests were conducted to study the impact of discount rates, growth rates as well as the effect of climate change. The first two tests 'ignore future' and 'protect the future' choose higher discount rates (15%) and lower discount rates (1%) compared to the base-case discount rate (6%). The damage indicates that the value of the discount rate plays an important role in the final damage values, with higher potential damage simulated for the 'protect future' scenario. Future economic developments may vary and so the growth rate is changed from 2-4% for the sensitivity tests. Apart from these, climate change can affect the frequency of the bushfire as well as its severity and hence the scenario climate disruption is also considered. The cumulative loss graphs indicate highest accumulated loss for the 'protect future scenario'. The values of the

parameters for the sensitivity tests should also be derived through expert consultation to include all potential ranges of uncertainties.

Risk Reduction Options

Recall that the 4 risk reduction options being investigated were building a fire trail, building a fire control tower, rezoning the land in the at-risk area, and prescribed burning. The costs and risk reductions were given in Table 2.

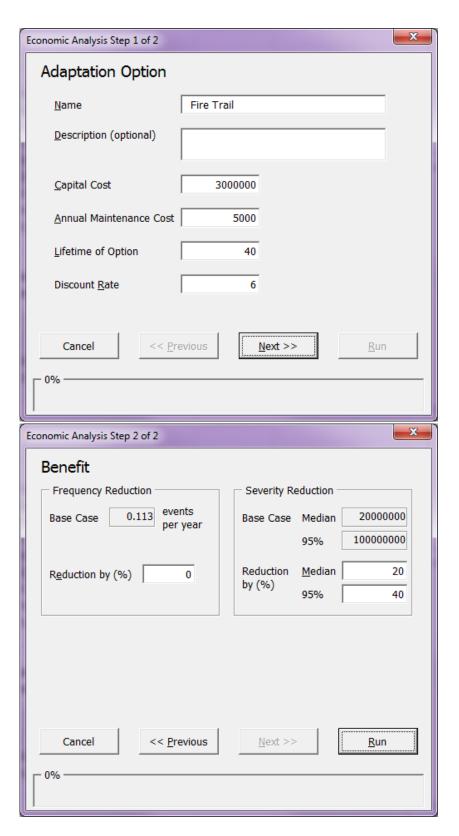


Figure 18 Snapshot of input window for costs of adaptation option (left panel), Snapshot of input window for benefits of adaptation option, i.e. reduction in risk (right panel)

Table 6 Loss distribution for risk reduction options

Loss Distribution	Base	Fire Trail	Fire Control Tower	Rezone Land	Prescribe d Burning
Mean	76,972,768	39,402,256	39,295,356	19,751,896	9,871,509
Median	60,941,968	32,840,399	32,690,555	17,892,135	8,107,413
Standard Deviation	64,968,137	30,037,359	30,048,671	12,141,943	8,418,477
90% of loss	153,105,61 3	78,650,031	78,612,680	36,213,152	21,232,486
95% of loss	196,165,37 7	96,316,078	96,060,446	42,326,667	25,719,844
99% of loss	316,020,58 6	139,662,13 6	138,742,45 5	56,180,877	35,850,802
Capital		3,000,000	1,000,000	30,000	1,000,000
Maintenance		5,000	600,000	2,000	1,200,000
Option Cost		3,104,056	13,486,740	71,622	25,973,480
Benefit (Mean)		37,570,512	37,677,412	57,220,872	67,101,259
Benefit (95%)		99,849,300	100,104,93	153,838,71 1	170,445,53 3
Net Benefit (Mean)		34,466,456	24,190,672	57,149,250	41,127,779
Net Benefit (95%)		96,745,243	86,618,191	153,767,08 8	144,472,05 3

Considering the net benefit with respect to the mean as well as the worst-case Rezoning Land appears to be the economically preferable option. Here also sensitivity tests may be conducted to make sure that the ranks of the options do not change. This may be conducted by clicking the Sensitivity test button again from the drop down menu of the Economic Tool.

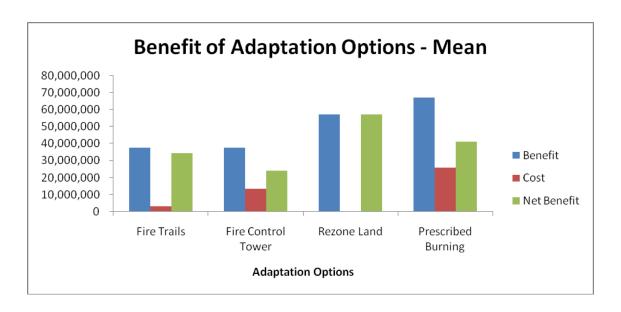


Figure 19 Benefit with respect to the average damage

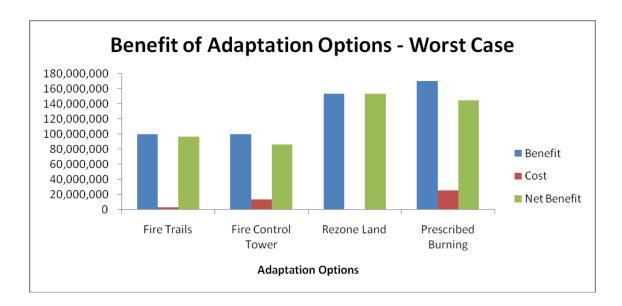


Figure 20 Benefit with respect to the worst case damage

Multi-Criteria Analysis – Feature B of the Tool

The previous section considers only the economic cost. Now we can consider other qualitative costs and benefits. We will use the net mean economic benefit calculated in the previous section as the Economic score in the multi-criteria analysis, although you don't need to do this.

The adaptation options considered are the same as above. The criteria we will consider are Economic, Environmental, Social and Co-Benefit.

	Expert1	Economic		Environmental		Social		Co-Benefit	
	Expertise	100	Comment	50	Comment	100	Comment	100	Comment
	Fire Trails	34		-20		50		25	
2	Fire Control								
Option	Tower	24		0		-10		10	
pt	Rezone								
0	Land	57		80		-50		10	
	Prescribe d Burning	41		60		-10		10	
	Expert2	Economic		Environmental		Social		Co-Benefit	
	Expertise	50	Comment	100	Comment	50	Comment	50	Comment
	Fire Trails	34		20		40		0	

	Expert2	Economic		Enviro	Social		Co-Benefit		
	Expertise	50	Comment	100	Comment	50	Comment	50	Comment
	Fire Trails	34		20		40		0	
ptions	Fire Control Tower	24		10		20		50	
Opt	Rezone Land	57		60		-10		10	
	Prescribe d Burning	41		75		10		10	

	Expert3	Economic		Environmental			Social		Co-Benefit	
	Expertise	10	Comment	100	Comment	100	Comment	100	Comment	
	Fire Trails	34		0		25		20		
ions	Fire Control Tower	24		0		0		40		
Option	Rezone Land	57		50		-20		20		
	Prescribe d Burning	41		40		50		20		

Figure 21 All 3 experts give a score for each adaptation option against each criteria, as well as scores indicating their confidence level or expertise

You can see that each expert has entered a score for all the criteria for each option. Expert 1 has less expertise in evaluating environmental benefits compared to the other criteria, Expert 2 has the most experience in evaluating environmental benefits relative to the other criteria and Expert 3 has little economic expertise compared to the other criteria.

Scores

The Scores sheet shows the overall scores for each of the criteria, and the ranks of the options.

		Economic		Environ	mental	Soc	cial	Co-Benefit	
		Score	Rank	Score	Rank	Score	Rank	Score	Rank
	Fire Trails	34.00	3	4.00	3	38.00	1	18.00	2
ons	Fire Control Tower	24.00	4	4.00	3	0.00	3	30.00	1
Option	Rezone Land	57.00		60.00	1	-30.00	4	14.00	
	Prescribe d Burning	41.00	2	58.00	2	18.00	2	14.00	3

Figure 22 Snapshot of summary table created after each user has entered scores for options against each criterion as well as scores indicating their confidence levels

There are 2 graphs that show different views of these scores. The first, Figure 17, , shows the criteria scores grouped by each adaptation option. The second, Figure 18, shows the same data but this time grouped by criteria.

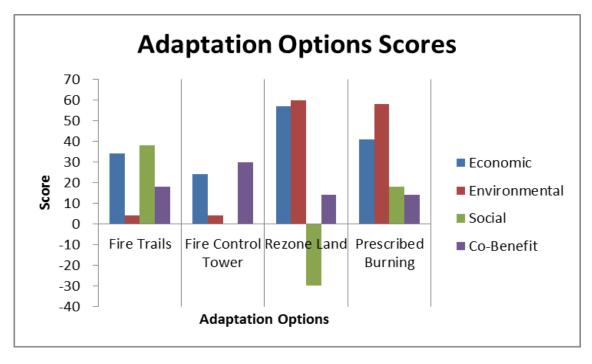


Figure 23 Criteria scores for each adaptation option

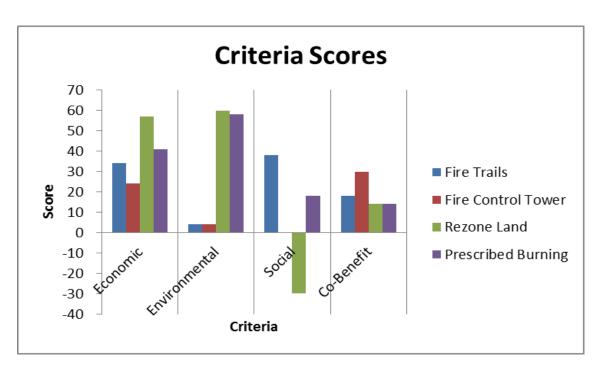


Figure 24 Scores grouped by criteria

Sensitivity tests

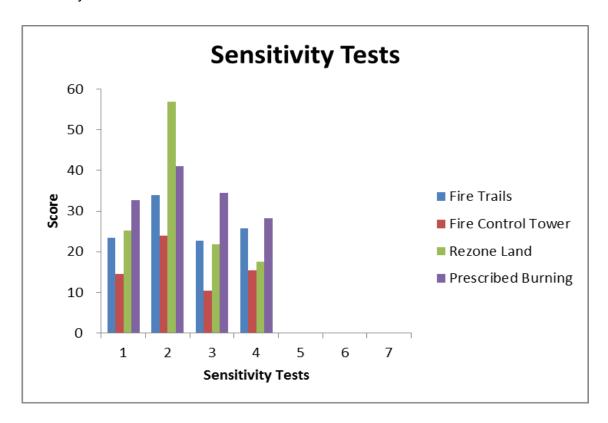
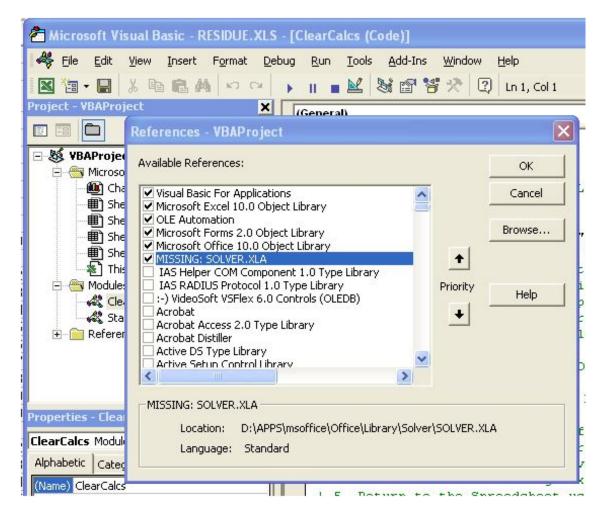
Now we can do sensitivity tests. By default, the first test gives equal weight to all criteria. This gives a useful overview. We can vary those and see what happens when different criteria get different weights.

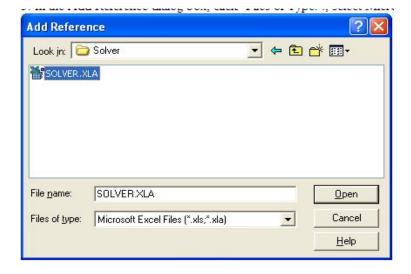
		Weight		Weight		Weight		Weight		Weight	
æ	Economic	100		100		50		75		,	
eri	Environmental	100		0		100		50		•	
Criteria	Social	100		0		100		100		`	
_	Co-Benefit	100		o		50		100		`	
		Score	Rank								
	Fire Trails	23.50	3	34.00	3	22.67	2	25.69	2		
S	Fire Control										
<u>.</u>	Tower	14.50	4	24.00	4	10.33	4	15.38	4		
Option	Rezone Land	25.25	2	57.00	1	21.83	3	17.46	3		
	Prescribed										
	Burning	32.75	1	41.00	2	34.50	1	28.23	1		

Figure 25 Multi-Criteria Analysis sensitivity tests

The first test is weighted equally and the options are ranked Prescribed Burning, Rezone Land, Fire Trails and Fire Control Tower. Next we give full weight to the economic criterion and ignore the others. Rezone Land and Prescribed Burning swap places. The other 2 sensitivity tests give various weights to the criteria and you can see what effect this has on the ranking of the adaptation options.

A graph similar to Figure 20 is produced, which is useful when comparing the different sensitivity tests.


Figure 26 Graph of sensitivity tests

APPENDIX B – Linking XLA solver in Microsoft Excel

If you are using a version other than Excel 2010 and get a compilation error that says project or library missing, then most probably 'solver' may not have been installed. On the Tools menu, choose Add-Ins. If the add-in 'Solver' is shown on the list, check the box in front of its name. If the add-in is not found, click Browse, navigate to the add-in file, then when it appears on the add-in list, check its checkbox. Then a reference should be set to the Solver, so on VB Editors Tools menu (Press Alt+F11 after opening Excel to go to the VB editor), click on references and then check the box adjacent to Solver if it appears in the list. If the Solver does not appear in the references window, but 'Missing: Solver.xla appears as shown in the figure below.

Select it if it is not already selected, then click the button in the "References VBAProject" dialog box for Browse and in the Add Reference dialog box, click "Files of Type:", select Microsoft Excel files, browse to find the location of the file Solver.xla (By default Solver is located in Excel 2003 in "C:\Program Files\Microsoft Office\OFFICE11\Library\SOLVER) and click open on Solver.xla as seen in the figure below. Now Solver.xla should appear in the VB editors tools>references menu. Save and reopen Excel files.

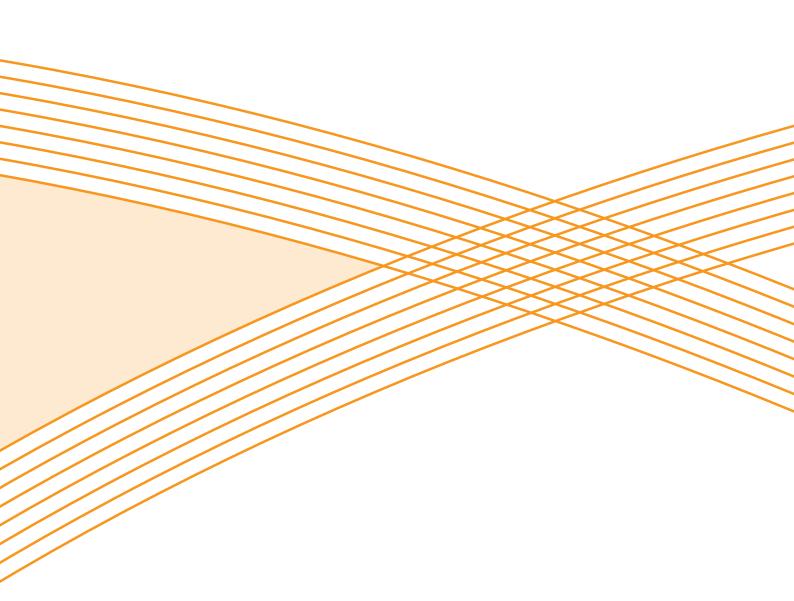
GLOSSARY

Definition
Climate Adaptation decision support Tool for Local Governments
Cost-benefit analysis. This is applicable when costs and benefits are
measurable in monetary units.
The rate that is used to convert the value of a dollar in future years to
the value of a dollar in present time.
Discounted present value of the costs. The aggregated costs over the
time horizon taking into account the discount and growth rates.
Discounted present value of the cumulative loss. The aggregated loss
over the time horizon taking into account the discount and growth
rates.
This can be an increase in the cost of replacement over time, i.e.
inflation, or an increase in exposure to risk over time.
Loss distribution approach. The frequency and severity of events are
specified using distributions. The aggregate loss is calculated by
combining the 2 distributions.
Multi-criteria analysis. A way to compare adaptation options using
qualitative criteria. Multiple experts can score each option for each
criteria and an overall ranking of the options is produced.
Net present value. The difference between the loss under a no-action
scenario and the loss plus costs of an adaptation option.
This allows the user to investigate how the choice of different
parameters impacts the distribution of the losses in CBA or the
rankings in MCA.
The number of years to consider for the analysis. This could be the
council's planning horizon or the limit for which reasonable estimates
of damage can be produced.

DISCLAIMER

Macquarie University and NCCARF will not in any circumstances be liable for any damages whatsoever (including, without limitation, damages for loss of business, business interruption, loss of business information or other indirect or consequential loss) arising out of the use, or inability to use, or supply, or non-supply, of software designed or supplied.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. While we have made every effort to deliver a high quality program, we do not guarantee that our program is free from defects. Our software is provided "as is", and you use the software at your own risk.


Without limitation of the foregoing, Macquarie University and NCCARF expressly do not warrant that:

- 1) the software will meet your requirements or expectations;
- 2) the software or the software content will be free of bugs, errors, viruses or other defects;
- 3) any results, output, or data provided through or generated by the software will be accurate, up-to-date, complete or reliable;
- 4) the software will be compatible with third party software;
- 5) any errors in the software will be corrected.

You assume responsibility for selecting the software to achieve your intended results, and for the results obtained from your use of the software. You shall bear the entire risk as to the quality and the performance of the software.

Specifically, the program relies on input from the user. The quality and accuracy of the estimates provided by the user is paramount to the reasonableness of the output. It is up to the user to select appropriate experts who can provide such estimates.

We would appreciate acknowledgement if the software is used.

