
Journal of Economics and Development Studies 
March 2015, Vol. 3, No. 1, pp. 47-56 

ISSN: 2334-2382 (Print), 2334-2390 (Online) 
Copyright © The Author(s). 2015. All Rights Reserved. 

Published by American Research Institute for Policy Development 
DOI: 10.15640/jeds.v3n1a4 

URL: http://dx.doi.org/10.15640/jeds.v3n1a4 

 

 

The Shilnikov Saddle-Node Bifurcation in a Monetary Policy with 
Endogenous Time Preference 

 
Giovanni Bella1 

 
Abstract 
 
 

We improve the analysis made in Chang et al (2011), by exploring the possibilities 
for the raise of global indeterminacy via a Shilnikov saddle-node bifurcation on an 
invariant circle. This allows us to better understand the determinants for the 
emergence of endogenous fluctuations in a monetary policy model, and to explain 
the existence of irregular patterns. Hence, the economy may start at some point to 
oscillate around the long run equilibrium, and eventually deviate from its saddle-
path stable solution, thus locating the economy in a particular optimal converging 
path that could not coincide with the one corresponding to the lowest desired 
interest rate. 
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1. Introduction 
 

A bulk of literature is concerned with the capacity of monetary policy to 
stabilize the economy by ensuring the uniqueness of equilibrium. In the last two 
decades, paramount studies have shown that when the monetary authority decides to 
raise the nominal interest rate less than the increase in inflation (commonly known as 
a passive interest rate feedback rule), this might destabilize the economy by inducing 
fluctuations, and thus render the equilibrium indeterminate (see, Benhabib et al, 2001; 
Dupor, 2001). Most of these analyses simply consider a constant rate of time 
preference.  
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One exception in found in Chang et al. (2011) who extend the Benhabib et al. 
(2001) model by exploring the role played by endogenous time preference in 
destabilizing the economy under monetary policy actions. Specifically, they find that 
either an active or a passive interest rate feedback rule can generate local 
indeterminacy of the equilibrium, which is in sharp contrast with the existing literature 
on the field. 

 
More interestingly, recent literature is exploring the possibilities for the raise 

of global indeterminacy, where the economy may start at some point to follow 
completely different equilibrium paths towards the long-run steady state. The main 
implication for any policy decision is that if global indeterminacy occurs, public 
intervention becomes not sufficient to drive the economy towards a good long-run 
equilibrium. The agents' decisions, despite the initial conditions or other economic 
fundamentals, will locate the economy in a particular optimal converging path that 
could not coincide with the one corresponding to the lowest desired monetary policy. 
To date, only very few attempts have been made to analyze the conditions under 
which these indeterminacy problems arise outside the small neighborhood of the 
steady state (Mattana et al. 1999). The latter seems an innovative field to work on, 
even though it is usually related to very complicated nonlinear functions which 
increase the mathematical difficulties in handling these models. 

 
The novelty of this paper relies in a deep investigation of the global behavior 

of the economy studied in Chang et al. (2011). To tackle this problem, we use the 
principles of bifurcation theory to gain hints on the global properties of the 
equilibrium, and to investigate the whole set of conditions which lead to the 
emergence of a quasi-periodic dynamics along a Shilnikov saddle-node bifurcation on 
an invariant circle. This bifurcation represents the route to creation and destruction of 
a periodic orbit in a smooth continuous-time dynamical system, and the transition 
from a resting behavior to bursting, i.e. a solution in which the variables undergo 
rapid oscillations followed by a period of quiescence, with both oscillation and 
quiescence continually repeated. In this kind of excitable system, a small perturbation 
above a certain threshold forces the equilibrium trajectories to make a large excursion 
before returning to rest. In this particular case, there is also a stable invariant circle 
which is the closure of the unstable manifold leaving the saddle point. This allows us 
to better understand the determinants for the emergence of endogenous fluctuations, 
and the existence of irregular patterns due to a sensitive dependence of our economy 
on the initial conditions. 
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The paper develops as follows. The second Section introduces the dynamic 
system associated with Chang et al. (2011). In the third Section, we prove the main 
proposition relating to the global properties of the equilibrium, and show the 
parametric onset for the emergence of global indeterminacy and the saddle-node 
dynamics. A brief conclusion reassesses the main findings of the paper, and a 
subsequent Appendix provides all the necessary proofs. 
 
2. The Model 

 
Assume that the economy consists of an infinitely lived representative 

household and a government, as in Chang et al. (2011). Time is continuous. Each 
household is endowed with one unit of labor (which is supplied inelastically), and 
derives utility from consumption, c, and real money holdings, m. 
 
To begin with, let the utility function be defined as 
 

0
( , )U u c m e dt

      (1) 

 
Where 
 

 
0

( , )
t

u c m ds      (2) 

 
is the cumulated subjective discount rate, depending on the instantaneous 

subjective discount rate, ( )u , at time s. Hence 
 

 u     (3) 
 
where the dot stands for time derivative. 
 
The government budget constraint is finally given by 
 

( )a y R a Rm c          (4) 
 

where a represents the total real wealth, R is the nominal interest rate,   is 
the inflation rate, and   measures exogenous lump-sum taxes. 
 
The household's intertemporal optimization problem, follows consequently 
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0
max ( , )u c m e dt

   

 

. .
( )

s t
a y R a Rm c

u
 



     

 





 

 
which implies the following Hamiltonian function 
 

   ( , ) ( )H u c m y R a Rm c u              (5) 

where   and   are the costate variables. 
 

Assuming an endowment of physical capital, k, production occurs according 
to the following functional relationship 
 

( )y f k    (6) 
 

which is assumed strictly increasing and concave in k, i.e., 0kf   and 0kkf   
Solution to the optimization problem allows too btain the following third-order 
autonomous system of differential equations 
 

 ( )
( , )

( ) ( , , )

kf k
u c m

k f k c k

  

 

 

 

 

 







   (S) 

 
Linearization of (S ) around the equilibrium, and straightforward computations leads 
to 
 

( ) k kf c  Tr J    (8) 

   ( ) (1 ) ( )
( 1)

kk mm c mf u u u 
   




   
 

Det J    (9) 

 ( ) ( ) ( )c m kk k ku c u m c f f c        B J    (10) 
 

where Tr(J), Det(J) and B(J) are the trace, the determinant, and the sum of 
principal minors of order two, respectively. 
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Remark 1 Chang et al. (2011) points out that: (i) the equilibrium is 
determinate under an active interest rate feedback rule  1   ; (ii) the equilibrium is 
determinate if the monetary authority implements an aggressively passive interest-rate 
feedback rule  1

 
 

  , while it may be either indeterminate or unstable if the 

monetary authority implements a moderately passive interest-rate feedback rule 

 1 1 
 

   . 

 
Specifically, an active interest-rate feedback rule  1    implies that the 

inflation rate must fall. Hence households increase their money holding, whereas the 
time preference rate rises as well. As a consequence, the equilibrium solution is locally 
determinate. Alternatively, if monetary policy is passive  1   , a lower real interest 

rate is associated with an increase in inflation rate. This drives households to decrease 
their money holding, so that the time preference rate will fall. Finally, when the 
monetary authority implements a moderately passive interest-rate feedback rule 

 ( )
(1 ) 1 

 
   , the effect of a reduction in the time preference rate will dominate the 

fall in the real interest rate, and consequently an indeterminate solution occurs. 
 
3. The Shilnikov Saddle-Node Bifurcation 

 
This section is devoted to analyze the Government policy actions devoted to 

drive an economy, originating arbitrarily close to the bad steady state, towards the 
virtuous steady state. This is a quite tough investigation to undertake, since the local 
analysis is not able to determine what happens to equilibrium trajectories outside a 
small neighborhood around the steady state. Our aim is therefore to detect the 
necessary conditions for which the monetary policy actions described in Chang et al. 
(2011) may induce a large amplitude limit cycle to coexist with a saddle point. In this 
case, a global bifurcation of orbits homoclinic to nonhyperbolic equilibria occurs, and 
complex dynamics do eventually emerge along with a saddle-node bifurcation on an 
invariant circle (i.e., the Shilnikov saddle-node bifurcation). 
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The bifurcation analysis provides several instruments to this end. To ease the 
mathematical computation, we can transform system (S) into a more convenient 
Jordan normal form in cylindrical coordinates ( , ,r z  ): 
 

3 2
1 2 3

2 2 3 2
1 2 3 4

2 2
1 2 3

r a rz a r a rz
z b r b z b z b r z

c z c r c z 

  

   

   







   (11) 

 
whose three-dimensional dynamics is topologically equivalent to the evolution 

of the original vector field in S (see, Wiggins, 1991). 
 

In particular, r describes the amplitude of the limit cycle oscillations in the 
vicinity of the Hopf bifurcation. Noticeably, the first two equations are independent 
of  , which describes a rotation around the r-axis with almost constant angular 
velocity   , for any | |r  small. Thus, we can restrain the analysis to a simpler two-
dimensional vector field, which is often called a truncated amplitude system: 
 

2 2

ˆ
ˆ

r arz

z br z



 




   (12) 

where 1

2
ˆ a

ba    and ˆ 1b    (see [25]). 

 
A Versal deformation of the normal form in (12) can be found, and the 

bifurcation phenomenon can be studied in the neighborhood of the origin. This is 
not, in general, a trivial task. For our system we can show the following 
 
Proposition 1 The transverse family 
 

1

2 2
2

ˆ
ˆ

r r arz

z br z





 

  




   (13) 

 
is a versal deformation of system (12), and is topologically equivalent to the 

original system, S. Therefore, a non trivial equilibrium, E*, occurs at the pitchfork 
curve 
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1
1 2 2 2( , ) :

ˆ
H

a


      
 

 

 
along which a saddle-node bifurcation emerges at 2 0  , giving rise to two branches of fixed points 

 20,  . 
 
Proof. See Wiggins (1991). 
 

Interestingly, if the initial condition on capital is chosen in such a way that 
system S gives rise to a saddle-node bifurcation, then a continuum of equilibria can 
depart from a given initial condition of the predetermined variable, as clearly shown in 
Fig. 1, using the set of parameters in Chang et al. (2011). 
 

Since this continuum of equilibria exists beyond the region relevant for the 
linear approximation of the dynamics in the neighborhood of the steady state, the 
result implies indeterminacy of global nature. Besides the result of global 
indeterminacy, the possibility that the model can exhibit this motion is of great 
interest also because the decomposition of the dynamics into phase/amplitude 
equations allows us to better understand the nature of the cyclical behavior of an 
economy where the effects of monetary policies on the long run properties of the 
equilibrium become totally unpredictable. 
 

 
Fig. 1: The Shilnikov saddle-node bifurcation  
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4. Concluding Remarks 
 

In this paper we have extended the Chang et al. (2011) monetary policy model 
with an endogenous rate of time preference. We found that the equilibrium can be 
indeterminate under an active interest-rate feedback rule and the equilibrium is 
determinate (indeterminate) if the monetary authority implements an aggressively 
(moderately) passive interest-rate feedback rule. These results provide insightful policy 
implications by exploring the possibilities for the raise of global indeterminacy via a 
Shilnikov saddle-node bifurcation on an invariant circle. In this case, the economy 
may start at some point to oscillate around the long run equilibrium, and eventually 
deviate from its saddle-path stable solution, thus locating the economy in a particular 
optimal converging path that could not coincide with the one corresponding to the 
lowest desired interest rate. 
 
5. Appendix 
 
Consider a second order Taylor expansion of the vector field in (S): 
 

1

3

( , , )
0

( , , )

f k

k f kk

   
 

 







 
    
    

     
    

     
 

J


   

 

   

   (A.1) 

 
where 3 21

1 2( , , ) ( 1)( 2)f k k k             and 2 2
3 ( , , ) ( 1)f k k k         . 

 
Assume now that system (S) undergoes a triple-zero eigenvalue structure, 

which allows us to make the following change of coordinates 
 

1

2

3

w
w
wk



   
      

     

T







   (A.2) 

 
via an appropriate transformation matrix 
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1 1 1

2 2

3

0
1 0

u v z
u v

z

 
   
  

T    (A.3) 

 
whose columns represent the eigenvectors associated to the triple-zero eigenvalues 
(see, Wiggins, 1991). 
 
We are thus able to put (A.2) in a Jordan normal form 
 

 
 
 

1 1 2 3,1 1

2 2 2 1 2 3,

3 3 3 1 2 3,

, ,0 1 0
0 0 1 , ,
0 0 0 , ,

F w w ww w
w w F w w w
w w F w w w

                                  







   (A.4) 

 
where: 

 
 
 

 

2
2 3 1 2 1 2 1 3 3

2
1 2 3, 2 3 1 2 1 2 1 3 3

2
2 1 1 2 2 1 2 1 3 3

( )
1, , ( )

( ) ( )
i

v z A v z A w z w
F w w w u z A u z A w z w

D
v A u v u v A w z w

   
 

   
     

   (A.5) 

 
with 2 1 1 2 3 2 1 3D v z u v z u v z   , and 31

1 2 ( 1)( 2)A k        and  
2

2 ( 1)A k    . 
 
Let us repeat the same procedure of above, and introduce a second transformation 
matrix 

2

0 1
0 0

0 0






 
   
  

B    (A.6) 

 
which allows us to put system (A.4) into the normal form suitable to describe the 
presence of one zero and a pair of pure imaginary eigenvalues 
 

1 1 1

2 2 2

3 3 3

0 0
0 0

0 0 0

x x F
x x F
x x F




     
            

            







   (A.7) 
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where 2 2 2

1 1 1 3 1 3 3 3( 2 )F B w z w w z w   , 2 2 2
2 2 1 3 1 3 3 3( 2 )F B w z w w z w   ,  

2 2 2
3 3 1 3 1 3 3 3( 2 )F B w z w w z w   ; and  1

1 2 3 1 2 1 2DB v z A v z A   ,  

 1
2 2 3 1 2 1 2DB u z A u z A  ,  1

3 2 1 1 2 2 1 2( )DB v A u v u v A    . 
 
System (A.7) can be easily transformed into cylindrical coordinates  
 

3 2
1 2 3

2 2 3 2
1 2 3 4

2 2
1 2 3

r a rz a r a rz
z b r b z b z b r z

c z c r c z 

  

   

   







   (A.8) 

given 1 cosx r  , 2 sinx r  , 3x z  (see Wiggins, 1991). 
 
Additionally, the truncated-amplitude rescaled normal form can be derived from 
(A.8), keeping  � : 
 

2 2

ˆ
ˆ

r arz

z br z



 




   (A.9) 

where 1

2
ˆ a

ba    and ˆ 1b   . 
 
A candidate for versal deformation of (A.9) is then 
 

1

2 2
2

ˆ
ˆ

r r arz

z br z





 

  




   (A.10) 
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