Robust model predictive control using neural networks

Krzysztof Patan and Piotr Witczak

Institute of Control and Computation Engineering
University of Zielona Góra
Introduction

- Model Predictive Control (MPC) – modern control strategy
- Neural networks – useful when dealing with nonlinear problems
- Robustness against model uncertainty and noise – a crucial question
- Robustness of nonlinear control system – still a challenge
- Open problems – how to deal with robustness of neural network based MPC
- Possible solution, min-max optimization, is time-consuming

Purpose of the paper – to cope with model uncertainties using Model Error Modelling (MEM) and properly redefine the open-loop optimal control problem using uncertainty definition provided by MEM
Modelling and uncertainty estimation

Neural predictor

- One-step ahead prediction
 \[\hat{y}(k + 1) = f(y(k), \ldots, y(k - n_a + 1), u(k), \ldots, u(k - n_b + 1)) \]
 where \(n_a \) and \(n_b \) represent number of past outputs and inputs, respectively

- Function \(f \) can be realized using dynamic neural network
 \[\hat{y}(k + 1) = f(x) = \sigma_o(W_2 \sigma_h(W_1 x + b_1) + b_2) \]
 where
 \[x = [y(k), \ldots, y(k - n_a + 1), u(k), \ldots, u(k - n_b + 1)]^T \]
 \(W_1, W_2, b_1 \) and \(b_2 \) – weight matrices, \(\sigma_h \) and \(\sigma_o \) – activation functions

- \(i \)-step ahead prediction
 \[\hat{y}(k + i) = f(y(k + i - 1), \ldots, y(k + i - n_a), u(k + i - 1), \ldots u(k + i - n_b)) \]

- Measurements of the output are available up to time \(k \) – one should substitute predictions for actual measurements since these do not exist
 \[y(k + i) = \hat{y}(k + i), \quad \forall i > 1 \]
Uncertainty description

- Uncertainty of the model is a measure of unmodelled dynamics, noise and disturbances.
- Plant is represented by the family of models:
 \[\bar{y}(k+1) = \hat{y}(k+1) + w(k) \]
 where \(w(k) \in \mathcal{W} \) – the additive uncertainty, \(\mathcal{W} \) – a compact set.
- All possible trajectories are bounded by lower \(\underline{w}(k) \) and upper \(\overline{w}(k) \) uncertainty estimates:
 \[\underline{w}(k) \leq w(k) \leq \overline{w}(k) \]
- \(w(k) \) may be a function of past inputs and outputs.
Robust model

- Model uncertainty estimation – Model Error Modelling
- MEM analyzes residual signal
 \[r(k) = y(k) - \hat{y}(k) \]
- Nonlinear form of the error model
 \[\hat{r}(k + 1) = f_e(r(k), \ldots, r(k - n_{n_a} + 1), u(k), \ldots, u(k - n_{n_b} + 1)) \]
 where \(\hat{r}(k + 1) \) – an estimate of the residual at the time instant \(k + 1 \)
 \(n_{n_a} \) and \(n_{n_b} \) – the number of past residuals and inputs, respectively
- Final representation of a robust model
 \[\bar{y}(k) = \hat{y}(k) + \hat{r}(k) \]
- The upper band
 \[\bar{w}(k) = \bar{y}(k) + t_{\alpha} \sigma \]
- The lower band
 \[\underline{w}(k) = \bar{y}(k) - t_{\alpha} \sigma \]
 where \(t_{\alpha} \) – \(N(0, 1) \) tabulated value assigned to \(1 - \alpha \) confidence level
 \(\sigma \) – the standard deviation of the error model output
MEM procedure - step 1

1. Collect the data \(\{u(i), r(i)\}_{i=1}^{N} \) and identify an error model using these data. This model constitutes an estimate of the error due to under modelling, and it is called model error model.
MEM procedure - step 2

2 construct a model along with uncertainty using both nominal and model error models
Nonlinear MPC

- Cost based on the GPC criterion

\[J = \sum_{i=N_1}^{N_2} e^2(k+i) + \rho \sum_{i=1}^{N_u} \Delta u^2(k+i-1) \]

where

\(e(k+1) = y_r(k+i) - \hat{y}(k+i) \)

\(\Delta u(k+i-1) = u(k+i-1) - u(k+i-2) \)

\(y_r(k+i) \) – the future reference signal

\(\hat{y}(k+i) \) – the prediction of future outputs

\(u(k) \) – the control signal at time \(k \)

\(\Delta u(k+i-1) \) – control change

\(\rho \) – the factor penalizing changes in the control signal
- **Constraints on control moves**

 \[\Delta u(k + i) = 0, \quad N_u \leq i \leq N_2 - 1 \]

- **Constraints on process variable** \(v \)

 \[v \leq v(k + j) \leq \bar{v}, \quad \forall j \in [0, N_v] \]

 where \(N_v \) – constraint horizon

 \(v \) – lower limits

 \(\bar{v} \) – upper limits

- **Terminal constraints, e.g.**

 \[e(k + N_p + j) = 0, \quad \forall j \in [1, N_c] \]

 where \(N_c \) – terminal constraint horizon
Problem definition

Let us redefine the nonlinear model predictive control based on the following open-loop optimization problem

\[
\begin{align*}
\mathbf{u}(k) & \triangleq \arg \min J \\
\text{s.t.} \quad e(k + N_2 + j) &= 0, \quad \forall j \in [1, N_c] \\
\Delta u(k + N_u + j) &= 0, \quad \forall j \geq 0 \\
\underline{u} & \leq u(k + j) \leq \overline{u}, \quad \forall j \in [0, N_u - 1] \\
\underline{y} & \leq y(k + j) \leq \overline{y}, \quad \forall j \in [N_1, N_2]
\end{align*}
\]

where \underline{u}, \overline{u} – lower and upper control bounds

\underline{y}, \overline{y} – lower and upper bounds for output predictions
Robust MPC synthesis

A possible way to achieve robust MPC – defining output constraints

Then, the inequality constraint (1e) can be represented in the following way:

\[
\begin{align*}
\underline{w}(k+1) & \leq \hat{y}(k+i) \leq \overline{w}(k+i) \\
\end{align*}
\]

\[
\bar{g}_i(u) = \hat{y}(k+i) - \overline{w}(k+i), \quad g_i(u) = \underline{w}(k+i) - \hat{y}(k+i)
\]

Transformation of the original problem to its alternative unconstrained form – using a penalty cost:

\[
\tilde{J}(k) = J(k) + \lambda \sum_{i=N_1}^{N_2} \overline{g}_i^2(u) S(\bar{g}_i(u)) + \lambda \sum_{i=N_1}^{N_2} g_i^2(u) S(g_i(u))
\]

where \(S(x) = 1 \) if \(x > 0 \) and \(S(x) = 0 \) otherwise

The function \(S(x) \) makes it possible to consider a set of active inequality constraints at the current iterate of the algorithm
The objective is to solve the following unconstrained problem:

\[u(k) \triangleq \arg \min \bar{J}(u) \]

The principle of operation:

- Before the optimization begins, the uncertainty bands \(w(k+i) \) and \(\bar{w}(k+i) \) are determined based on the current control \(u(k) \).

- The optimization procedure starts in order to determine a new control sequence subject to constraints.

- During the optimization, \(w(k+i) \) and \(\bar{w}(k+i) \) are independent on the variable \(u(k) \); consequently, optimization of the penalty function does not require to calculate additional partial derivatives.
Unmeasured disturbances

➢ To deal with unmeasured disturbances, the model of a process can be equipped with the additional term $d(k)$

➢ Considering unmeasured disturbances $d(k)$ the neural predictor can be rewritten in the form:

$$\hat{y}(k+1) = f(x) + d(k)$$

(2)

➢ Frequently, $d(k)$ is assumed to be constant within the prediction horizon

➢ assuming that $d(k)$ is constant within the prediction horizon, implementation of the optimization procedure does not change

➢ The only problem here is to find a proper description of the unmeasured disturbances, e.g.

$$d(k) = Kr(k)$$

(3)

where $r(k)$ – the residual, K – the gain of the disturbance model
Performance checking

- Multiplicative output uncertainty scheme

\[v = \bar{v}(1 + \gamma \Delta) \]

where \(\bar{v} \) is the nominal (mean) parameter value

\(\Delta \) – any real scalar satisfying \(|\Delta| \leq 1 \)

\(\gamma \) – the relative uncertainty in the parameter \(v \):

\[\gamma = \frac{v_{max} - v_{min}}{v_{max} + v_{min}} \]
Illustrative example

Pneumatic servomechanism

V_1, V_2 – cylinder volumes
A_1, A_2 – chamber areas
P_1, P_2 – chamber pressures
P_s – supplied pressure
P_r – exhaust pressure
m – load mass
y – piston position
S_1, \ldots, S_4 – operating valves
u – control signal

S_1 and S_4 are open for $u \geq 0$
S_2 and S_3 are open for $u < 0$
Modelling

- Training data
 - input in the form of random steps with levels from the interval $(-0.245, 0.245)$
 - output was contaminated by the white noise with the magnitude equal to 5% of the output signal
- Neural model of the fourth order ($n_a = n_b = 4$) was used, 8 tangensoidal neurons in the hidden layer, one linear output neuron

Process output (solid/blue) and model output (dashed/red)
Uncertainty modelling

- Training data recorded in closed loop control
 - predictive controller with nominal model of the plant
 - gain uncertainty with $\gamma = 0.2$ and Δ generated randomly every 10 s
- Neural model specification: $n_{na} = 2$, $n_{nb} = 10$, 10 hidden neurons with hyperbolic tangent activation function, one linear output neuron

Outputs: process (solid/green), model (dashed/blue), robust model (dotted/red)
Control settings

- Predictive controller set up (MPC): $N_1 = 1$, prediction horizon $N_2 = 10$, control horizon $N_u = 2$, control moves penalty $\rho = 0.003$

- MPC with disturbance model (MPCD): gain $K = 0.01$

- Robust predictive control (RMPC): control moves penalty $\rho = 0.001$, output constraints penalty $\lambda = 0.1$

- Robust predictive control with disturbance model (RMPCD)

- Testing conditions:
 1. nominal work with different reference signals: random steps, ramp signal, sinusoidal signal
 2. parameter uncertainty: $\gamma = 0.2$, Δ generated every 10 time steps
 3. white noise affecting the output

- Quality index – Sum of Squared Errors (SSE) calculated on tracking error
Results for random steps reference

Control: reference (solid/green), P controller (dashed/blue) and robust MPC (dotted/red)

<table>
<thead>
<tr>
<th>Controller type</th>
<th>nominal work</th>
<th>parameter variation</th>
<th>noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>2.4019</td>
<td>2.2632</td>
<td>2.3848</td>
</tr>
<tr>
<td>MPCD</td>
<td>2.3011</td>
<td>2.2555</td>
<td>2.2926</td>
</tr>
<tr>
<td>RMPC</td>
<td>2.2545</td>
<td>2.1151</td>
<td>2.2612</td>
</tr>
<tr>
<td>RMPCD</td>
<td>2.2455</td>
<td>2.1091</td>
<td>2.2394</td>
</tr>
</tbody>
</table>
Results for modified ramp reference

Control: reference (solid/green), P controller (dashed/blue) and robust MPC (dotted/red)

<table>
<thead>
<tr>
<th>Controller type</th>
<th>nominal work</th>
<th>parameter variation</th>
<th>noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>0.1977</td>
<td>0.2751</td>
<td>0.2277</td>
</tr>
<tr>
<td>MPCD</td>
<td>0.1704</td>
<td>0.2483</td>
<td>0.2004</td>
</tr>
<tr>
<td>RMPC</td>
<td>0.1599</td>
<td>0.2364</td>
<td>0.1908</td>
</tr>
<tr>
<td>RMPCD</td>
<td>0.1589</td>
<td>0.2364</td>
<td>0.1895</td>
</tr>
</tbody>
</table>
Results for sinusoidal reference

Control: reference (solid/green), P controller (dashed/blue) and robust MPC (dotted/red)

<table>
<thead>
<tr>
<th>Controller type</th>
<th>nominal work</th>
<th>parameter variation</th>
<th>noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC</td>
<td>0.128</td>
<td>0.1463</td>
<td>0.1398</td>
</tr>
<tr>
<td>MPCD</td>
<td>0.0852</td>
<td>0.0976</td>
<td>0.0968</td>
</tr>
<tr>
<td>RMPC</td>
<td>0.0856</td>
<td>0.0997</td>
<td>0.097</td>
</tr>
<tr>
<td>RMPCD</td>
<td>0.0849</td>
<td>0.0973</td>
<td>0.0957</td>
</tr>
</tbody>
</table>
Concluding remarks

- A new method for robust nonlinear model predictive control was proposed.
- The approach uses model error modelling carried out by means of dynamic neural networks.
- The proposed numerical solution is very simple to implement and no time consuming.
- The solution was tested on the pneumatic servomechanism using different working conditions of the plant with promising results.
- The future work will be focused on the implementation of the robust MPC where the cost function is redefined in such a way that instead of the output of the nominal model $\hat{y}(k)$ the cost uses the output of the robust model $\bar{y}(k)$.