Independent subsets of powers of paths, and Fibonacci cubes

Pietro Codaraa,1,2, Ottavio M. D’Antonaa,1

a Dipartimento di Informatica, Università degli Studi di Milano,
I-20135, Milan, Italy

Abstract
We provide a formula for the number of edges of the Hasse diagram of the independent subsets of the h-th power of a path ordered by inclusion. For $h = 1$ such a value is the number of edges of a Fibonacci cube. We show that, in general, the number of edges of the diagram is obtained by convolution of a Fibonacci-like sequence with itself.

Keywords: Independent subset, path, power of graph, Fibonacci cube.

1 Introduction

For a graph G we denote by $V(G)$ the set of its vertices, and by $E(G)$ the set of its edges.

\textbf{Definition 1.1} For $n, h \geq 0$, the h-power of a path, denoted by $P_n^{(h)}$, is a graph with n vertices v_1, v_2, \ldots, v_n such that, for $1 \leq i, j \leq n$, $i \neq j$, $(v_i, v_j) \in E(P_n^{(h)})$ if and only if $|j - i| \leq h$.

\footnote{1} Emails: codara@di.unimi.it, dantona@di.unimi.it
\footnote{2} Partially supported by “Dote ricerca” – FSE, Regione Lombardia.
Thus, for instance, \(P_n^{(0)} \) is the graph made of \(n \) isolated nodes, and \(P_n^{(1)} \) is the path with \(n \) vertices.

Definition 1.2 An independent subset of a graph \(G \) is a subset of \(V(G) \) not containing adjacent vertices.

Notation. (i) We denote by \(p_n^{(h)} \) the number of independent subsets of \(P_n^{(h)} \).
(ii) We denote by \(H_n^{(h)} \) the Hasse diagram of the poset of independent subsets of \(P_n^{(h)} \) ordered by inclusion, and by \(H_n^{(h)} \) the number of edges of \(H_n^{(h)} \).

In this work we evaluate \(p_n^{(h)} \) and \(H_n^{(h)} \). Our main result (Theorem 3.4) is that, for \(n, h \geq 0 \), the sequence \(H_n^{(h)} \) is obtained by convolving the sequence \(1, \ldots, 1, p_0^{(h)}, p_1^{(h)}, p_2^{(h)}, \ldots \) with itself.

Clearly, \(H_n^{(0)} \) is the \(n \)-dimensional cube. Thus, on one hand, our work generalizes the known formula \(n2^n - 1 \) for the number of edges of the Boolean lattice with \(n \) atoms, obtained by the convolution of the sequence \(\{2^n\} \) with itself. From a different perspective, this work could be seen as yet another generalization of the notion of Fibonacci cube. Indeed, observe that every independent subset \(S \) of \(P_n^{(h)} \) can be represented by a binary string \(b_1b_2\cdots b_n \), where, for \(i = 1, \ldots, n \), \(b_i = 1 \) if and only if \(v_i \in S \). More specifically, each independent subset of \(P_n^{(h)} \) is associated with a binary string of length \(n \) such that the distance between any two 1’s of the string is greater than \(h \). For \(h = 1 \) the binary strings associated with independent subsets of \(P_n^{(h)} \) are Fibonacci strings of order \(n \), and the Hasse diagram of the set of all such strings ordered bitwise is a Fibonacci cube of order \(n \) (see [5,7]). Fibonacci cubes were introduced as an interconnection scheme for multicomputers in [3], and their combinatorial structure has been further investigated, e.g. in [6,7]. Several generalizations of the notion of Fibonacci cubes has been proposed (see, e.g., [4,5]). As far as we now, our generalization, described in terms of independent subsets of powers of paths ordered by inclusion, is a new one.

2 The independent subsets of powers of paths

We denote by \(p_{n,k}^{(h)} \) the number of independent \(k \)-subsets of \(P_n^{(h)} \).

Lemma 2.1 For \(n, h, k \geq 0 \), \(p_{n,k}^{(h)} = \binom{n-hk+h}{k} \).

Proof. See [2, Theorem 1], and [1], where we establish a bijection between independent \(k \)-subset of \(P_n^{(h)} \) and \(k \)-subsets of a set with \((n-hk+h) \) elements. \(\square \)
For $n, h \geq 0$, the number of all independent subsets of $P_n^{(h)}$ is

$$p_n^{(h)} = \sum_{k=0}^{\lceil n/(h+1) \rceil} p_{n,k}^{(h)} = \sum_{k=0}^{\lceil n/(h+1) \rceil} \binom{n-hk+h}{k}.$$

Remark 2.2 Denote by F_n the n^{th} element of the Fibonacci sequence $F_1 = 1$, $F_2 = 1$, and $F_i = F_{i-1} + F_{i-2}$, for $i > 2$. Then, $p_n^{(1)} = F_{n+2}$.

Lemma 2.3 For $n, h \geq 0$, $p_n^{(h)} = \begin{cases} n+1 & \text{if } n \leq h+1, \\ p_{n-1}^{(h)} + p_{n-h-1}^{(h)} & \text{if } n > h+1. \end{cases}$

Proof. See the first part of [2, Proof of Theorem 1], or [1].

3 The poset of independent subsets of powers of paths

Figure 1 shows a few Hasse diagrams $H_n^{(h)}$. Notice that, as mentioned in the introduction, for each n, $H_n^{(1)}$ is a Fibonacci cube.

![Fig. 1. Some $H_n^{(h)}$.](image)

Since in $H_n^{(h)}$ each non-empty independent k-subset covers exactly k independent $(k-1)$-subsets, we can write

$$H_n^{(h)} = \sum_{k=1}^{\lceil n/(h+1) \rceil} k p_{n,k}^{(h)} = \sum_{k=1}^{\lceil n/(h+1) \rceil} k \binom{n-hk+h}{k}.$$ \hspace{1cm} (1)

Let now $T_{n,h}^{(i)}$ be the number of independent k-subsets of $P_n^{(h)}$ containing the vertex v_i, and let, for $h, k \geq 0$, $n \in \mathbb{Z}$, $\overline{p}_{n,k}^{(h)} = \begin{cases} p_{0,k}^{(h)} & \text{if } n < 0, \\ p_{n,k}^{(h)} & \text{if } n \geq 0. \end{cases}$

Lemma 3.1 For $n, h, k \geq 0$, and $1 \leq i \leq n$,

$$T_{k,i}^{(n,h)} = \sum_{r=0}^{k-1} \overline{p}_{i-h-1,r}^{(h)} \overline{p}_{n-i-h,k-1-r}^{(h)}.$$

Proof. No independent subset of $P_n^{(h)}$ containing v_i contains any of the elements $v_{i-h}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{i+h}$. Let r and s be non-negative integers whose
sum is \(k - 1 \). Each independent \(k \)-subset of \(P_n^{(h)} \) containing \(v_i \) can be obtained by adding \(v_i \) to a \((k - 1)\)-subset \(R \cup S \) such that

(a) \(R \subseteq \{ v_1, \ldots, v_{i-h-1} \} \) is an independent \(r \)-subset of \(P_n^{(h)} \),

(b) \(S \subseteq \{ v_{i+h+1}, \ldots, v_n \} \) is an independent \(s \)-subset of \(P_n^{(h)} \).

Vice versa, one can obtain each of this pairs of subsets by removing \(v_i \) from an independent \(k \)-subset of \(P_n^{(h)} \) containing \(v_i \). Thus, \(T_{k,i}^{(n,h)} \) is obtained by counting independently the subsets of type (a) and (b). Noting that the subsets of type (b) are in bijection with the independent \(s \)-subsets of \(P_{n-i-h}^{(h)} \), the lemma is proved.

In order to obtain our main result, we prepare a lemma.

Lemma 3.2 For positive \(n \),

\[
H_n^{(h)} = \sum_{k=1}^{\lfloor n/(h+1) \rfloor} \sum_{i=1}^{n} T_{k,i}^{(n,h)}.
\]

Proof. The inner sum counts the number of \(k \)-subsets exactly \(k \) times, one for each element of the subset. That is, \(\sum_{i=1}^{n} T_{k,i}^{(n,h)} = k F_{n,k}^{(h)} \). The lemma follows directly from Equation (1). □

Next we introduce a family of Fibonacci-like sequences.

Definition 3.3 For \(h \geq 0 \), and \(n \geq 1 \), the \(h \)-Fibonacci sequence \(F_n^{(h)} = \{ F_n^{(h)} \}_{n \geq 1} \) is the sequence whose elements are

\[
F_n^{(h)} = \begin{cases} 1 & \text{if } n \leq h + 1, \\ F_{n-1}^{(h)} + F_{n-h-1}^{(h)} & \text{if } n > h + 1. \end{cases}
\]

From Lemma 2.3, and setting for \(h \geq 0 \), and \(n \in \mathbb{Z} \), \(p_n^{(h)} = \begin{cases} p_0^{(h)} & \text{if } n < 0, \\ p_n^{(h)} & \text{if } n \geq 0, \end{cases} \)

we have that,

\[
F_i^{(h)} = p_{i-h-1}^{(h)}, \quad \text{for each } i \geq 1. \tag{2}
\]

Thus, we can write \(F^{(h)} = 1, \ldots, 1, p_0^{(h)} , p_1^{(h)} , p_2^{(h)} , \ldots. \)

In the following, we use the discrete convolution operation \(* \), as follows.

\[
(F^{(h)} * F^{(h)}) (n) = \sum_{i=1}^{n} F_i^{(h)} F_{n-i+1}^{(h)}. \tag{3}
\]
Theorem 3.4 For $n, h \geq 0$, the following holds.

$$H_n^{(h)} = (\mathcal{F}^{(h)} \ast \mathcal{F}^{(h)}) (n).$$

Proof. The sum $\sum_{k=1}^{[n/(h+1)]} T^{(n,h)}_{k,i}$ counts the number of independent subsets of $P_n^{(h)}$ containing v_i. We can also obtain such a value by counting the independent subsets of both $\{v_1, \ldots, v_{i-h-1}\}$, and $\{v_{i+h+1}, \ldots, v_n\}$. Thus, we have:

$$\sum_{k=1}^{[n/(h+1)]} T^{(n,h)}_{k,i} = \bar{p}_{i-h-1}^{(h)} \bar{p}_{n-h-i}^{(h)}.$$

Using Lemma 3.2 we can write

$$H_n^{(h)} = \sum_{k=1}^{[n/(h+1)]} \sum_{i=1}^{n} T_{k,i}^{(n,h)} = \sum_{i=1}^{n} \sum_{k=1}^{[n/(h+1)]} T_{k,i}^{(n,h)} = \sum_{i=1}^{n} \bar{p}_{i-h-1}^{(h)} \bar{p}_{n-h-i}^{(h)}.$$

By Equation (2) we have $\sum_{i=1}^{n} \bar{p}_{i-h-1}^{(h)} \bar{p}_{n-h-i}^{(h)} = \sum_{i=1}^{n} F_{i}^{(h)} F_{n-i+1}^{(h)}$. By (3), the theorem is proved. \hfill \Box

Further properties of coefficients $H_n^{(h)}$, and $p_n^{(h)}$ are discussed in [1]. Moreover, in [1] we investigate the case of powers of cycles, and its connection with Lucas cubes.

References

