
OLTP – Through the Looking
Glass, and What We Found

There

Authors :Stravos Harizopoulous, Daniel Abadi, Samuel Madden, Micheal Stonebraker

Presentation : Amit Tiwari

CMPT 843 - Spring 2017 1

Using the Potential

• Many OLTP databases now fit in main memory

• Most database transactions are processed in milliseconds or less

• Network clusters have aggregated memory measured in hundreds of gigabytes

Database architecture has changed very little

CMPT 843 - Spring 2017 2

Perspectives From a Looking Glass

“Now, here, you see, it takes all the running you can do, to keep in the same place.
If you want to get somewhere else, you must run at least twice as fast as that!”

Lewis Carroll, Alice Through the Looking Glass

CMPT 843 - Spring 2017 3

OLTP

CMPT 843 - Spring 2017 4

• A collection of on-disk data structures for table storage

• We need everything at all the time?

Heap
Files

Buffer
Management

Log Based
Recovery

Concurrent
Queries

B-Trees

LockingLatching

DBMS - Alternate versions

CMPT 843 - Spring 2017 5

• Logless Database
• E.g. Harp, Harbour, C-Store

• Single Threaded Database
• Is virtualization an answer to this?

• Transaction-less Databases
• Light weight forms of transactions where all reads are done before writes

Plan of Presentation

CMPT 843 - Spring 2017 6

IDENTIFY

Where is the
time most
consumed?

MODIFY MEASURE INFER

Modify an
existing
database

Measure
performance
gains

What can
we learn
from this?

*database like systems are databases without the full suite of database
features and have varying forms of consistency, reliability, concurrency etc.

What could be the Bottlenecks? OLTP Trends

CMPT 843 - Spring 2017 7

• Cluster Computing – shared nothing architecture
• Need to build the system ground up

• E.g. Gamma

• Memory Resident Databases
• Many OLTP systems already fit especially in the aggregate main memory of a large

cluster

• Disk-Optimized tuple formats and page layouts (or lack)

What could be the Bottlenecks? OLTP Trends

CMPT 843 - Spring 2017 8

• Single Threading in OLTP Systems
• If databases are memory resident there is never any disk waits

• For production transaction systems, transactions are executed through stored
procedures

• How about multiple processors ? Or network latency ?

• High Availability and Logging
• We tend to use two or more times the hardware for this

• Copy missing states from other database replicas?

What could be the Bottlenecks? OLTP Trends

CMPT 843 - Spring 2017 9

Other Variants

• Eventual Consistency Guarantees
• The belief is that availability is more important than transactional semantics

• Less logging with things like snapshot isolation
• Users ready to trade transactional semantics for performance

• Some forms of transactions require less machinery
• E.g. if all the transactions are two phase and are guaranteed not to abort after

completion of reads

Where are the Bottlenecks?

CMPT 843 - Spring 2017 10

Instruction count of various components for the new order transaction from TPC-C

Where are the bottlenecks?

CMPT 843 - Spring 2017 11

• Logging
• Assembling log records and tracking down all changes slows performance

• Recoverability not always a requirement or can be provided alternately

• Locking
• Considerable overhead as all accesses to database are governed by Lock Manager

• Latching
• Like locking it has considerable overhead.

• Single threaded application have shown noticeable performance improvement

• Buffer Management
• Memory pages accessed through a buffer pool contribute to overhead

What We Learnt So Far

CMPT 843 - Spring 2017 12

IDENTIFY

Where is the
time most
consumed?

MODIFY MEASURE INFER

Modify an
existing
database

Measure
performance
gains

What can
we learn
from this?

*for modify phase we use an open source database called SHORE

SHORE – Components

CMPT 843 - Spring 2017 13

• Scalable Heterogenous Object
Repository

• Has a layered architecture that
allows users to choose the
appropriate level of support for
their applications from several
components

• Has all the features found in all
modern DBMS

• Is provided as a library and the
user code is linked against the
library

What We Look To Remove

CMPT 843 - Spring 2017 14

OLTP Properties & New Platforms DBMS Modification

Logless Architecture Remove Logging

Partitioning, Commutativity Remove locking (when applicable)

One transaction at a time Single thread, remove locking, remove
latching

Main memory resident Remove buffer manager, directory

Transaction-less database Avoid transaction bookkeeping

Components in SHORE and Their Removal

CMPT 843 - Spring 2017 15

• Logging Features
• Implements a write ahead logging

• Logs are identified by sequence numbers - LSN

• Requires close interaction with log manager, buffer manager and transaction manager

• Logging Removal
• Doing group commits and increasing the log buffer size

• Commenting out functions used to prepare and write log records

• Adding IF statements at code level to avoid processing LSNs

Components in SHORE and Their Removal

• Latching Removal
• Changed mutex requests to be immediately satisfied

• Adding IF statements to avoid requests for latching

• Replacing B-Tree methods with one that didn’t use latching

CMPT 843 - Spring 2017 16

• Locking Features
• Implements standard two-phase locking

• Each transaction keeps a list of locks it holds

• Locks are logged when transactions enter prepared state and released at end

• Locking Removal
• Lock Manager Methods were changed to return immediately

• The call for request was returned successful as if all checks for locks were satisfied

• Methods related to finding records , finding them through B-tree indexes modified

Components in SHORE and Their Removal

CMPT 843 - Spring 2017 17

• Buffer Manager Features
• Used to read/write pages, uses the fix method
• There is a latch to ensure consistency to fix method
• Reading a record is done by a pin/unpin method (records are locked)
• For updates data is copied to user’s address space, changes made there and then

given to storage manager

• Buffer Manager Removal
• Removing page allocation mechanism and using malloc instead
• Removal of page interface to buffer frames was tried but not completed
• Since the page allocation was removed, the buffer manager became ‘thin’

What We Learnt So Far

CMPT 843 - Spring 2017 18

IDENTIFY

Where is the
time most
consumed?

MODIFY MEASURE INFER

Modify an
existing
database

Measure
performance
gains

What can
we learn
from this?

*measurements performed on a single core Pentium 4 3.2GHz, 1MB L2 Cache, Hyperthreading disabled, 1GB RAM,
Linux 2.6

Performance Study – TPC-C
• Designed to represent any industry that manage, sell or distribute a product or

service

• Designed to scale with suppliers and warehouses

• Database size for one warehouse is approximately 100 MB , a total five
warehouses are used

• Involves five concurrent transactions of different types and complexity
• Entering orders
• Recording Payments
• Delivering Orders
• Checking the status of orders
• Monitoring the level of stock at the warehouse

CMPT 843 - Spring 2017 19

Performance Study – Workload

CMPT 843 - Spring 2017 20

• A new order transaction places an order for
5-15 items with 90 percent supplied from
local warehouses and 10 percent from
remote warehouses

• Variations are avoided by fixing 10 items
taken from local warehouses

• Payment updates the customer’s balance
and generates a history record

Performance Study – Details (Payment)

CMPT 843 - Spring 2017 21

• B-Tree – 18 % of total instruction count

• Locking - 25 % of total instruction count,
has a lot of effect on pin/unpin operations

• Latching – 13% of total instruction count,
effects create record and B-Tree lookups

• Buffer Manager – 30% of total instruction
count, changes to page lookups make gains

• The remaining kernel requires only 5% of
total instructions for a 20X performance
gains

Performance Study – Details (New Order)

CMPT 843 - Spring 2017 22

• About 10 times as many instructions as
payment

• B-Tree – 16 % of total instruction count

• Logging - 12 % of total instruction count,
has a lot of effect on pin/unpin operations

• Locking – 16% of total instruction count,
effects create record and B-Tree lookups

• Buffer Manager –14% reduction of total
instruction count, reduction in page
allocations and B-Tree depths

Performance Study – Instructions vs Cycles

CMPT 843 - Spring 2017 23

• The two may not be identical

• Cache misses and pipeline stalls (due to
branching) can cause some to take more
instructions than others

• The residual kernel uses a larger fraction of
cycles , because it is branch heavy, has
system calls

• Logging uses more cycles as it touches main
memory , creating and writing log records

Performance Study - Throughput

CMPT 843 - Spring 2017 24

• After all the optimizations, CPU cycles dominate

• Average : 80 microsecond/transaction or 12,700 transactions/second
• Initially it was 640 transactions/second

• Useful Work – only about 22 microseconds/transaction
• Kernel is not entirely devoid of system calls of SHORE

• Significant improvements with log flushing: 1700/second

• About 20 percent improvement in throughput

What We Learnt So Far

CMPT 843 - Spring 2017 25

IDENTIFY

Where is the
time most
consumed?

MODIFY MEASURE INFER

Modify an
existing
database

Measure
performance
gains

What can
we learn
from this?

Inferences

CMPT 843 - Spring 2017 26

• Concurrency Control
• Large gains when concurrency control is turned off

• Is optimistic concurrency control one of the answers?

• Multi Core Support
• Multiple transaction concurrently on separate cores within a single site, requires

latching

• Need to revisit new implementations of latching, can we reduce the overhead?

• Virtualization can be an alternative, no performance metrics available

• Intra-query parallelism may be a feasible option

Inferences

CMPT 843 - Spring 2017 27

• Replication Management
• Active-Passive replication requires two phase commits, generates overhead

• Move towards active-active replication, can be done for memory resident systems

• Consistency
• Eventual consistency can be favoured over strong consistency

• But for eventual consistency we need transactional consistency under a general
workload

• Cache Conscious B-Trees
• Not as big of a bottleneck as other components

• If however the system is stripped to a basic kernel, it may be significant

What We Learnt So Far

CMPT 843 - Spring 2017 28

IDENTIFY

Where is the
time most
consumed?

MODIFY MEASURE INFER

Modify an
existing
database

Measure
performance
gains

What can
we learn
from this?

Conclusions

CMPT 843 - Spring 2017 29

άL ōŜƭƛŜǾŜ ǘƘŀǘ άƻƴŜ ǎƛȊŜ ŘƻŜǎ ƴƻǘ Ŧƛǘ ŀƭƭέΦ ƛΦŜΦ ƛƴ ŜǾŜǊȅ ǾŜǊǘƛŎŀƭ ƳŀǊƪŜǘ L Ŏŀƴ
think of, there is a way to beat legacy relational DBMSs by 1-2 orders of
ƳŀƎƴƛǘǳŘŜΦέ — Mike Stonebraker.

• Significant gains occur when multiple optimizations are applied

• The benefits of stripping out any one component has only a small benefit

Influences on Database Systems

CMPT 843 - Spring 2017 30

CMPT 843 - Spring 2017 31

