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Abstract

Improved targeted therapies are needed to combat metastatic
prostate cancer. Here, we report the identification of the spleen
kinase SYK as a mediator of metastatic dissemination in zebra-
fish and mouse xenograft models of human prostate cancer.
Although SYK has not been implicated previously in this disease,
we found that its expression is upregulated in human prostate
cancers and associated with malignant progression. RNAi-medi-
ated silencing prevented invasive outgrowth in vitro and bone
colonization in vivo, effects that were reversed by wild-type but
not kinase-dead SYK expression. In the absence of SYK expres-

sion, cell surface levels of the progression-associated adhesion
receptors integrin a2b1 and CD44 were diminished. RNAi-
mediated silencing of a2b1 phenocopied SYK depletion in vitro
and in vivo, suggesting an effector role for a2b1 in this setting.
Notably, pharmacologic inhibitors of SYK kinase currently in
phase I–II trials for other indications interfered similarly with
the invasive growth and dissemination of prostate cancer cells.
Our findings offer a mechanistic rationale to reposition SYK
kinase inhibitors for evaluation in patients with metastatic
prostate cancer. Cancer Res; 75(1); 230–40. �2014 AACR.

Introduction
Prostate cancer is the most common cancer in males and the

second leading cause of cancer deaths amongmen in theWestern
world (1). Nondetectable micro-metastatic disease may be pres-
ent in up to 40%of patients (2)while 8% to 14%mayhave visible
or symptomatic bone metastases at diagnosis (3). Although the
majority of prostate cancers are diagnosed as organ-confined
disease, which is curable by prostatectomy or radiation therapy,
20% to 25% of patients will experience relapse within 5 years of
treatment (4). Androgen deprivation therapy is used when pros-
tate cancer reappears, but in most cases, resistance develops
within 1 to 3 years. Chemotherapy, particularly docetaxel, is able
to prolong overall survival in these cases but it also causes
significant toxicity and not all patients receive this therapy. To
more successfully combat prostate cancer, screening programs for

early diagnosis and treatment of localized disease are important.
In addition, some alternatives for docetaxel as first-line treatment
formetastatic disease and options for those cases where docetaxel
failed have become available (5). Nevertheless, once the disease
has spread beyond the prostate, no curative treatments are cur-
rently available (6). Hence, there is an urgent need for novel
targeted therapies to improve treatment of metastatic prostate
cancer.

SYK is a nonreceptor tyrosine kinase containing two adjacent
Src homology 2 (SH2) domains, a kinase domain, but no SH3
domain. SYK is expressed in hematopoietic cells where it binds
phosphorylated immunoreceptor tyrosine-based activation
motifs (ITAM) to mediate immune receptor signaling (7). For
malignant hematopoietic cells that rely on immune receptor-
mediated survival signals, SYK might represent an attractive drug
target. Indeed, pharmacologic inhibition of SYK has shown
promising results in the context of non-Hodgkin lymphoma and
leukemias (8). SYK is also widely expressed in a variety of cell
types outside the hematopoietic system and it is required for
proper development of blood and lymph vessels during embry-
onic development (9, 10). The role of SYK in epithelial cancers
appears diverse. SYK abundance negatively correlates with breast
cancer progression and SYK suppresses tumor growth and metas-
tasis in breast cancer xenografts (11, 12). Conversely, SYK levels in
head and neck squamous cell carcinomas and lymph node
metastases are high compared with corresponding normal tissue
and SYK promotes migration of squamous carcinoma cells (13).
SYK has not been implicated in prostate cancer.

In the current study, we find that SYK adenoviral shRNAs
interfere with PC3 human prostate cancer dissemination using
a semiautomated whole animal bioimaging platform (14). Fur-
ther investigations of SYK in patient cohorts, three-dimensional
(3D) in vitro cultures, and zebrafish andmouse xenografts indicate
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that SYK may represent a novel candidate drug target for further
study in prostate cancer.

Materials and Methods
Cell lines, antibodies, and pharmacologic inhibitors

LNCaP, PC3, DU-145, and HEK293T cells were obtained from
ATCC and cultured for fewer than 6 months after receipt or
resuscitation according to the provided protocol. ATTC charac-
terized the cell lines using short tandem repeat profiling. PC3-
derived PC3-M-Pro4luc cells (15) and LNCaP-derived cell lines
C4-2 and C4-2 B were grown in DMEM and T-Medium, respec-
tively. For FACS, primary antibodies included AIIB2 anti-human
integrin b1, 4A10 anti-human integrin a2, and sc-18849 anti-
humanCD44 (Santa Cruz Biotechnology). Goat-anti-mouse APC
and donkey-anti-rat PE (Jackson laboratories) were used as sec-
ondary antibodies. For IHC inpatient tumor samples andWestern
blot analysis, rabbit anti-human SYK monoclonal antibody
(clone EP573Y, ab40781; Abcam) was used. For Western blot
analysis, anti-human AKT (#4691; Cell Signaling Technology),
anti-phospho-Ser473 AKT (#9271; Cell Signaling Technology),
anti-human CD44 MAb (kindly provided by Dr. Marcel Spaar-
garen, Academic Medical Center, Amsterdam, the Netherlands),
and a-tubulin (B-5-1-2; Sigma) were used. R-406 and BAY-61-
3606 were obtained from Selleckchem and Sigma, respectively.

Zebrafish xenotransplantation experiments
For quantification of tumor cell spreading, tumor cells were

labeled with CM-DiI (Invitrogen), mixed with 2% PVP, and
injected into the yolk sac of enzymatically dechorionated, 2-
day-old Casper fli-EGFP transgenic zebrafish embryos using an
air-driven microinjector (20 psi, PV820 Pneumatic PicoPump;
World precision Inc). Embryos were maintained in egg water at
34�C for 6 days and subsequently fixed with 4% paraformalde-
hyde. Imaging was done in 96-well plates containing a single
embryo per well using a Nikon Eclipse Ti confocal laser-scanning
microscope. Z stacks (12 � 30 mm) were obtained using a Plan
Apo 4X Nikon dry objective with 0.2 NA and 20mmWD. Images
were converted into a single Z projection in Image-Pro Plus
(Version 6.2; Media Cybernetics). Automated quantification of
tumor cell spreading per embryo, cumulative distance of cells per
embryo, and mean cumulative distance (MCD) for all embryos
was determined using an in-house built Image-Pro Plus plugin as
previously described (14).

Transient adenoviral shRNA transduction
PC3 cellswere transducedoneday after seedingwith adenoviral

shRNA constructs from Galapagos BV (Leiden) using a multiplic-
ity of infection of 15 for 24 hours. After 3 days, medium was
replaced and after an additional 2 days, the transduced PC3 cells
were detached with trypsin and single cell suspensions were used
for zebrafish xenotransplantation.

Stable shRNA and cDNA expression
PC3 or PC3-M-Pro4luc cells were transduced using Sigma's

MISSION library lentiviral shRNAs (shSYK#1: TRCN0000003167,
shSYK#2:TRCN0000199566; shITGB1#1:TRCN0000029645,
shITGB1#2:TRCN0000029646; shITGA2#1: TRCN0000057730,
shITGA2#2: TRCN00000057731). For lentivirus production,
HEK293T cells were transfected with the short hairpin constructs
together with the packaging plasmids REV, GAG, and VSV in a
1:1:1:1 ratio using PE (Sigma) as transfection reagent. Lentiviral

supernatant was collected 48 hours after transfection and used for
transduction or target cells in the presence of 8 mg Polybrene
(Sigma). Transduced cells were bulk selected in medium con-
taining 2 mg/mL puromycin. Lentiviral shRNA vector targeting
TurboGFP was used as a negative control. Retroviral cDNAs for
wild-type and kinase dead SYK were a gift from Drs. Wei Zou
and Steven Teitelbaum, Washington University, St Louis, MO
(16). Retrovirus was produced in Plat-E packaging cells and
used for transduction of PC3-M-Pro4-luc cells stably expressing
shRNA targeting SYK 30 untranslated region (UTR), followed by
bulk blasticidin selection.

mRNA expression analysis
For qPCR, total RNAwas extracted usingRNAeasy PlusMini Kit

(Qiagen). cDNA was randomly primed from 50 ng total RNA
using iScript cDNA Synthesis Kit (Bio-Rad) and real-time qPCR
was subsequently performed in triplicate using SYBR green PCR
(Applied Biosystems) on a 7900HT fast real-time PCR system
(Applied Biosystems). The following qPCR primer sets were used:
GAPDH: forward AGCCACATCGCTCAGACACC, reverse
ACCCGTTGACTCCGACCTT;
SYK forward GATGCTGGTTATGGAGATG, reverse
TCTATGATGTTCTTATCCTTGAC;
CD44 forward TGGCACCCGCTATGTCCAG, reverse
GTAGCAGGGATTCTGTCTG;
ITGB1 forward ATTGACCTCTACTACCTT, reverse
GTGTTGTGCTAATGTAAG;
ITGA2 forward AACTCTTTGGATTTGCGTGTG, reverse
TGGCAGTCTCAGAATAGGCTTC.

Data were collected and analyzed using SDS2.3 software
(Applied Biosystems). Relative mRNA levels after correction for
GAPDH control mRNA were expressed using 2(�DDCt) method.

For mRNA expression analysis of human prostate cancer
patient material either directly or following xenografting in mice,
existing datasets were queried as described (17).

Colony formation assay
Cells were seeded into a 96-well plate containing approximate-

ly 1 cell per well. After 1 to 3 weeks, percentage of wells showing
colonies and colony size was determined by microscopy (Zeiss
Axiovert 200M).

3D invasion assays
Cell suspensions in PBS containing 2% polyvinylpyrrolidone

(PVP; Sigma-Aldrich) were microinjected (�1 � 104 cells/drop-
let) using an air-driven microinjector (20 psi, PV820 Pneumatic
PicoPump; World precision Inc) into solidified 3D collagen gels
in 8-well mslides (IBIDI) as previously described (18). Collagen
gels were prepared from2.5mg/mL acid-extracted rat tail collagen
type I. Collagenwas diluted toworking concentration of 1mg/mL
in completemedium containing 44mmol/L NaHCO3 (stock 440
mmol/L, Merck) and 0.1 mol/L Hepes (stock 1 mol/L, BioSolve).
Tumor cell spheroids were monitored for approximately 1 week
using Nikon eclipse TS100. For immunostaining, gels were incu-
bated for 1 hour with 5 mg/mL collagenase (Clostridium histo-
lyticum, Boehringer Mannheim) at room temperature, fixed with
4% paraformaldehyde, and permeabilized in 0.2% Triton X-100.
After fixation, collagen gels were stained using a cocktail contain-
ing 4% paraformaldehyde, 0.2% Triton X-100 (Sigma), and
0.1mmol/L rhodaminephalloidin (Sigma) for 3hours. Thereafter,
wells were washed with PBS. Preparations were then mounted in
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Aqua-Poly/Mount solution (Polysciences, Inc) and imaged using
a Plan Apo 4X Nikon dry objective with 0.2 NA and 20 mmWD.
A total of 15 Z planes at an interval of 30 mmwere captured. Image
stacks were converted into two-dimensional maximum intensity
projections using ImagePro 7.0. Cell spheroids were analyzed
using an automated Image pro 7-based plugin to calculate surface
area of spheroid, number of cells migrating out of the cell
spheroid, and cumulative distance travelled by these cells.

Immunohistochemistry
Immunohistochemistry (IHC) was performed on a series of

formalin-fixed, paraffin-embedded radical prostatectomies and
prostate lymph node metastases. Five micron sections were
dewaxed and rehydrated using xylene and ethanol. Endogenous
peroxidase was blocked in 0.3% H2O2 and antigen retrieval was
performed under pressure (0.9 bar) in TRIS-EDTA buffer (pH ¼ 9,
Klinipath). SYK antibody (ab40781, Abcam) was diluted 1:300 in
normal antibody diluent (Scytek) and incubated overnight at 4�C.
Envision (DAKO) was used to visualize the antibody, counter-
staining was performed with hematoxylin. The percentage and
intensity (negative0,weak1þ,moderate 2þ, strong3þ) of positive
SYK staining were estimated in benign luminal epithelial cells and
prostate adenocarcinoma. Lymphocytes served as internal positive
control in all prostate and lymph node samples. Mann–Whitney
U testing was performed to compare median expression levels.

Experimental bone metastasis assay
Male nude (BALB/c nu/nu) mice were anesthetized and

injected with a single-cell suspension of 105 cells/100mL in PBS
into the left cardiac ventricle. Outgrowth of spread PC3-M-Pro4-
luc cells was monitored weekly by whole body bioluminescent
imaging (BLI) using an intensified charge-coupled device video
camera of the in vivo Imaging System (IVIS100; Xenogen) as
described previously (15). Values are expressed as RLUs in
photons/second. Bone metastases in a subset of mice were also
examined by Goldner staining after mice were sacrificed using
decalcified bone.

Flow cytometry and Western blot analysis
For flow-cytometry, surface expression levels were determined

using primary antibodies, followed by fluorescence-conjugated
secondary antibodies, and analysis on a FACSCanto or sorting on
a FACSCalibur (Becton Dickinson). For Western blot analysis,
cells were lysed with modified RIPA buffer (150 mmol/L NaCl,
1.0% triton-X 100, 0.5% Na deoxycholate, 0.1% 50 mmol/L Tris,
pH 8, and protease cocktail inhibitor; Sigma-Aldrich). Samples
were separated by SDS-PAGE and transferred to polyvinylidene
difluoride membranes (Millipore), incubated with primary anti-
bodies then horseradish peroxidase-labeled secondary antibodies
(Jackson ImmunoResearch Laboratories, Inc.), and developed
with enhanced chemiluminescence substrate mixture (ECL plus,
Amersham, GE Healthcare). Blots were scanned on a Typhoon
9400 (GE Healthcare).

Statistical analysis
Data are presented asmean� SEMof at least three independent

biologic replicates unless otherwise stated. Student t test (two
tailed) was used to compare groups except for IHC on human
prostatectomies and lymph node metastasis where Mann–Whit-
ney U testing was used to compare the median expression levels
between groups.

Results
Identification andvalidationof SYK inprostate cancer zebrafish
xenografts

A panel of human prostate cancer cell lines was xenografted in
the yolk of zebrafish embryos and dissemination was analyzed
using a whole animal automated bioimaging platform as
described (14). Prostate cancer cell lines reported to be androgen
independent and/or metastatic in mice (LnCaP-derived C4-2 and
C4-2B; DU145 and PC3) showed enhanced dissemination in
comparison with androgen-dependent nonmetastatic LnCAP
cells (Supplementary Fig. S1A–S1D; refs. 19–22).

As a first step toward an adenovirus-based RNAi screening
platform for regulators of prostate cancer dissemination, we used
adenoviruses targeting two genes previously implicated in pros-
tate cancer (Fig. 1A). These were the CD44 cell surface hyaluronan
receptor and the SRC tyrosine kinase (23–26). In addition, the
SYK tyrosine kinase was included because it plays apparently
opposite roles in different epidermal malignancies and has not
been analyzed in prostate cancer (11–13). In agreementwith their
reported link to growth and progression of prostate cancer,
targeting CD44 or SRC, each by two independent shRNAs and
in two independent experiments using approximately 25 embryos
per condition, led to a significant reduction in PC3 spreading
throughout the embryos (Fig. 1B and C). Interestingly, these
criteria were also fulfilled for SYK (Fig. 1B and C and Supple-
mentary Fig. S2).

Stable expression of either of two independent lentiviral SYK
shRNAs further confirmed the effect of SYK gene silencing in the
zebrafish xenograft model (Fig. 1D–F). Reduced SYK protein
expression in the presence of lentiviral shSYK was confirmed by
Western blot analysis and by IHC on agar embedded cells, using
the same antibody as used for IHC on human tissue sections
(Supplementary Fig. S3A and S3B). Reduced SYK abundance also
effectively blocked migration in a model where cell spheroids are
embedded in 3D extracellular matrix (ECM) scaffolds (Fig. 1G
andHand Supplementary Fig. S4A; ref. 18). In addition, SYK gene
silencing attenuated spheroid expansion in vitro and tumor
outgrowth at the primary injection site in zebrafish xenografts
(Fig. 1G and H and Supplementary Fig. S2 and S4A). No signs of
increased nuclear fragmentation in SYK-depleted spheroids were
observed, pointing to decreased proliferation rather than cell
death as the underlying mechanism (Supplementary Fig. S4B).
We also analyzed the effect of silencing SYK on the ability of PC3
cells to form colonies when plated as single cells in vitro (Sup-
plementary Fig. S5A). Reduced SYK levels led to a significant
decrease in colony number and size. This was not associated with
an apparent decrease in PI3K/AKT signaling because shSYK did
not affect AKT phosphorylation on Ser473 reporting AKT activity
(Supplementary Fig. S5B). Thesefindings point to a role for SYK in
growth and migration of PC3 prostate cancer cells.

Expression of SYK in human prostate cancer
On the basis of these findings, we next analyzed SYK expres-

sion levels in human prostate cancer. Breast cancer cells with
reported low and high levels of SYK mRNA expression were used
as controls (27, 28). Compared with LnCaP, mRNA expression
was increased in the androgen-independent LNCaP-derived C4-
2 and C4-2B sublines and in DU145 and PC3 androgen-inde-
pendent, metastatic prostate cancer cell lines (Fig. 2A). Likewise,
in a series of human prostate cancer xenografts (29), SYK mRNA
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expression was higher in androgen-independent tumors (Fig.
2B). Moreover, SYK RNA expression in prostate cancer metas-
tasis resection specimens was significantly increased compared
with primary prostate cancer in two different datasets (Fig. 2C).

The EMC dataset used had Gene Expression Omnibus (GEO)
number: GSE41410 (30); the Taylor dataset had GEO number
GSE21032 (31). The expression of SYK was also compared
between normal adjacent prostate (NAP) and primary prostate

Figure 1.
SYK supports growth, invasion, and
dissemination of human prostate
cancer cells. A, schematic overview of
the in vivo screening procedure. B,
MCD of tumor foci relative to site of
injection for PC3 cells transiently
transduced with indicated adenoviral
shRNAs calculated from >40
xenografts obtained from two
independent experiments. C,
representative scatter plots showing
tumor foci detected by automated
confocal imaging and automated
image analysis as described (14) in
zebrafish injected with PC3 cells
expressing indicated adenoviral
shRNAs. Each color shows foci
detected in one embryo. Arrows, foci
in tail region. D, qPCR verification of
SYK silencing in PC3 cells expressing
two independent lentiviral shSYK
vectors. E and F, MCD (E) and
representative images (F) for
dissemination in zebrafish of PC3 cells
stably expressing indicated lentiviral
SYK shRNAs (combined data from
two independent experiments using
>32 embryos per condition are shown;
arrowheads, tumor foci in tail region).
G and H, representative images (G)
andquantification of expansion (mean
spheroid area) and ECM invasion
(MCD; H) for control and shSYK PC3
cell spheroids at 6 days postinjection
in collagen gels (blue, Hoechst; red,
phalloidin). Scale bars, 100 mm. ns,
nonsignificant; � , P < 0.05; �� , P < 0.01;
��� , P < 0.005.
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Figure 2.
SYK is expressed in human prostate
cancer. A, SYK RNA expression
determined by qPCR in indicated
cell lines. MDA-MB-435S
(hypermethylated SYK gene
promoter; refs. 27, 28) and HCC-1954
breast cancer cells (high SYK
expression; ref. 28) were used as
negative and positive controls,
respectively. B, SYKRNAexpression in
human prostate cancer resection
specimens xenografted in mice. C,
ratio between SYK RNA expression in
prostate cancer metastases [prostate
cancer (PCa) Met] and primary
prostate cancers and significance
(t test) in two different datasets. D,
semiquantitative analysis (mean
and SEM) of SYK expression in
normal luminal epithelium, primary
prostate cancer, and prostate cancer
lymph node metastases. E, IHC
detection of SYK in human benign
glandular prostate epithelium (1; note
staining of basal but rarely of luminal
cells), prostate adenocarcinoma
(2, weak; and 3, moderate SYK
expression), and prostate lymph node
metastasis (4, negative; and 5, strong
SYK expression). Arrows point to
prostate epithelial/cancer cells.
Original magnifications,�200 (1, 4, 5)
and �100 (2, 3). Strong staining in
lymphocytes served as internal
positive control in all cases
(arrowheads). ns, nonsignificant;
�� , P < 0.005; ���, P < 0.001
(Mann–Whitney U test).
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cancer and in both datasets, there was no significant difference
in expression between NAP and prostate cancer [prostate can-
cer/NAP ratios: 0.97 (EMC), 0.94 (Taylor)]. This was further
confirmed in the Brase dataset (GEO number GSE29079; ref. 32)
where the prostate cancer/NAP ratio was 1.01. These findings
indicated that SYK is unlikely to play a role in the early prostate
cancer development but rather may have a role in progression
of the disease.

Because the stromal compartmentmay affectmRNA analysis in
clinical samples, SYK protein expression was analyzed subse-
quently in a set of radical prostatectomies for human prostate
adenocarcinoma and lymphnodemetastases. SYK expressionwas
variable in prostate adenocarcinoma ranging from complete
absence of staining to moderate (2þ) staining in the majority of
tumor cells. Expression of SYK in normal luminal glandular

epithelium and low-grade prostate cancer (Gleason score <7) did
not differ significantly (Fig. 2D). Notably, in preexistent epithelial
glands, SYK was expressed in basal cells while luminal cells were
only rarely weakly positive (Fig. 2E). Intermediate (Gleason score
7) and high-grade (Gleason score 8-10) prostate cancer demon-
strated significantly higher expression of SYK than normal lumi-
nal epithelium or low-grade (Gleason score <7) prostate cancer
(Fig. 2D and E). SYK expression in prostate cancer lymph node
metastasis ranged from undetectable to 100% moderate (2þ)
staining (Fig. 2E). Median SYK expression in all metastases was
significantly higher than that in all intermediate and high-grade
primary prostate cancers taken together (Fig. 2D). These results
further supported the notion that SYK expression is associated
with progression, rather than early development of prostate
cancer.

Figure 3.
SYK regulation of adhesion receptor
surface expression in human prostate
cancer cells modulates invasive
outgrowth in vitro and dissemination
in zebrafish and metastatic
colonization in mice. A, FACS analysis
of surface expression of CD44 and
integrin subunits a2 (ITGA2) and b1
(ITGB1) in PC3 cells expressing
control or SYK shRNAs. MFI, mean
fluorescence intensity. B and C, qPCR
analysis of ITGA2 and ITGB1 mRNA
expression in PC3 cells expressing
control or SYK shRNAs. D, FACS
verification of ITGA2 and ITGB1
silencing in PC3 cells expressing
two independent lentiviral
vectors targeting ITGA2 or ITGB1,
respectively. E and F, quantification of
expansion (mean spheroid area)
and ECM invasion (MCD; E) and
representative images (F) for control,
shITGA2, and shITGB1 PC3 cell
spheroids at 6 days postinjection in
collagen gels (blue, Hoechst; red,
phalloidin). G and H, representative
images (G) and quantification of MCD
(H) for dissemination in zebrafish of
PC3 cells expressing indicated
lentiviral shRNAs (combined data
from two independent experiments
using >40 embryo's per condition are
shown; arrowheads, tumor foci in tail
region). Scale bars, 100 mm. �� , P <
0.01; ��� , P < 0.005.
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SYK supports cell surface expression of CD44 and integrin
a2b1

In acute myeloid leukemia, inhibition of SYK promotes differ-
entiation (33). We analyzed a set of transcripts previously asso-
ciated with undifferentiated characteristics of prostate cancer cells
(34) but observed no gross changes in the expression of these
genes upon depletion of SYK. However, althoughmRNA levels of
the prostate cancer progression-associated markers CD44 and
integrin a2b1 (23, 24, 35–37) were unaffected, their cell surface
expression, but not total CD44 or integrin b1 protein levels, was
suppressed following SYK silencing (Fig. 3A–C and Supplemen-
tary Fig. S5C and data not shown). SYK has been previously
reported to regulate surface expression of transmembrane recep-
tors (38, 39) and two adenoviral CD44 shRNAs decreased PC3
dissemination in zebrafish (Fig. 1B). Moreover, lentiviral silenc-
ing of a2 or b1 integrin subunits, each by two independent

shRNAs, suppressed invasive outgrowth in 3D ECM as well as
dissemination in the zebrafish xenograft model (Fig. 3D–H).
Together, these results identify regulation of surface expression
of adhesion receptors as a potential underlyingmechanism for the
support of prostate cancer dissemination by SYK.

SYK kinase activity supports formation of bone metastases
We next addressed the role of SYK in a preclinical mouse

xenograft model for prostate cancer bone metastasis. This pre-
clinical in vivo model has been extensively characterized and the
PC-3M-Pro4luc cells were selected, by multiple in vivo passaging,
for extremely high bone tropism (which reflects castration-resis-
tant prostate cancer with bone metastasis in advanced prostate
cancer patients) and virtually exclusively colonize bone (marrow;
ref. 15). Depletion of SYK led to a strong reduction in metastatic
bone tumor burden following intracardiac inoculation of PC3M-

Figure 4.
SYK kinase activity supports
metastatic bone colonization in mice.
A, total metastatic tumor burden
determined by BLI monitoring at
indicated time points following
intracardiac inoculation in immune-
compromised mice for PC3M-Pro4luc
variants expressing indicated
lentiviral shRNAs (data obtained from
at least 9 mice per experimental
group). B, bones of mice collected 31
days after intracardiac inoculation
with PC3M-Pro4-luc shCTR or shSYK
cells and stained with Goldner
staining. � , tumor lesion. C,
quantification of colony formation
assay for PC3M-Pro4-luc cells
expressing control or SYK shRNAs in
combination with wild-type (SYKwt)
or kinase dead SYK (SYKkd)
expression vectors. Gray, small; white,
medium; black, large colonies. D, BLI
images of PC3M-Pro4luc variants
expressing control or SYK shRNAs in
combination with wild-type (SYKwt)
or kinase dead (SYKkd) expression
vectors taken 31 days following
intracardiac inoculation. E and F,
quantification of the experiment
shown in D where total metastatic
tumor burden was determined by
BLI monitoring at indicated time
points (E) and the number of
metastatic colonies was determined
by counting of BLI foci at 31 days
following intracardiac inoculation
(data obtained from at least
10 mice per experimental group; F).
ns, nonsignificant; � , P < 0.05;
��, P < 0.01; ���, P < 0.005 versus
shCTR.
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Pro4luc cells (Fig. 4A and B). Similar to its effect in vitro and in
zebrafish xenografts, shRNA targeting the integrin a2-subunit
mRNA, phenocopied shSYK in this model (Fig. 4A). To interro-
gate the specific role for SYK kinase activity in colony formation
and prostate cancer bone colonization, wild-type or kinase dead
SYK was expressed in PC3M-Pro4luc cells expressing an shRNA
targeting the SYK 30UTR. The reduced capacity to form colonies as
well as colony growth in PC3M-Pro4luc-shSYK cells was restored
to control levels by wild-type but not kinase dead SYK (Fig. 4C).
Moreover, effective bone colonization of shSYK cells was restored
by wild-type SYK, whereas expression of kinase dead SYK even
further suppressed the processwith very fewdetectablemetastases
(Fig. 4D–F).

Pharmacologic inhibition of SYK prevents in vitro invasion and
in vivo dissemination

On the basis of the dependency on SYK kinase activity
determined in the mouse model, we performed initial experi-

ments to evaluate whether pharmacologic inhibition of SYK
could interfere with in vitro invasive outgrowth and in vivo
dissemination using zebrafish xenografts. Small-molecule inhi-
bitors of SYK are in clinical development for autoimmune
diseases and lymphoid malignancies (8, 40). Two of these
compounds, R-406 and BAY-61-3606, show efficacy in preclin-
ical leukemia and retinoblastoma studies (33, 41–44). When
used at 1 to 10 mmol/L, the concentration widely used in vitro
(33, 41–44), these compounds reduced spheroid outgrowth
and ECM invasion of PC3 as well as C4-2B cells (Fig. 5A–C).
Moreover, R-406 significantly inhibited dissemination of PC3
cells (Fig. 5D) without significant signs of toxicity at 10 mmol/L
(e.g., no effects were observed when yolk sac edema, cardiac
edema, bending of the tail, hepatic necrosis, and impaired
cardiovascular function were compared for R-406 and vehicle
control-treated animals). Thus, pharmacologic inactivation of
SYK recapitulated the effect of silencing the SYK gene in vitro
and in zebrafish xenografts.

Figure 5.
Pharmacological inhibition of SYK
prevents growth, invasion, and
dissemination of prostate cancer cells.
A, bright field images showing PC3
spheroids 6 days postinjection into
collagen gels in the absence or
presence of the indicated
concentrations of BAY-61-360 (one of
three experiments is shown). B,
representative images and
quantification of expansion (mean
spheroid area) and ECM invasion
(MCD) for PC3 cell spheroids
measured at 6 days postinjection in
collagen gels and treated with
indicated concentrations of R-406
(blue, Hoechst; red, phalloidin). C,
brightfield images showing C4-2B cell
spheroids at 6 days postformation in
the absence or presence of the
indicated concentrations of SYK
inhibitors. Arrowheads point to ECM
invading strands seen under
control conditions, which are not
observed in presence of inhibitors. D,
representative images and quantified
MCD for dissemination in zebrafish of
PC3 cells in the absence or presence of
indicated concentrations of R-406.
Combined data from two independent
experiments using >70 embryos per
condition are shown. Arrows, cells
disseminated to tail region.
Scale bars, 120 mm; ns, nonsignificant;
� , P < 0.05; ���, P < 0.005.
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Discussion

There is an urgent need for further insights into aspects of
prostate cancer progression that provide new avenues for tar-
geted therapy. Our study demonstrates that a semiautomated
whole animal bioimaging assay based on zebrafish xenotrans-
plantation (14) can be productive in RNAi-based preclinical
prostate cancer drug target discovery. Efficacy of human pros-
tate cancer cell spreading throughout the embryo correlates
with androgen independence, a major hallmark of prostate
cancer progression, and with behavior in rodent models. Two
signaling proteins, previously associated with prostate cancer
progression, Src and CD44, are effectively identified using
adenoviral shRNAs (23–26). Although the pipeline is currently
only partly automated, screening of small adenoviral RNAi
sublibraries (�100 genes) is feasible. Integration of the estab-
lished automated imaging and quantitative image analysis with
recently described methods for automated injection and sorting
of zebrafish embryos can widen applicability to larger scale
screening (45).

Our findings indicate that the protein tyrosine kinase, SYK,
supports growth and migration of prostate cancer cells. The
evidence comes from two transiently expressed adenoviral and
two stably expressed and bulk-sorted lentiviral shRNA vectors. In
addition, expression of wild-type SYK rescues the attenuated in
vitro clonogenic outgrowth and in vivo formation of bone metas-
tases of shSYK cells, further arguing against off-target effects. This
suggests that the role of SYK in prostate cancer is opposite to its
proposed "progression suppressor" role in breast cancer (11, 12).
In further support of that, we show that expression of SYK is
somewhat increased in more aggressive prostate cancer cell lines
and in metastases as compared with primary prostate cancer
lesions. A wider analysis of SYK protein expression and activity
in a large cohort of patients with prostate cancer will be needed to
firmly establish if SYK is positively correlated to progression of
prostate cancer, as it appears to be for head and neck squamous
cell carcinoma (13).

In hematopoietic cells, immune receptors provide the ITAM
for recruitment and activation of SYK. In the epithelial cell
types where SYK is expressed, it has not been established
whether and how SYK may be activated. Src family kinases
are responsible for the ITAM phosphorylation that is required
to recruit SYK (7, 46). Src has been associated with prostate
cancer progression and RNAi targeting Src also interfered with
PC3 dissemination in the zebrafish model. Src may act on a
large number of substrates in prostate cancer cells. One poten-
tial target in the context of SYK activation that we evaluated
was "migration and invasion enhancer 1" (Mien1; also termed
C35/C17orf37). Expression of Mien1 is correlated with pro-
gression of breast, ovarian, and colon cancer, it contains an
ITAM, and it has been reported to require SYK for its breast
cancer promoting activity (47–51). However, stable silencing
of MIEN1 in PC3 cells did not affect outgrowth or invasion in
3D cultures, indicating that this is unlikely to be involved in
prostate cancer growth or invasion (not shown). Further stud-
ies will address additional possible mechanisms in the context
of prostate cancer.

It is not known how SYK contributes to, or in the case of
breast cancer, interferes with tumor progression but modula-
tion of NF-kB activity may be one aspect involved (52). In
immune cells, SYK mediates the activation of MAPK signaling,

calcium fluxes, and cytoskeletal remodeling when immune
receptors are engaged (7, 46). In addition, SYK has been
previously reported to support the surface expression of integ-
rins (38, 39). Our findings indicate that stimulation of a2b1
and CD44 cell surface expression may play a role in the
stimulation by SYK of invasive growth in 3D ECM in vitro and
dissemination in the zebrafish model. A role for b1 integrins in
intravascular locomotion of MDA-MB-435 breast cancer cells
in zebrafish has been previously reported (53). In our study,
silencing either a2 or b1 subunits prohibits effective migration
in the zebrafish. Moreover, silencing a2b1 phenocopies the
effect of silencing SYK in the experimental mouse bone metas-
tasis model. Thus, SYK-mediated stimulation of the cell surface
expression of adhesion receptors may contribute to aspects of
prostate cancer progression.

Our experiments using a kinase-dead mutant show that
stimulation of clonogenic growth in vitro and experimental
bone metastasis in the mouse depend on SYK kinase activ-
ity. Moreover, R-406 and BAY-61-3606 SYK kinase inhib-
itors that were effective in preclinical leukemia and retino-
blastoma studies (33, 41–44) interfere with invasive growth
in 3D ECM in vitro and dissemination in the zebrafish model.
So, genetic or pharmacologic inactivation of SYK kinase
activity inhibits invasive growth and dissemination of prostate
cancer. We verify that SYK mRNA and protein are detected
in human prostate cancer tissues and SYK inhibitors have
already been tested in phase I–II clinical trials for other di-
seases. Altogether, this establishes SYK as a potential new drug
target in prostate cancer for which existing pharmacologic
inhibitors with known toxicological profiles can be tested for
clinical efficacy.
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