Note

New upper bound formulas with parameters for Ramsey numbers

Yiru Huanga, Yuandi Wanga, Wancheng Shenga, Jiansheng Yanga, Kemin Zhangb,
Jian Huangc

aDepartment of Mathematics, Shanghai University, Shanghai 200436, China
bDepartment of Mathematics, Nanjing University, Nanjing 210093, China
cAutomatic Experimental Unit, Shanghai Jiaotong University, Shanghai 200245, China

Received 2 December 2005; received in revised form 2 July 2006; accepted 10 July 2006
Available online 23 August 2006

Abstract

In this paper, we obtain some new results $R(5, 12) \leq 848$, $R(5, 14) \leq 1461$, etc., and we obtain new upper bound formulas for Ramsey numbers with parameters.

© 2006 Published by Elsevier B.V.

Keywords: Ramsey number; Upper bound

For two given graphs G_1, G_2, the Ramsey number $R(G_1, G_2)$ is the smallest positive integer $p + 1$ such that for any graph G of order $p + 1$ either G contains G_1 or G^c contains G_2, where G^c is the complement of G. A graph H of order p is called a $(G_1, G_2; p)$-Ramsey graph if H does not contain G_1 and H^c does not contain G_2. Let $R(K_m, K_n) =: (m, n; p)$-Ramsey graph. When an edge e is removed from G, we denote the graph by $G - e$. Let d_i be the degree of vertex i in G of order p, and let $\bar{d}_i = p - 1 - d_i$, where $1 \leq i \leq p$. And let $f(K_r)$ ($g(K_r)$, resp.) denote the number of K_r in G (G^c, resp.).

In the following we always assume that $G_1 = K_m$ or $K_m - e$, $G_2 = K_n$ or $K_n - e$, $G^c_1 = K_{m-i}$ or $K_{m-i} - e$, $G^c_2 = K_{n-i}$ or $K_{n-i} - e$, $m \geq 4$ and $n \geq 4$.

Lemma 1 (Goodman [1]). For any graph G of order p, we denote i as its vertex, d_i as the degree of vertex i, $\bar{d}_i = p - 1 - d_i$, $1 \leq i \leq p$. Then we have

$$f(K_3) + g(K_3) = \left(\frac{p}{3} \right) - \frac{1}{2} \sum_{i=1}^{p} d_i \bar{d}_i.$$

Lemma 2 (Huang and Zhang [3]). For any $(G_1, G_2; p)$-Ramsey graph G of order p, the following inequalities
must hold:

\[(s + 1) f(K_{s+1}) \leq f(K_s)[R(G_{m-s}^n, G_2) - 1],\]
\[(t + 1)g(K_{t+1}) \leq g(K_t)[R(G_1, G_{n-t}) - 1].\]

Theorem 1. Let \(R(G_{m-2}^n, G_2) \leq \alpha + 1, R(G_1, G_{n-2}^2) \leq \beta + 1, R(G_{m-1}^1, G_2) \leq \gamma + 1, R(G_1, G_{n-1}^2) \leq \delta + 1\) and \(t > 0.\) Let \(A = 2\gamma - 2 - \frac{1}{3}(4\alpha + 2\beta), B = (\alpha + \beta + 2)^2 + \frac{1}{3}(\beta - \alpha)^2\) and \(F(t) = \alpha + \beta + 4 - t + \sqrt{\frac{4}{3}t^2 + 2At + B}.\) Then
\[R(G_1, G_2) \leq F(t).\]

In particular, when \(4B - 3A^2 > 0,\) and \(t_0 = \frac{3}{4}(\sqrt{4B - 3A^2} - A) > 0,\) then
\[R(G_1, G_2) \leq F(t_0).\]

Proof. Let \(p = R(G_1, G_2) - 1.\) For any \((G_1, G_2; p)\)-Ramsey graph \(G,\) by Lemma 2, we have \(3f(K_3) \leq \frac{1}{2}z\sum_{i=1}^{p} d_i^2 + 3g(K_3) \leq \frac{1}{2}p\sum_{i=1}^{p} \overline{d}_i.\) Combining these two inequalities and Lemma 1, then
\[p(p - 1)(p - 2 - z) \leq \sum_{i=1}^{p} (p - 1 - d_i)(3d_i + \beta - z) \leq \sum_{i=1}^{p} \{-3\overline{d}_i^2 + (3p - 3 + \beta - x + t)\overline{d}_i - t(p - 1) + t\gamma\} \leq \sum_{i=1}^{p} \left\{ \frac{1}{12}(3p - 3 + \beta - x + t)^2 - t(p - 1) + t\gamma \right\}.\]

Thus \(R(G_1, G_2) \leq F(t).\)

From the definition of \(F(t),\) when \(4B - 3A^2 > 0\) and \(t_0 = \frac{3}{4}(\sqrt{4B - 3A^2} - A) > 0,\) we have
\[F'(t_0) = 0, \quad F''(t_0) > 0.\]

Hence we have \(R(G_1, G_2) \leq F(t_0).\) The proof of theorem is completed. \(\square\)

Noting the symmetry of \(\gamma\) and \(\delta,\) we have the following corollary immediately.

Corollary 1. Under the assumption of Theorem 1, let \(t > 0, C = 2\delta - 2 - \frac{1}{3}(2\alpha + 4\beta), D = (\alpha + \beta + 2)^2 + \frac{1}{3}(\beta - \alpha)^2\) and \(G(t) = \alpha + \beta + 4 - t + \sqrt{\frac{4}{3}t^2 + 2Ct + D}.\) If \(4D - 3C^2 > 0\) and \(t^* = \frac{3}{4}(\sqrt{4D - 3C^2} - C) > 0,\) then we have:
\[R(G_1, G_2) \leq G(t^*).\]

Now we obtain another new upper bound formula with parameters \(x, y.\)

Theorem 2. Let \(m \geq 4, n \geq 4, R(m - 2, n) \leq \alpha + 1, R(m, n - 2) \leq \beta + 1\) and parameter \(x \in (0, 3).\) And let
\[f(x, y) = A + \sqrt{A^2 - B}, \quad g(x, y) = A - \sqrt{A^2 - B},\]
\[A = \frac{3(y + \alpha - \beta) - 2(1 + \alpha)\alpha}{9 - 4\alpha}, \quad B = \frac{(3 - x)(y + \alpha - \beta)^2 + xy^2}{(3 - x)(9 - 4x)}.\]

Then

(a) \(R(m, n) \geq 2 + f(x, y)\) or \(R(m, n) \leq 2 + g(x, y)\) if \(0 < x < \frac{9}{4};\)
(b) \(R(m, n) \leq 2 + f(x, y)\) if \(x \in \left(\frac{9}{4}, 3\right);\)
(c) \(R(m, n) \leq \alpha + \beta + 4 + \frac{2}{3}\sqrt{(\alpha + 2\beta + 3)(2\alpha + \beta + 3) + (\beta - \alpha)^2}\) if \(x = \frac{9}{4}.\)
Especially, when \(m = n \), we obtain K. Walker’s formula once again

\[R(n, n) \leq 4R(n - 2, n) + 2. \]

Proof. Let \(p = R(m, n) - 1 \). Then by using the analogous arguments of Theorem 1, the following inequalities must hold in \((m, n; p)\)-Ramsey graph \(G \):

\[
p(p - 1)(p - 2 - x) \leq \sum_{i=1}^{p} \{-3d_i^2 + (3p - 3 + \beta - x)d_i\}
\]

\[
= \sum_{i=1}^{p} \{-x^2d_i^2 + (3p - 3 + \beta - x - y)d_i - (3 - x)d_i^2 + yd_i\}
\]

\[
\leq \frac{1}{4x} (3p - 3 + \beta - x - y)^2 p + \frac{y^2 p}{4(3 - x)}.
\]

Thus, we have \((9 - 4x)(3 - x)(p - 1)^2 - 2(3 - x)[3(y + x - \beta) - 2(1 + x)x](p - 1) + xy^2 + (3 - x)(y + x - \beta)^2 \geq 0\).

(1) When \(0 < x < \frac{9}{4} \), (a) follows immediately.

(2) When \(\frac{9}{4} < x < 3 \), since \(B < 0 \), \(g(x, y) < 0 \). Note that in this case \((9 - 4x)(3 - x) < 0 \). Hence \(R(m, n) \leq 2 + f(x, y) \).

(3) When \(x = \frac{9}{4} \), we have

\[R(m, n) \leq 2 + \frac{4y^2 - 2(\beta - x)y + (\beta - x)^2}{6y - 3x - 6\beta - 9} =: 2 + f(y). \]

It is easy to check that when \(y_0 = \frac{1}{2} \left(x + 2\beta + 3 + \sqrt{(x + 2\beta + 3)(2x + \beta + 3)} \right) \),

\[
\min f(y) = f(y_0) = x + \beta + 4 + \frac{2}{3} \sqrt{(x + 2\beta + 3)(2x + \beta + 3) + (\beta - x)^2}.
\]

Hence (c) follows. \(\square \)

It is not difficult to generalize the results to \(R(G_1, G_2) \) for \(G_1 = K_m \) or \(K_m - e \), and \(G_2 = K_n \) or \(K_n - e \). Hence using (c) of the generalized Theorem 2, taking \(x = 20, \beta = 35 \), we have \(R(K_6 - e, K_6) \leq 116 \) once more, which appears in [2].

Noting the symmetry of \(x \) and \(\beta \), we have the following corollary immediately.

Corollary 2. Under the hypotheses of Theorem 2, let \(F(x, y) = C + \sqrt{C^2 - D}, G(x, y) = C - \sqrt{C^2 - D}, C = (3(y + \beta - x) - 2(1 + \beta)x)/(9 - 4x) \) and \(D = (y + \beta - x)^2/(9 - 4x) + xy^2/((3 - x)(9 - 4x)) \). Thus we have:

(1) If \(0 < x < \frac{9}{4} \), then \(R(m, n) \geq 2 + F(x, y) \) or \(R(m, n) \leq 2 + G(x, y) \).

(2) If \(\frac{9}{4} < x < 3 \), then \(R(m, n) \leq 2 + F(x, y) \).

Note that there is the well-known formula:

\[R(m, n) \leq R(m - 1, n) + R(m, n - 1), \] \hspace{1cm} (3)

and its generalized formula in [3]:

\[R(G_1, G_2) \leq R(G_1^{m-1}, G_2) + R(G_1, G_2^{n-1}), \] \hspace{1cm} (4)

where \(G_1 = K_m \) or \(K_m - e \), \(G_2 = K_n \) or \(K_n - e \).

Up to date upper and lower bounds on Ramsey numbers are listed in [5]. Using these tables and (3), (4), 18 new upper bounds of \(R(m, n) \) obtained by (1) are shown in Table 1, where \(-, -, -; -) = (x, \beta, \gamma; t_0)\), and the number with \(* \) is obtained by (3).
Table 1

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>633*</td>
<td>1804*</td>
<td>4553</td>
<td>(632, 1712, 10630)</td>
<td>(1803, 3582, 22325)</td>
<td>(1803, 1756.4, 10629, 1162.1)</td>
</tr>
<tr>
<td>12</td>
<td>848 (58, 441, 237; 735.3)</td>
<td>2566 (237, 1170, 847; 1679.1)</td>
<td>6954 (847, 2825, 2565; 3488.4)</td>
<td>16944 (2565, 6089, 10629, 16943, 6953, 5585.5)</td>
<td>39025 (6953, 12676, 16943, 9110.7)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1139*</td>
<td>3705*</td>
<td>10581 (1138, 4552, 3704; 4215.9)</td>
<td>27490 (3704, 10629, 10580, 27489, 4215.9)</td>
<td>64871 (10580, 22324, 27489, 17928.8)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1461 (77, 847, 348; 1520.4)</td>
<td>5033 (348, 2565, 1460, 1404, 6911; 4118.6)</td>
<td>15263 (1460, 6953, 5032, 10099.1)</td>
<td>41525 (5032, 16943, 15262, 21087.03)</td>
<td>89203 (15262, 39024, 41524, 41657.1)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1878*</td>
<td>6911*</td>
<td>22116 (1877, 10580, 6910; 16179.1)</td>
<td>63620 (6910, 27489, 22115, 45750.3)</td>
<td>12059.2</td>
<td></td>
</tr>
</tbody>
</table>

Remarks. (1) Theorems 1 and 2 can be generalized by using the ideas in [3,4]. (2) Taking $(\alpha, \beta, \gamma, t_0) = (33, 66, 87, 45.9)$, we have $R(K_6 - e, K_7) \leq 202$ once more, which appears in [2].

References