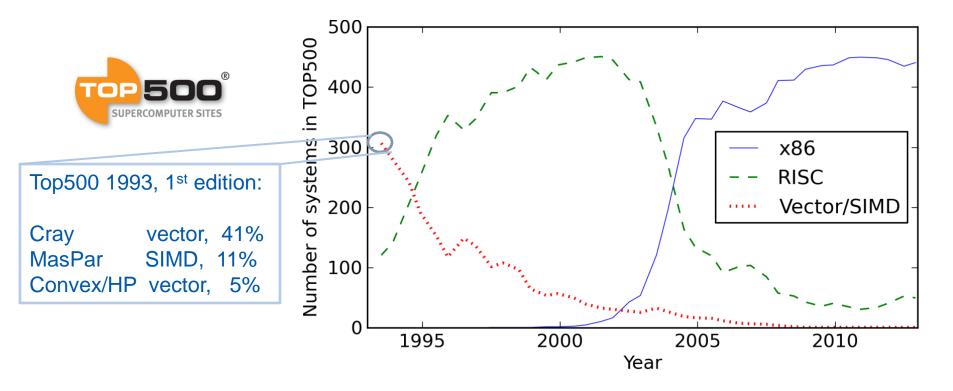
BSC

Barcelona Supercomputing Center Centro Nacional de Supercomputación



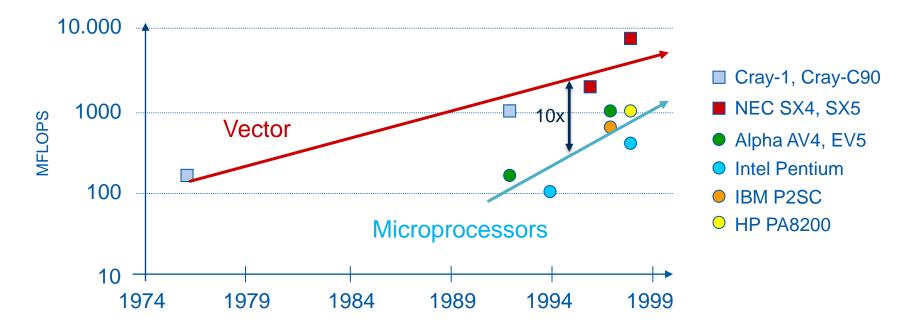
UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH


Departament d'Arquitectura de Computadors

# Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?

Nikola Rajovic, Paul M. Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez, Mateo Valero

> SC'13, November 19<sup>th</sup> 2013, Denver, CO, USA


## Commodity components drive HPC



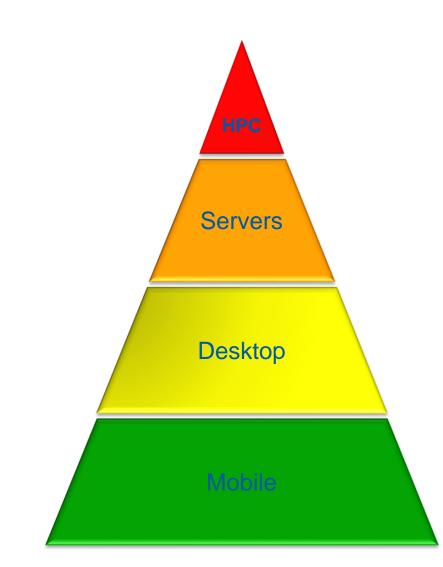
( Microprocessors replaced Vector/SIMD supercomputers

- They were not faster
- They were cheaper

#### Vectors vs. microprocessors: transition



- ( In 1995, when microprocessors overtook vector/SIMD
  - Microprocessors ~10 times slower than one vector CPU (FP)
  - Performance gap closing fast


DE CATALUNYA

BARCELONATECH

- ( SIMD vs. Message passing paradigms
- ( Advantage: commodity volume economics



#### The next step in the commodity chain



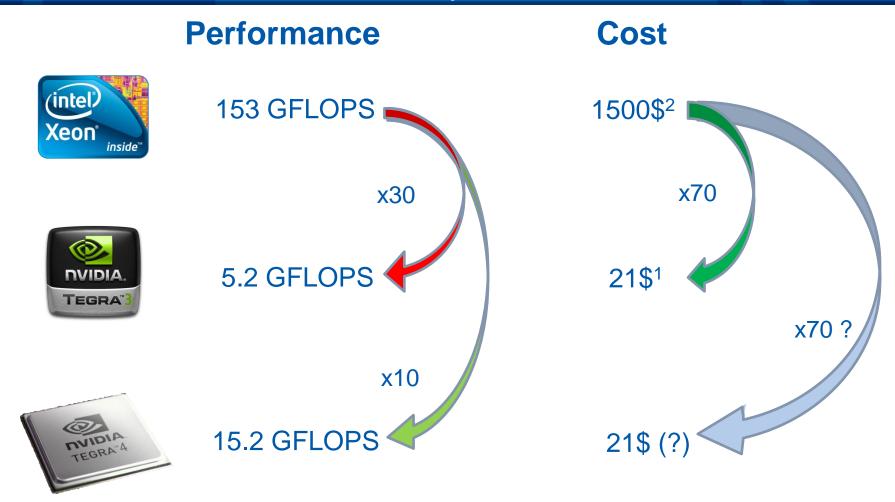


( 20M cores in Jun'13 Top500

Sold in 2012

- (( <10M servers</pre>
- ( >350M PC's
- ( >100M tablets
- ( >700M smartphones
  - > 210M smartphones (1Q 2013)




### History may be about to repeat itself



- ( In 2013, Mobile SoCs are slower
  - But performance gap seems to close
- ( They are significantly cheaper ... in high volume



#### Mobile SoC vs Server – side by side



- 1. Leaked Tegra3 price from the Nexus 7 Bill of Materials
- 2. Non-discounted List Price for the 8-core Intel E5-2670, SandyBridge



## **(**Motivation

- ( Mobile SoCs evaluation
- **II** Mobile SoCs in cluster environment
- **II** Challenges in HPC with Mobile SoCs



#### Platforms under study: CPU and Memory



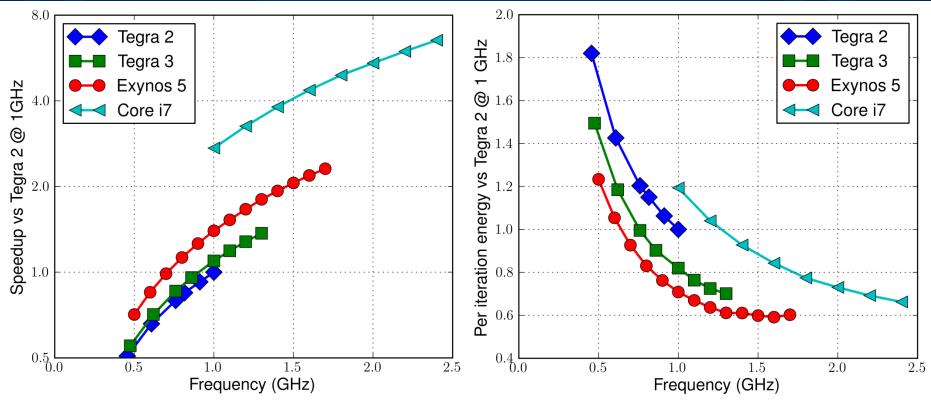
NVIDIA Tegra 2 2 x ARM Cortex-A9 @ 1GHz 1 x 32-bit DDR2-333 channel 32KB L1 + 1MB L2



Samsung Exynos 5 Dual 2 x ARM Cortex-A15 @ 1.7GHz 2 x 32-bit DDR3-800 channels 32KB L1 + 1MB L2



NVIDIA Tegra 3 4 x ARM Cortex-A9 @ 1.3GHz 1 x 32-bit DDR3-750 channel 32KB L1 + 1MB L2




Intel Core i7-2760QM 4 x Intel SandyBridge @ 2.4GHz 2 x 64-bit DDR3-800 channels 32KB L1 + 1MB L2 + 6MB L3

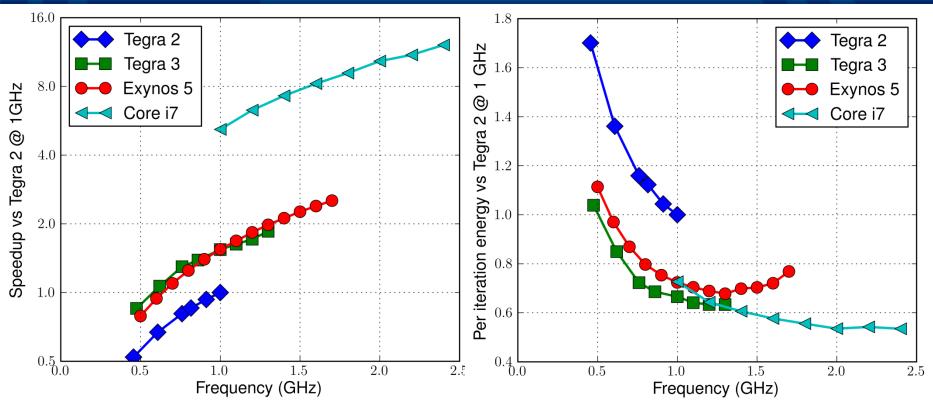
8



#### Single core performance and energy



(Cortex-A9 in Tegra3 is 1.4x faster than Tegra2 (higher clock frequency)

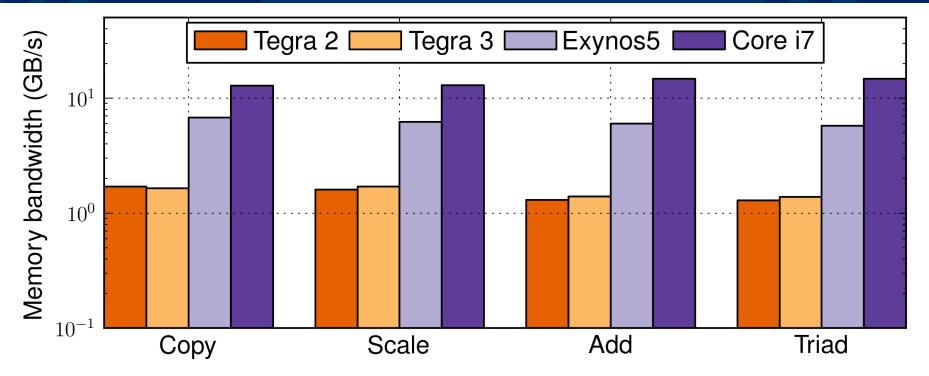

- ( Cortex-A15 in Exynos5 is 1.7x faster than Cortex-A9 in Tegra3
  - Higher clock frequency, higher memory bandwidth, and better core microarchitecture
- Core i7 is ~3x faster than Cortex-A15 in Exynos5 at maximum frequency
  - 2x faster at the same frequency

#### **(** Mobile SoC platforms as efficient as Core i7 platform at their highest operating points



9

#### Multicore performance and energy




( Tegra3 platform as fast as Exynos5 platform, a bit more energy efficient

- 4-core Cortex-A9 vs. 2-core Cortex-A15
- (Corei7 is 6x faster than Exynos5 at maximum frequency

#### ( Tegra3 and Exynos5 as efficient as Corei7 at the same frequency

# Memory bandwidth (STREAM)



( Exynos 5 improves dramatically over Tegra (4.5x)

- Dual-channel DDR3
- ARM Cortex-A15 sustains more in-flight cache misses
- (Corei7 provides ~2x more memory bandwidth than Exynos5



## ( Motivation

- Mobile SoCs evaluation
- ( Mobile SoCs in cluster environment

### **II** Challenges in HPC with Mobile SoCs



# Tibidabo: The first ARM HPC multicore cluster



Q7 Tegra 2 2 x Cortex-A9 @ 1GHz 2 GFLOPS 5 Watts (?) 0.4 GFLOPS / W



Q7 carrier board 2 x Cortex-A9 2 GFLOPS 1 GbE + 100 MbE 7 Watts 0.3 GFLOPS / W



**1U Rackable blade** 8 nodes 16 GFLOPS 65 Watts 0.25 GFLOPS / W

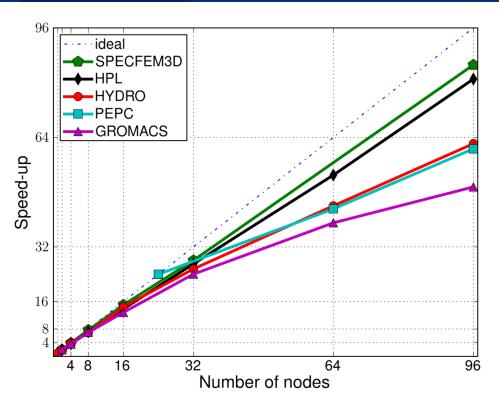


2 Racks

32 blade containers 256 nodes 512 cores 10x 48-port 1GbE switch 8x 48-port 100 MbE switch

512 GFLOPS 3.4 Kwatt 0.15 GFLOPS / W

- (Cluster of developer kits, not a custom design
  - Proof of concept and insights


UNIVERSITAT POLITÈCNICA

BARCELONATECH

( Enable software stack and applications tuning



# **Applications scalability**



| Application | Description                                           |
|-------------|-------------------------------------------------------|
| HPL         | High Performance LINPACK                              |
| PEPC        | Tree code for N-body problem                          |
| HYDRO       | 2D Eulerian hydrodinamics                             |
| GROMACS     | Molecular dynamics                                    |
| SPECFEM3D   | 3D seismic wave propagation (spectral element method) |

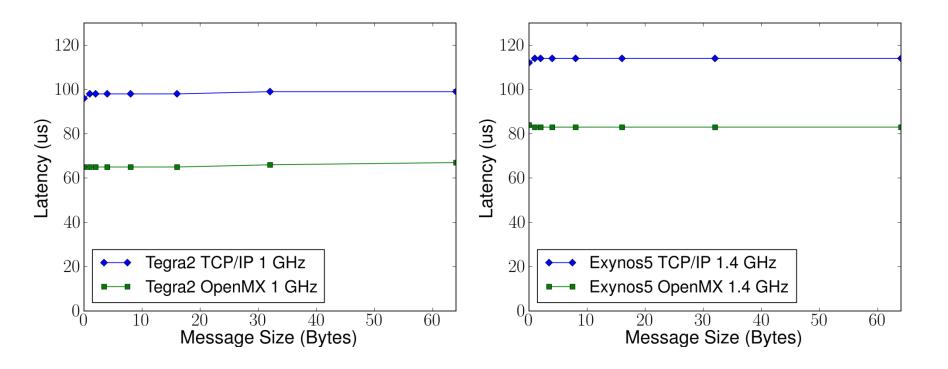
#### ( Weak scalability test with HPL

- 97 GFLOPS on 96 nodes (51% efficiency, linear scaling)
- 0.12 GFLOPS/W
- ( Strong scalability with the rest
  - Very small input set, 1GB DRAM per node



#### Interconnect evaluation: SoCs under study




NVIDIA Tegra 2 1 GbE (on PCle) 100 Mbit (on USB 2.0)

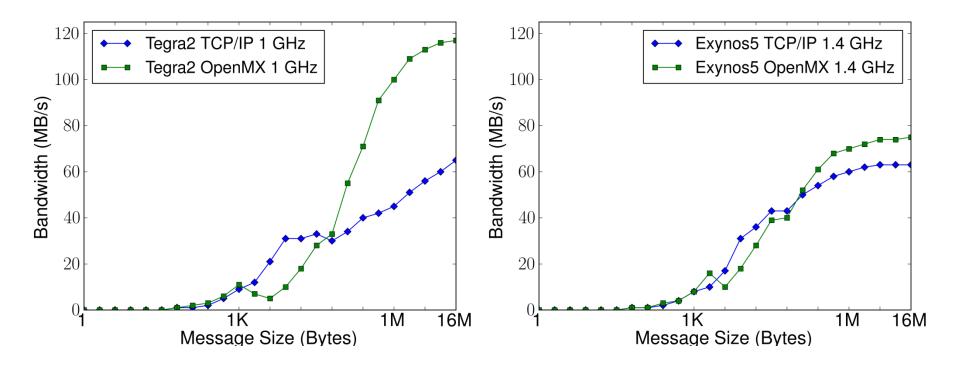


Samsung Exynos 5 Dual **1 GbE (on USB3.0)** 100 Mbit (on USB 2.0)



#### Interconnect evaluation: latency




(C TCP/IP adds significant CPU overhead
(C OpenMX driver interfaces "directly" to the Ethernet NIC
(C USB in Exynos5 adds extra latency on top of network stack



DE CATALUNYA

BARCELONATECH

#### Interconnect evaluation: bandwidth



TCP/IP overhead prevents Tegra2 from achieving full bandwidth
 OpenMX does achieve peak bandwidth

( USB overheads prevent Exynos 5 from achieving full bandwidth, even with OpenMX



## ( Motivation

- Mobile SoCs evaluation
- **II** Mobile SoCs in cluster environment
- ( Challenges in HPC with Mobile SoCs



# Challenges in HPC with Mobile SoCs Our experience: Hardware

- ( Mobile SoCs still do not target HPC
  - Platforms are available only as developer kits
- ( Developer boards are not designed for continued highperformance operation
  - Usually, no cooling infrastructure
  - Very hard for packaging (also low density)
- ( PCIe not reliable in Tegra2 and Tegra3
  - Could fail to initialize during boot
  - Stop responding during heavy workloads



# Challenges in HPC with Mobile SoCs Our experience: System software and applications

( Software ecosystem is built for high-compatibility across diverse ARM-powered Mobile SoCs

- Entire Linux distributions compiled with lowest level of optimizations
- Softfp ABI is still mainstream

( Linux distributions and kernels are not 'turn key' solutions

 Rely on vendors to provide with correct set of kernels and Linux distribution images



# Mobile SoC limitations for HPC

- ( 32-bit memory controller
  - Even though ARM Cortex-A15 offers 40-bit address space
- ( No ECC protection in memory
  - Limiting factor for scalability after certain number of nodes
- ( No standard server I/O interfaces
  - Provide USB 3.0, SATA and (minimal) PCIe
- ( No protocol offload engines
  - e.g. TCP/IP runs on CPU
- ( Low grade thermal package

#### ( These are only design decisions, not really unsolvable problems

- ARM server SoCs don't have any of these restrictions



( Mobile SoCs enjoy aggressive roadmaps and fast innovations

- driven by commodity components business dynamics and market

( They have to address their limitations before entering HPC
 ECC, interconnect, 32-bit address space, low-grade thermal package ...

( Mobile SoCs may introduce a new class of supercomputers:

- Faster, cheaper and more energy efficient
- If vendors decide to include a minimum set of required features

