Existence of cyclic k-cycle systems of the complete graph

Marco Burattia,*, Alberto Del Frab

aDipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, I-06123 Perugia, Italy
bDipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Roma “La Sapienza”, Via Scarpa 16, I-00161 Roma, Italy

Received 10 May 2001; accepted 3 November 2001

Dedicated to Alex Rosa on the occasion of his sixty-fifth birthday

Abstract

Starting from earliest papers by Rosa we solve, directly and explicitly, the existence problem for cyclic k-cycle systems of the complete graph K_v with $v \equiv 1 \pmod{2k}$, and the existence problem for cyclic k-cycle systems of the complete m-partite graph $K_{m \times k}$ with m and k being odd. As a particular consequence, a cyclic p-cycle system of K_v with p being a prime exists for all admissible values of v but $(p, v) \neq (3, 9)$. This was previously known only for $p = 3, 5, 7$.

Keywords: (Cyclic) k-cycle system; (Hooked) Skolem sequence; (Hooked) Rosa sequence

1. Introduction

We use the standard notation of graph theory so that K_v, $K_{m \times k}$ and C_k will, respectively, denote the complete graph on v vertices, the complete m-partite graph with parts of size k, and the k-cycle. As usual, speaking of a k-cycle (b_1, b_2, \ldots, b_k), we mean that its edges are $[b_1, b_2], [b_2, b_3], \ldots, [b_k, b_1]$.

A k-cycle system of a graph $G = (V, E)$ is a (multi)set \mathcal{B} of k-cycles whose edges partition E. The set \mathcal{B} is cyclic if $V = \mathbb{Z}_v$ and if $B = (b_1, b_2, \ldots, b_k) \in \mathcal{B}$ implies that $B + 1 = (b_1 + 1, b_2 + 1, \ldots, b_k + 1)$ is also in \mathcal{B}.

* Corresponding author.

E-mail address: buratti@mat.uniroma1.it (M. Buratti).
Note, in particular, that a 3-cycle system of the complete graph K_v, usually called a Steiner triple system, is a $2 - (v, 3, 1)$ design. For general background on k-cycle systems we refer to [16,19]. Quite recently it has been proved that k-cycle systems of K_v always exist when k and v satisfy the necessary conditions (see [3,24]). Relevant background on STSs is provided by [9].

A k-cycle system of G is also called a decomposition of G into k-cycles or a (G, C_k)-design. More generally, given a subgraph H of a graph G, a (G,H)-design is a decomposition of G into copies of H (see [14]).

Given a k-cycle $B = (b_1, b_2, \ldots, b_k)$ with vertices in $Z_v,$ the list of differences from B is the multiset $\Delta B = \{ \pm (b_i - b_{i-1}) \mid i = 1, 2, \ldots, k \}$ where $b_0 = b_k.$ We call (K_v, C_k)-difference system (DS in short) any set $\mathcal{F} = \{B_1, B_2, \ldots, B_n\}$ of k-cycles (starter cycles) with vertices in Z_v such that the multiset $\Delta \mathcal{F} = \bigcup_{i=1}^{n} \Delta B_i$ covers each nonzero element of Z_v exactly once.

Analogously, we define a $(K_{m \times k}, C_k)$-DS to be a set $\mathcal{F} = \{B_1, B_2, \ldots, B_n\}$ of k-cycles with vertices in Z_{mk} such that $\Delta \mathcal{F} = Z_{mk} - mZ_{mk}.$

The above terminology is justified by the fact that any (K_v, C_k)- or $(K_{m \times k}, C_k)$-DS generates a cyclic (K_v, C_k)- or $(K_{m \times k}, C_k)$-design whose cycles are all the translates of its starter cycles.

We point out, however, that not every cyclic k-cycle system of K_v or $K_{m \times k}$ is generated by a difference system. For instance, it is obvious that a cyclic (K_k, C_k)-design (whose existence will be shown for k prime in the last section) cannot be generated by a (K_k, C_k)-DS since any k-cycle produces too many (exactly $2k$) differences.

A description in terms of differences of any cyclic k-cycle system may be found in [8].

Note the analogy between the notions of DSs given above and difference families. A $(v,k,1)$ difference family generates a cyclic $2 - (v,k,1)$ design, i.e., a cyclic (K_v, K_k)-design while a $(mk,k,k,1)$ difference family generates a cyclic $(k,1)$-group divisible design of type k^m, i.e., a cyclic $(K_{m \times k}, K_k)$-design (see [1,5,6] for more information).

In a series of early papers [20,21,22,23], Rosa studied the existence problem for cyclic k-cycle systems of the complete $(m$-partite) graph. Rosa gave cyclic k-cycle systems for $k \equiv 2 \pmod{4}$ and Kotzig provided a solution for $k \equiv 0 \pmod{4}$. For cyclic k-cycle systems of K_v with k even see also [11].

We briefly illustrate the strategy used by Rosa. He proves the existence of an $n \times k$ matrix $A = (a_{ih})$ with entries in Z satisfying the following conditions:

$$\{ \{a_{ih}\mid 1 \leq i \leq n; \ 1 \leq h \leq k\} = \{1, 2, \ldots, kn\},$$
$$\sum_{h=1}^{k} a_{ih} \equiv 0 \pmod{2kn + 1}. \quad (2)$$

Then he associates with A a set $\mathcal{F}(A) = \{B_1, \ldots, B_n\}$ of closed k-trails in the complete graph on Z_{2kn+1} where $B_i = (b_1, b_2, \ldots, b_k)$ is defined by $b_{ih} = \sum_{h=1}^{t} a_{ih}.$

The set $\mathcal{F}(A)$ will fail to be a (K_{2kn+1}, C_k)-DS only if some B_i is not a cycle. In this case, $\mathcal{F}(A)$ generates a decomposition of K_{2kn+1} into closed k-trials.
Starting from A, one may generate $(k!)^n$ matrices satisfying (1) and (2). These matrices are all of the form $A^\sigma = (a_{i,\sigma(i)})$ where $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_n)$ is an arbitrary n-tuple of permutations on the set $\{1, 2, \ldots, k\}$.

In view of this, there are good chances that $\mathcal{F}(A^\sigma)$ is actually a (K_{2kn+1}, C_k)-DS for a suitable σ. Hence this method is a strong indication about the existence of a cyclic (K_{2kn+1}, C_k)-design for any (k, n). In spite of this, for k odd, Rosa was able to prove its existence for $k = 3, 5, 7$.

In a similar way, Rosa gave a strong indication about the existence of a cyclic $(K_{m \times k}, C_k)$-design with both m and k being odd but, also here, he leaves the problem open for $k \geq 7$.

In this paper we prove, directly and explicitly, the existence of a cyclic (K_{2kn+1}, C_k)-design for any pair of odd integers m and k.

In our constructions we need the crucial help of Skolem sequences and Rosa sequences.

Definition 1.1. A Skolem sequence of order n is a sequence of n integers (s_1, \ldots, s_n) such that $\bigcup_{i=1}^n \{s_i, s_i + i\} = \{1, 2, \ldots, 2n + 1\} - \{k\}$ where

$$k = \begin{cases} 2n + 1 & \text{for } n \equiv 0 \text{ or } 1 \pmod{4}, \\ 2n & \text{otherwise}. \end{cases}$$

In the case of $n \equiv 2$ or $3 \pmod{4}$ one usually speaks of a hooked Skolem sequence.

Definition 1.2. A Rosa sequence of order n is a sequence of n integers (r_1, \ldots, r_n) such that $\bigcup_{i=1}^n \{r_i, r_i + i\} = \{1, 2, \ldots, 2n + 2\} - \{n + 1, k\}$ where

$$k = \begin{cases} 2n + 2 & \text{for } n \equiv 0 \text{ or } 3 \pmod{4}, \\ 2n + 1 & \text{otherwise}. \end{cases}$$

In the case of $n \equiv 1$ or $2 \pmod{4}$ one usually speaks of a hooked Rosa sequence.

Theorem 1.3. There exists a Skolem sequence of order n for any $n \geq 1$ [25].

There exists a Rosa sequence of order n for any $n > 1$ [20].

We point out that Skolem sequences and their generalizations (see also [4]) have revealed to be very useful in the construction of several kinds of combinatorial designs (see, e.g., [7,12,18]).

2. Cyclic k-cycle systems of K_{2kn+1}

In this section, we explicitly construct a (K_{2kn+1}, C_k)-design for any pair of positive integers k and n. First, we consider the case of $n = 1$ where we have the following nice easy solution.
Lemma 2.1. There exists a cyclic k-cycle system of K_{2k+1} for any k.

Proof. Let $B = (b_1, b_2, \ldots, b_k)$ be the k-cycle defined by

$$b_i = \begin{cases}
 i(-1)^{i+1} & \text{for } i < \frac{k}{2}, \\
 i(-1)^i & \text{for } i \geq \frac{k}{2}.
\end{cases}$$

It is immediate to see that the b_i's are pairwise distinct so that B is actually a k-cycle.
Also, it is easy to check that $\Delta B = Z_{2k+1} - \{0\}$ so that B generates the required k-cycle system. \qed

Figs. 1 and 2 give examples of the k-cycle B when $k = 10$ and 11.
In all the figures, representing a cycle with vertices in Z_v, we only indicate the differences from that cycle not exceeding $(v - 1)/2$.

Theorem 2.2. There exists a cyclic (K_{2kn+1}, C_k)-design for any pair of positive integers k and n.

Proof. We divide the proof into 7 cases.

Case 1: k is even.
As pointed out in the introduction, this case was already solved by Rosa and Kotzig. Here we propose another easy solution.
For \(i = 1, \ldots, n \) consider the \(k \)-cycle \(B_i = (b_1, b_2, \ldots, b_k) \) defined by

\[
b_j = \begin{cases}
(1 - j)n/2 & \text{for } j \text{ odd,} \\
 i + (j - 2)n/2 & \text{for } j = \frac{k + 2}{2}, \\
 i + (k + j + \epsilon)n/2 & \text{for } j > \frac{k + 2}{2},
\end{cases}
\]

where \(\epsilon = 0 \) or \(-2\) according to whether \(k \equiv 0 \) or \(2 \) (mod 4), respectively, i.e., \(\epsilon = (-1)^{k/2} - 1 \).

We note, first, that in each \(B_i \) the \(b_j \)'s with \(j \) even form a decreasing sequence \(b_2 > b_4 > \cdots > b_{k-1} \) in the interval \(I = [0, (k + 1)n] \) while the \(b_j \)'s with \(j \) odd form an increasing sequence \(b_1 < b_3 < \cdots < b_k \) in the complement of \(I \) in \(\mathbb{Z}_{2kn+1} \). Thus, the \(b_j \)'s in \(B_i \) are pairwise distinct and hence \(B_i \) is actually a \(k \)-cycle.

Now, we want to prove that \(\mathcal{F} = \{B_1, B_2, \ldots, B_n\} \) is a \((K_{2kn+1}, C_k) \)-DS. To do this it is enough to show that \(\Delta \mathcal{F} \) covers the set \(\{1, 2, \ldots, kn\} \).

Let \(z \in \{1, 2, \ldots, kn\} \). Then \(z = x + yn \) with \(1 \leq x \leq n \) and \(0 \leq y \leq k - 1 \). One may easily check that

\[
x + yn = \begin{cases}
(1 - y)(b_{x,y+2} - b_{x,y+1}) & \text{for } y \leq \frac{k - \epsilon - 2}{2}, \\
(1 - y)(b_{i,j+(-1)^{\beta+1}} - b_{ij}) & \text{for } \frac{k - \epsilon - 2}{2} < y < k - 1,
\end{cases}
\]

where \(\alpha = y + k/2, i = n + 1 - x, j = (3k - 2y)/2 \) and \(\beta = k/2 \).

We also have

\[
x + (k - 1)n = \begin{cases}
b_{n+1-x,1} - b_{n+1-x,k} & \text{for } k \equiv 0 \text{ (mod 4)}, \\
b_{xk} - b_{x1} & \text{for } k \equiv 2 \text{ (mod 4)}.
\end{cases}
\]

Thus, in any case, we have \(z \in \Delta \mathcal{F} \).

Figs. 3 and 4 give examples of \((K_{2kn+1}, C_k) \)-DSs when \(k = 10 \) and 12.

Case 2: \(n = 1 \).

Here the solution is given by Lemma 2.1.

Case 3: \(k = 3, n > 1 \).
Fix a Skolem sequence \((s_1, \ldots, s_n)\) of order \(n\). Then the required design is generated by the starter cycles \(B_1, \ldots, B_n\) where \(B_i = (0, i, s_i + i + n)\).

Case 4: \(k = 5\), \(n > 1\).

Fix a Skolem sequence \((s_1, \ldots, s_n)\) of order \(n\). Here the required design is generated by the starter cycles \(B_1, \ldots, B_n\) where \(B_i = (0, s_i + i, i, -2n, i + 3n)\) with \(B_1\) replaced by \(B'_1 = (0, s_1 + 1, 1, 5n + 1, 2n)\) in the case of \(n \equiv 2\) or \(3\) (mod 4).

Case 5: \(k > 5\) is odd and \(1 < n \equiv 0\) or \(1\) (mod 4).

Fix a Skolem sequence \((s_1, \ldots, s_n)\) of order \(n\).

Then, for \(i = 1, \ldots, n\), consider the \(k\)-cycle \(B_i = (b_{i1}, b_{i2}, \ldots, b_{ik})\) defined as follows:

\[
b_{i1} = 0, \quad b_{i2} = -s_i, \quad b_{ij} = \begin{cases}
-\frac{jn}{2} & \text{for } j \text{ even, } j \neq 2, \\
i + \frac{(j-3)n}{2} & \text{for } j \text{ odd, } j \leq \frac{k+1}{2}, \\
i + \frac{(k+j+\varepsilon)n}{2} & \text{for } j \text{ odd, } j > \frac{k+1}{2},
\end{cases}
\]

where \(\varepsilon = -2\) or 0 according to whether \(k \equiv 1\) or \(3\) (mod 4), respectively, i.e., \(\varepsilon = (-1)^{(k+1)/2} - 1\).

Reasoning as in the 1st case one may see that each \(B_i\) is actually a \(k\)-cycle.

Let us show that \(\mathcal{F} = \{B_1, \ldots, B_n\}\) is a \((K_{2kn+1}, C_k)\)-DS.

First of all, by Definition 1.1 we have

\[
\bigcup_{i=1}^{n} \{\pm(b_{i1} - b_{i2}), \pm(b_{i2} - b_{i3})\} = \bigcup_{i=1}^{n} \{\pm(s_i, \pm(s_i + i)\} = \pm \{1, 2, \ldots, 2n\},
\]

so that each element in \(\{1, 2, \ldots, 2n\}\) is covered by \(\Delta\mathcal{F}\).

For \(1 \leq x \leq n\) we have

\[
x + yn = \begin{cases}
(\cdot 1)^y(b_{x,y+1} - b_{x,y+2}) & \text{for } 2 \leq y \leq \frac{k - \varepsilon - 3}{2}, \\
(\cdot 1)^y(b_{x,y+(-1)^{y+1} - b_{ij}}) & \text{for } \frac{k - \varepsilon - 3}{2} < y < k - 1,
\end{cases}
\]

where \(x = y + (k - 1)/2\), \(i = n + 1 - x\), \(j = (3k - 2y - 1)/2\) and \(\beta = (k + 1)/2\).
Finally, for $1 \leq x \leq n$ we have

$$x + (k - 1)n = \begin{cases}
 b_{n+1-x,k} - b_{n+1-x,k} & \text{for } k \equiv 3 \pmod{4}, \\
 b_{x} - b_{x} & \text{for } k \equiv 1 \pmod{4}.
\end{cases}$$

In this way we see that each element in the set $\{1, 2, \ldots, kn\}$, namely of the form $x + yn$ with $1 \leq x \leq n$ and $0 \leq y \leq k - 1$, appears in $\Delta \mathcal{F}$. This assures that \mathcal{F} is a (K_{2kn+1}, C_k)-DS.

Figs. 5 and 6 give examples of (K_{2kn+1}, C_k)-DSs for $k = 11$ and 9 when $n \equiv 0$ or $1 \pmod{4}$.

Case 6: $5 < k \equiv 1 \pmod{4}$ and $n \equiv 2$ or $3 \pmod{4}$.

Consider the set of k-cycles \mathcal{F} defined as in case 5. Here we have $\bigcup_{i=1}^{n} \{s_i, s_i + i\} = \{1, 2, \ldots, 2kn - 1, 2n + 1\}$ so that \mathcal{F} fails to be a (K_{2kn+1}, C_k)-DS only because $2n + 1$ appears twice in $\Delta \mathcal{F}$ while $2n$ does not appear there. Consider the k-cycle $A = (a_1, a_2, \ldots, a_k)$ defined as follows:

$$a_1 = 1, \quad a_3 = 0, \quad a_{k-2} = 5n, \quad a_{k-1} = (4 - k)n, \quad a_k = (k + 3)n/2 + 1$$

and $a_j = b_{ij}$ for all j's $\notin \{1, 3, k - 2, k - 1, k\}$.

It is straightforward to check that A is actually a k-cycle (its vertices are pairwise distinct). Let us calculate its list of differences (mod $2kn + 1$). We have

$$a_1 - a_2 = b_{13} - b_{12} = s_1 + 1, \quad a_2 - a_3 = b_{12} - b_{11} = -s_1,$$

$$a_{k-2} - a_{k-3} = b_{1,k-3} - b_{1,k-2} = \frac{(k + 7)n}{2},$$
\[a_{k-1} - a_{k-2} = b_{1k} - b_{11} = (k - 1)n + 1, \]
\[a_{k-1} - a_{k} = b_{1,k-1} - b_{1,k-2} = \frac{(k + 5)n}{2}, \quad a_{k} - a_{1} = b_{1,k-1} - b_{1k} = \frac{(k + 3)n}{2}. \]

The above identities imply that
\[\pm\{a_{j} - a_{j+1} \mid j = 1, 2, k - 3, k - 2, k - 1, k\} \]
\[= \pm\{b_{1j} - b_{1,j+1} \mid j = 1, 2, k - 3, k - 2, k - 1, k\}. \]

We also have
\[b_{13} - b_{14} = 2n + 1, \quad a_3 - a_4 = 2n, \]
\[b_{1j} - b_{1,j+1} = a_{j} - a_{j+1} \quad \text{for} \ 4 \leq j \leq k - 4. \]

Thus, we have \(\Delta A = (\Delta B_1 - \{\pm(2n + 1)\}) \cup \{\pm 2n\} \) so that, in view of the previous observation on \(\Delta \mathcal{F} \), we may claim that \(\mathcal{F}' = \{A, B_2, \ldots, B_n\} \) is a \((K_{2kn+1}, C_k)\)-DS.

Case 7: \(3 < k \equiv 3 \pmod{4} \) and \(n \equiv 2 \) or \(3 \pmod{4} \).

The set \(\mathcal{F} \) defined as in the 5th case fails to be a \((K_{2kn+1}, C_k)\)-DS for the same reason for which it fails in the 6th one. Also here we overcome this inconvenience by replacing the cycle \(B_1 \) with a cycle \(A \) such that \(\Delta A = (\Delta B_1 - \{\pm(2n + 1)\}) \cup \{\pm 2n\} \).

One may easily check that a cycle \(A \) satisfying this condition is the one defined by the following rules:
\[a_1 = 1, \quad a_3 = 0, \quad a_{j} = b_{1j} \quad \text{for} \ 1 \neq j \neq 3. \]

It is worthwhile to note that when \(k \) is odd and \(2kn + 1 \) is a prime, a nice solution of the problem treated in this section may be obtained as follows. Fix a primitive \(k \)-th root of unity \(e \in \mathbb{Z}_{2kn+1} \) and construct, for \(i = 1, \ldots, n \), the \(k \)-cycle
\[B_i = (e^{i+1}, e^{i+2}, \ldots, e^{i+k}). \]

It is straightforward to check that \(\{B_1, \ldots, B_n\} \) is a \((K_{2kn+1}, C_k)\)-DS.

3. Cyclic \(k \)-cycle systems of \(K_m \times k \)

First we consider the case of \(m = 3 \).

Lemma 3.1. There exists a cyclic \((K_{3 \times k}, C_k)\)-design for any odd \(k \) but \(k = 3 \).

Proof. It is well known that no cyclic \((K_{3 \times 3}, C_3)\)-design exists. So, assume \(k \geq 5 \). Let\(B = (b_1, b_2, \ldots, b_k) \) be the \(k \)-cycle defined as follows:
\[b_i = (3i - 2)(-1)^i \quad \text{for} \ 1 \leq i \leq k - 4, \]
\[b_{k-3} = 1, \quad b_{k-2} = -6, \quad b_{k-1} = 19, \quad b_k = 0. \]
It is easy to see that the b_j's are pairwise distinct. Let us show that $\{B\}$ is a $(K_3 \times k, C_k)$-DS. Observing that $Z_{3k} - 3Z_{3k} = \{6x + 1 | 0 \leq x < k\}$, it suffices to check that $6x + 1 \in \Delta B$ for each $x \in \{0, 1, \ldots, k - 1\}$:

\[
\begin{align*}
6 \times 0 + 1 &= b_k - b_1, \\
6 \times 1 + 1 &= b_k - 3 - b_{k-2}, \\
6 \times 2 + 1 &= b_k - 4 - b_{k-3}, \\
6 \times 3 + 1 &= b_k - b_k, \\
6 \times 4 + 1 &= b_k - b_{k-2}, \\
6x + 1 &= (-1)^{\gamma}(b_{k-x} - b_{k-x+1}) & \text{for } 5 \leq x \leq k - 1.
\end{align*}
\]

Figure 7 gives a $(K_3 \times 11, C_{11})$-DS.

Theorem 3.2. For any pair of odd integers (m,k), but $(m,k) \neq (3,3)$, there exists a cyclic k-cycle system of $K_{m\times k}$.

Proof. Set $k = 2h + 1$ and $m = 2n + 1$.

Case 1: $n = 1$.

Here the solution is given by Lemma 3.1.

Case 2: $n > 1$.

For $i = 1, 2, \ldots, n$, consider the k-cycle $B_i = (b_{i1}, b_{i2}, \ldots, b_{ik})$ defined by the following rules:

\[
b_{ij} = \begin{cases}
\frac{m(j - 1)}{2} & \text{for } j \text{ odd}, \ j \neq k, \\
\frac{m\left(h - \frac{j}{2}\right)}{2} - i & \text{for } j \text{ even},
\end{cases}
\]

where (r_1, r_2, \ldots, r_n) is a fixed Rosa sequence of order n.

For our purpose it is enough to prove that $\mathcal{F} = \{B_1, \ldots, B_n\}$ is a $(K_{m\times k}, C_k)$-DS or, equivalently, that the set $Z = \{1, 2, \ldots, hm + n\} - \{0, m, 2m, \ldots, hm\}$ is covered by $\Delta \mathcal{F}$.

Each $z \in Z$ may be written in the form $z = mx \pm y$ with $0 \leq x \leq h$ and $1 \leq y \leq n$.

For $0 \leq x \leq h - 1$ and $1 \leq y \leq n$ we have

\[
mx \pm y = \pm (-1)^{k+x}(y, h, h+1) - b_{y, h+x} \in \Delta \mathcal{F}.
\]

Now consider the elements $z \in Z$ of the form $z = mh \pm y$ with $1 \leq y \leq n$.
First, assume that \(z \neq hm + n \), i.e., \(y \neq n \). In this case, we have \(z = t + (hm - n - 1) \) with \(t \in \{1, 2, \ldots, 2n\} - \{n + 1\} \). Thus, by Definition 1.2, we have \(t = r_i \) or \(t = r_i + i \) for some \(i \) so that \(z = r_i + (hm - n - 1) \) or \(z = r_i + i + (hm - n - 1) \) for some \(i \). Then \(z \in \Delta \mathcal{F} \) since for each \(i = 1, \ldots, (m - 1)/2 \) we have

\[
b_{hj} = r_i + i + (hm - n - 1) \quad \text{and} \quad b_{hj} - b_{hj-1} = r_i + (hm - n - 1).
\]

It remains to show that \(hm + n \) also appears in \(\Delta \mathcal{F} \). Observe that

\[
hm + n = (2n + 1) + (hm - n - 1) \quad \text{and} \quad -(hm + n) = (2n + 2) + (hm - n - 1).
\]

By Definition 1.2 there is a suitable \(i \) for which one of the following identities holds:

\[
2n + 1 = r_i \quad \text{or} \quad 2n + 1 = r_i + i \quad \text{or} \quad 2n + 2 = r_i \quad \text{or} \quad 2n + 2 = r_i + i.
\]

Thus, in view of (3) and (4), we obtain that \(hm + n \in \Delta \mathcal{F} \). □

Figure 8 gives an example of \((K_{m \times 11}, C_{11})\)-DS when \(m \) is odd.

Now, we are going to show that in the case where \(m \) and \(k \) are coprime, there is an elegant solution of the problem considered in this section.

Note that in this case we may identify \(Z_{mk} \) and \(mZ_{mk} \) with the groups \(Z_m \oplus Z_k \) and \(\{0\} \oplus Z_k \), respectively.

First, recall that a starter [10] in \(Z_m \), \(m \) odd, is a set \(\{(x_i, y_i) | 1 \leq i \leq (m-1)/2\} \) of pairs of elements of \(Z_m \) such that

\[
\bigcup_{i=1}^{(m-1)/2} \{x_i, y_i\} = \bigcup_{i=1}^{(m-1)/2} \{x_i - y_i, y_i - x_i\} = Z_m - \{0\}.
\]

Theorem 3.3. Let \(m, k \) be coprime odd integers and let \(\mathcal{F} = \{(x_i, y_i) | 1 \leq i \leq (m-1)/2\} \) be a starter in \(Z_m \). For \(i = 1, \ldots, (m-1)/2 \), define \(B_i = (b_{i0}, b_{i1}, \ldots, b_{ik-1}) \) by

\[
b_{i0} = (0, 0), \quad b_{ij} = \begin{cases} (x_i, j) & \text{for } j \text{ even}, \\ (y_i, -j) & \text{for } j \text{ odd}. \end{cases}
\]

Then, identifying \(Z_{mk} \) with \(Z_m \oplus Z_k \), we have that \(\{B_1, \ldots, B_n\} \) is a \((K_{m \times k}, C_k)\)-DS.
Proof. It is not difficult to see that for $i = 1, \ldots, n$ we have

$$\Delta B_i = \pm \{(x_i, y_i) \times \{-1\}\} \cup \bigcup_{h \in Z_n - \{\pm 1\}} \{x_i - y_i, y_i - x_i\} \times \{h\}.$$

So, in view of (5) we have

$$\Delta \mathcal{F} = \bigcup_{i=1}^{n} \Delta B_i = \bigcup_{h=0}^{k-1} (Z_m - \{0\}) \times \{h\} = (Z_m \oplus Z_k) - (\{0\} \oplus Z_k).$$

The assertion follows. \hfill \Box

Corollary 3.4. Let m, k be coprime odd integers. Then, identifying Z_{mk} with $Z_m \oplus Z_k$, we have that a $(K_{m \times k}, C_k)$-DS is given by the cycles $B_1, \ldots, B_{(m-1)/2}$ where $B_i = (b_{i0}, b_{i1}, \ldots, b_{ik-1})$ is defined by

$$b_{i0} = (0, 0), \quad b_{ij} = (-1)^{i-j}(i,j) \quad \text{for} \ j > 0.$$

Proof. It suffices to apply Theorem 3.3 using as \mathcal{S} the so-called patterned starter $\{(i, -i) \mid 1 \leq i \leq (m - 1)/2\}$. \hfill \Box

4. Cyclic p-cycle systems of the complete graph with p a prime

The existence of a cyclic $(K_{m \times k}, C_k)$-design may be helpful to get a cyclic (K_{mk}, C_k)-design. In fact we have

Theorem 4.1. If there exists a cyclic $(K_{m \times k}, C_k)$-design and a cyclic (K_k, C_k)-design, then there also exists a (K_{mk}, C_k)-design.

Proof. Let \mathcal{A} and \mathcal{B}, respectively, be a cyclic $(K_{m \times k}, C_k)$-design and a cyclic (K_k, C_k)-design. For any $B = (b_1, \ldots, b_i) \in \mathcal{B}$ and any $i \in \{1, 2, \ldots, m\}$, set $mb + i = (mb_1 + i, \ldots, mb_k + i) \pmod{mk}$. It is straightforward to check that $\mathcal{A} \cup \{mb + i \mid B \in \mathcal{B}; 1 \leq i \leq m\}$ is a cyclic (K_{mk}, C_k)-design. \hfill \Box

Because of Theorem 4.1, the existence problem for cyclic (K_k, C_k)-designs is remarkable. For k a prime the easy answer is given by the following theorem.

Theorem 4.2. There exists a cyclic (K_k, C_k)-design for any odd prime k.

Proof. It is straightforward to check that a cyclic (K_k, C_k)-design is given by $\mathcal{B} = \{B_1, \ldots, B_{(k-1)/2}\}$ where $B_i = (b_{i1}, \ldots, b_{ik})$ is the k-cycle defined by $b_{ij} = i \cdot j$. \hfill \Box

The result established in the previous sections and the above two theorems allow us to state:

Theorem 4.3. If k is an odd prime, then there exists a cyclic (K_v, C_k)-design for any admissible value of v but $(v,k) \neq (9,3)$.

Proof. The admissible values of v for which there exists a (K_v, C_k)-design are those satisfying the following conditions:

$$v(v - 1) \equiv 0 \pmod{2k} \quad \text{and} \quad v \equiv 1 \pmod{2}.$$ \hspace{1cm} (6)

This is because in a (K_v, C_k)-design we have exactly $v(v - 1)/2k$ cycles and the number of cycles through any given vertex is $(v - 1)/2$. On the other hand, if k is a prime, condition (6) is equivalent to the following:

$$v \equiv 1 \quad \text{or} \quad k \pmod{2k}.$$

For $v \equiv 1 \pmod{2k}$ the existence of a cyclic (K_v, C_k)-design is guaranteed by Theorem 2.2. For $v \equiv k \pmod{2k}$, i.e., $v = mk$ with m odd, we get a cyclic (K_v, C_k)-design by applying Theorem 3.2 in conjunction with Theorems 4.1 and 4.2.

The existence problem for cyclic (K_k, C_k)-designs for general k will be considered in a forthcoming paper.

Added in Proof. In a very recent paper [13] solving a problem posed by Alspach [2], Fu and Wu also got the existence of a cyclic (K_{2kn+1}, C_k)-design for any (k, n).

References

[22] A. Rosa, On cyclic decompositions of the complete graph into polygons with odd number of edges (Slovak), Časopis Pěst. Mat. 91 (1966) 53–63.