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Abstract: Super resolution methods alleviate the high cost and high difficulty in applying
high resolution infrared image sensors. In this paper we present a novel single image super
resolution method for infrared images by combining compressive sensing theory and deep learning.
Low resolution images can be regarded as the compressed sampling results of the high resolution ones
in compressive sensing. With sparsity in this theory, higher resolution images can be reconstructed.
However, because of diverse level of sparsity for different images, the output contains noise and loss
of high frequency information. Deep convolutional neural network provides a solution to relieve the
noise and supplement some missing high frequency information. By concatenating two methods,
we manage to produce better results in super resolution tasks for infrared images than SRCNN
and ScSR. PSNR and SSIM values are used to quantify the performance. Applying our method to open
datasets and actual infrared imaging experiments, we also find better visual results are preserved.

Keywords: super resolution; infrared images; compressive sensing; deep learning; convolutional
neural networks

1. Introduction

Nowadays high resolution (HR) images, possessing richer scene information and better visual
quality than low resolution (LR) ones, are more desirable in many circumstances. However,
the instrumentation limits make the HR images expensive and hard to achieve [1]. This problem is
much more severe for infrared (IR) image sensors than visible (VIS) ones. Due to long wave-length,
low resolution IR images always suffer from missing details including texture, contexture, edge
information, etc. [2]. Less difficulty in optics and sensors manufacturing, super-resolution (SR) method
is the most common task that widely used in many areas such as medical imaging [3], remote
sensing [4], face recognition [5] and microscopy [6].

SR solutions are grouped into two categories: multi-frame SR (MFSR) and single-image SR
(SISR) [7]. For MFSR, a sequence of LR images are captured to compose a HR image using the relative
geometric and/or photometric displacements from the target HR image [8]. However, the necessary
highly related sequences of images are not often available. In this paper, we focus on single image
super resolution (SISR). As it is an inherently ill-posed problem, we have to rely on strong prior
information to accomplish the task [9]. Sparsity based methods and learning based methods represent
two typical ways of utilizing prior information [10].

Images, as is 2-D signal, exhibit sparsity in some domain, which enables Compressive Sensing
(CS) theory to reconstruct the original HR images with LR ones with less sample rate. CS theory
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has already been proved to be effective and powerful in SR tasks [11]. Many SISR problems have
been analyzed under different sparse bases, such as Wavelet [12], Discrete Cosine Transformation
(DCT) [13] and Discrete Fourier Transform (DFT) [14]. Recently more practical applications reveal that
a signal is more sparse with respect to an over-complete dictionary than a basis [15]. Besides, in order
to accurately reconstruct the coefficients of the original signal in sparse domain, optimal reconstruction
methods are needed. Different methods possess different performance, while we choose the iteratively
reweighted least squares (IRLS) as the optimal reconstruction algorithm for its high reconstruction
performance through experiments [16]. Its mechanism will be discussed later in this paper.

Apart from sparsity-based methods, learning-based ones also benefit from prior information.
As deep-learning has recently prospered, many learning-based algorithms have been used in
SISR, such as VGG [17], ResNet [18] and GAN [19]. Initially SRCNN [20] was the first 3-layered
Convolutional Neural Network (CNN) utilized for SR tasks. Lately, for better performance the network
structure goes much deeper. Besides, residual learning networks, when used in SR tasks, have been
proved to possess better visual performance and Peak Signal to Noise Ratio (PSNR) performance.

In recent several years, many researchers have tried to combine CS and deep learning to produce
better SR task solutions. Duan et al. [21] used deep learning to capture the image features and apply
them to reconstruct HR images with the help of the sparsity in CS. Bora et al. [22] used generative
models to replace the sparsity bases in CS and achieve satisfying results.

In this paper, we provide a novel combination architecture. We take advantage of sparsity in CS
to recover the high frequency information in HR images. Then we build a deep-layer CNN to promote
the performance of IRLS in CS. Residual learning [23] ensures that with our algorithm it is easier to
optimize the results by denoising and reconstructing the output image of CS. By concatenating the
two methods we achieve better performance than SRCNN [20] and ScSR [24] that utilize sparsity and
a neural network alone. In simulations and actual infrared imaging experiments, we apply our method
to IR images and we verify its performance both visually and quantitatively.

2. Super-Resolution Framework

2.1. Super-Resolution with Compressive Sensing Theory

CS theory combines sampling and compression into non-adaptive linear measurement process [25]
at a rate significantly below the Nyquist [26]. The classical CS acquisition process can be depicted as:

y = Φx = ΦΨs = θs. (1)

Here y ∈ RM is the vector of stacking measurements. x ∈ RN (M < N) is the original compressible
signal. Φ is the M×N measurement matrix and θΦΨ where Ψ is the N×N basis matrix. Vector s is the
coefficients of x in the Ψ domain. Usually a Gaussian random matrix will be used as Φ. In SISR tasks,
y will be regarded as the low projection of the HR image x, and Φ is corresponding to a downsample
matrix in SISR [13]. Referring to the binning process of image sensors [27], we believe that one pixel in
a LR image equals to the average of corresponding k× k neighbor pixels in HR one. Therefore Φ with
M× N dimension, where N/M = k2, should function as this downsampling process [28].

x in the spatial domain can be represented by vector s in the Ψ domain, which is K-sparse
(K < N coefficients in s are non-zero). With sufficient sampling rate, s will be correctly recovered from
Equation (1) by solving such an lp-norm optimization problem:

min
s

1
2
‖s‖p

p, s.t.y = Φx = ΦΨs = θs. (2)

Ψ, the sparsity basis, has been widely proved validity using wavelet basis [29]. In our algorithm,
we utilize DCT basis instead, because of its better performance under numerous experimental
conditions. In this paper, we will use Peak Signal to Noise Ratio (PSNR) and structural similarity index
(SSIM) to quantify the performance of the SR method. After testing on widely used 400 images [30] of
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size 180× 180, we find that on average the DCT basis outperforms the wavelet basis by 14% higher in
PSNRs and 26% higher in SSIMs.

Corresponding to the basis, the reconstruction algorithm is also important for our SR tasks.
In order to solve this underdetermined equation finding accurate x, many optimization methods have
been developed these years, such as Orthogonal Matching Pursuit (OMP) [31], Subspace Pursuit [32],
Relevance Vector Machine (RVM) [33] and Iteratively reweighted least squares (IRLS) [16]. Iteratively
reweighted least squares (IRLS) is selected for better visual and quantitative results, where p = 1.

The IRLS method we use is based on solving (2) with modified objective function that at each

iteration the function approaches
N
∑

k=1
|s|p [27]. Simply, we substitute the lp objective function in (2)

with a weighted l2 norm:

min
s

N

∑
i=1

wisi
2, s.t.y = Φx = ΦΨs = θs. (3)

where wi =
∣∣∣s(n−1)

i

∣∣∣p−2
is the first-order approximation to the lp objective function. wi changes at each

iteration until wisi
2 is sufficiently close to ‖s‖p

p in (4) after convergence. Then the solution of (3) is:

s(n−1) = QnθT
(

θQnθT
)−1

y, (4)

where Qn is the diagonal matrix with entries:

1/wi =
∣∣∣s(n−1)

i

∣∣∣2−p
. (5)

The convergence criterion for each iteration stage can be depicted as:

‖sn − sn−1‖
1 + ‖sn−1‖ <

√
µ

100
. (6)

After (6) is attained, µ is reduced by a factor of 10, and the iterative procedure is repeated
until µ < 10−8 [34].

In conclusion, the HR image x can be depicted by sparse vector s in Ψ domain. The input of
the algorithm, the original LR image, is regarded as the compressed measurements. Finally, x can be
resolved with reconstruction algorithm. The detailed parameters in this algorithm are demonstrated in
Algorithm 1.

Algorithm 1. IRLS Method for Super-Resolution

Parameters: p = 1, use DCT basis as Ψ, down-sampling matrix Φ, N/M = 2 or 3, µ = 1.
Step 1: Initialize the size of output image and the formation of sparsity basis.
Step 2: Do the inner loop:
2.1 Initialize n1, s0 = (0, 0, . . . 0) and Q(0) = O.
2.2 Update Q(n) using (5).
2.3 Compute sn using (4).
2.4 If (6) is satisfied, go to step 3; otherwise, let n = n + 1 and go to step 2.2.
Step 3: Update the regularization parameter, µ = µ/10.
Step 4: If µ < 10−8, finish; else, go to Step 2.

2.2. Image Denoising and Reconstruction with Deep Learning

Practically, it is hard to find an absolutely correct y, which represents the HR image in SR tasks.
Mostly the algorithms will come to a local optimal solution that makes the output images contain
fixed pattern noise, which is illustrated in Figure 1. By comparing the output of CS, bicubic method
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and the original HR image, visually we find that CS preserves more texture information and less blur
effect, but contains some fixed pattern noise. After using our CNN, the noise is visually alleviated.
Although the PSNR of CS output is 0.64 dB higher than bicubic, the SSIM of CS is 0.031 lower. As SSIM
calculates the covariance value of the images representing the structural information of the objects in
images [35], studies show that it is more vulnerable to fixed-pattern noise than pixel difference-based
measurement, PSNR [36]. Therefore a method that protects the high spatial frequency information
while wiping out the fixed pattern noise is necessary. After using our CNN, the structure of which will
be discussed in the following paragraph, the PSNR is increased to 34.18 dB and the SSIM is increased
to 0.9719. These values proves that our CNN is effective in denoising and reconstruction.
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Figure 1. Illustration of fixed pattern noise in CS method when upscaling factor is set 2 for
demonstration. Subfigure (a) is the output of bicubic SR method; subfigure (b) is the output of CS;
subfigure (c) is the reconstructed output of CNN; subfigure (d) is the original HR image.
The corresponding zoomed pictures are placed on the right. The PSNR and SSIM of CS are 28.86 dB
and 0.8950. The PSNR and SSIM of bicubic are 28.22 dB and 0.9260. The PSNR and SSIM of CNN are
34.18 dB and 0.9719.
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From the results, we believe that the CNN not only deals with the fixed pattern noise, but also
helps supplement more high frequency information. As the images change, the level of sparsity changes
as well. Some HR images may contain more high frequency information that won’t be recovered by
a certain sparsity basis, causing the limits of the CS method, which means using CS alone won’t
recover all the high frequency information. In that case, we also need more efforts to supplement
the missing information during the SR process. Deep learning with powerful image processing
ability has been applied to many tasks like image denoising, demosaicing [37] and reconstruction [38].
Zhang et al. [29] designed a deep convolutional neural network (CNN) for image Gaussian denoising,
which is called DnCNN. Residual learning and batch normalization greatly benefit its performance.
Inspired by DnCNN, we modified its network architecture to accomplish the denoising and high
frequency information supplementation in our SR tasks.

The most essential part of our CNN model is the residual learning. Although the output of CS
contains fixed pattern noise, we are not able to describe its formation with a designed rule in order
to eliminate it. However deep learning provides us with trainable convolutional filter, in which case
the noise of each HR image can be detected and eliminated after training the CNN model. Residual
learning enables us to train each layer of CNN to fit the residual mapping instead of the original
image. Formally, we denote the HR output of CS as H(j), and the original HR image, which is the
ground truth, as G(j). Here j denotes the index of each image. The residual image R(j) = G(j)− H(j),
represents the fixed pattern noise of each image. Researches have revealed that residual image is easier
to be optimized by CNN [23]. Figure 2 shows the proposed SR architecture when training.
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The target of our CNN is to estimate the residual image of every CS output for promoting
the performance. The averaged mean square error between estimated residual image and the true
residual one:

l(Θ) =
1

2N

N

∑
i=1
‖R̃(Θ, i)− R(Θ, i)‖2

, (7)

denotes the loss function to learn the trainable parameters Θ in CNN. Corresponding to ith training
image, R̃(Θ, i) represents the estimated residual image produced by our CNN, while R(Θ, i) represents
the true residual image used for training.

Researches reveal that the depth of network is of great importance for better results [23]. Therefore,
we challenge to modify the CNN into a deeper network with 30 layers. Inspired by DnCNN,
our network consists of three types of layer, which is shown in Figure 3.
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In the first layer, we utilize 64 filters of 3× 3 size as the convolution kernels to generate 64 feature
maps. And rectified linear units (ReLU, max(0, ·)) are utilized as the nonlinear activation function
for speeding up the optimization. The 28 hidden layers are of the same formation. 64 filters of size
3× 3× 64 are connected with batch-normalization (BN) [39] in the hidden layers for accelerating
training speed. For the last layer, a 3× 3× 64 convolution is used for reconstructing the residual image.

After simulation experiments, we find that Adaptive Moment Estimation (Adam) optimization [40]
algorithm outperforms Stochastic Gradient Descent (SGD) [41]. Therefore, we choose Adam as the
optimization method for our CNN. Adam is a first-order gradient-based optimization algorithm,
which is based on adaptive estimates of lower-order moments of the gradients. The pseudo-code is
shown in Algorithm 2.

Algorithm 2. Adam Method for Optimization

Parameters: α is the stepsize; β1, β2 ∈ [0, 1) , λ ∈ [0, 1) are the exponential decay rates for the moment
estimates; l(Θ) is the loss function with parameter Θ.
Step 1: Initialize the parameters as β1 = 0.9, β2 = 0.999, λ = 1− 10−8, α = 0.001.
Step 2: Initialize the vectors.
m0 ← 0 is the initial first moment vector.
v0 ← 0 is the initial second moment vector.
t← 0 is the initial timestep.
Step 3: Do the inner loop:
3.1 t← t + 1 . Update the timestep.
3.2 β1,t ← β1 λt−1 . Decay the first moment running average coefficient.
3.3 gt ← ∇θft(θt−1) . Get gradients corresponding to loss function at timestep t.
3.4 mt ← β1,t·vt−1 + (1− β1,t)·gt . Update biased first moment estimate.
3.5 vt ← β2·vt−1 + (1− β2)·gt � gt . Update biased second raw moment estimate.
3.6 m̂t ← mt/(1− β1,t) . Compute bias-corrected first moment estimate.
3.7 v̂t ← vt/(1− β2) . Compute bias-corrected second raw moment estimate.
3.8 Θt ← Θt−1 − α·m̂t/

(√
v̂t + ε

)
. Update parameters, where ε is for preventing the denominator to be zero.

3.9 if Θt is converged, go to step 4; otherwise go to step 3.1.
Step 4: Return Θt.

Most parameters of Adam are set the same as the ones in [40], as the mini-batch size is 128 and
the learning rate decays exponentially from 1 × 10−1 to 1 × 10−4 during 50 epochs of training.

We use the MatConvNet package in Matlab 2017a to train our CNN. A Intel® CoreTM i5-4670k
CPU operating at 3.4 GHz and an Nvidia 1080Ti GPU are used. Experiments show that the deeper the
network goes, the better PSNR performance becomes, as is shown in Figure 4. However, for a deep
network of 30 layers and 128 mini-batch size, a great burden has been placed on the GPU memory.
30 layers with 128 mini-batch size is up to the limit of the GPU memory.
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2.3. The Whole Super-Resolution Algorithm Architecture

In Figure 5 we show the whole architecture when using the proposed method to accomplish the
SR target. After training process, the CNN is used to eliminate the fixed pattern noise in the output of
CS SR method and supplement some high spatial frequency information to it.
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3. Simulation Results

Before applying our method to real scenes captured by infrared sensors, we test it with some
open datasets by comparing it with SRCNN [20] and ScSR [24] that utilize sparsity and neural network
alone. Considering that there are not enough open image data sets for training at infrared wavelengths,
we choose widely used 400 VIS images [29] of size 180× 180 as the training dataset. The experimental
results show that the model trained by VIS dataset functions well when dealing with IR images.
A larger training dataset is more preferable, but leads to more training time pressure. After testing
we find that 400 images are enough to get high performance, and the training time is acceptable.
About 10 h for training is needed for our CNN. This trained model in VIS is used for super resolution
tasks in VIS images and IR images.
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We apply our method to six infrared images collected from the OSU thermal pedestrian database,
OSU Color and Thermal Database and Terravic Motion Infrared Database of the OTCBVS dataset
collection [42]. Besides, we also apply our method to six widely used VIS images to prove the robustness.
Figure 6 shows the overview of the 12 total images regarded as the test set. It is worth highlighting that
the training set should not share the same images with the test set in order to avoid a logical paradox.
Therefore the 12 IR and VIS images are not included in the 400 images for training.
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Figure 6. The 12 IR and VIS images used for performance evaluation.

In this paper the upscaling factors are set 2 and 3. We down-sample the HR image into two LR
one by merging 2× 2 or 3× 3 neighbor pixels on average in order to simulate two kinds of LR images.
We compare the SR images with the original HR ones by quantifying the performance in PSNR and
SSIM, the results of which is shown in the Tables 1 and 2. Besides the execution time is also provided
in the tables for considering the complexity of our algorithm.

Table 1. SR results with upscaling factor of 2.

Image
SRCNN ScSR Proposed Method

PSNR SSIM Time/s PSNR SSIM Time/s PSNR SSIM Time/s

1 33.03 0.9529 2.5 33.29 0.9662 17.6 34.78 0.9629 9.6
2 36.78 0.9633 1.6 36.34 0.9685 17.7 38.08 0.9689 12.1
3 34.42 0.9700 1.7 34.26 0.9718 21.1 34.65 0.9702 15.2
4 40.59 0.9769 1.6 41.36 0.9793 20.9 41.53 0.9786 15.4
5 35.34 0.9652 1.7 35.93 0.9691 20.9 36.10 0.9678 15.2
6 30.63 0.8118 1.8 30.34 0.8141 24.4 31.08 0.8154 14.1
7 28.20 0.9005 1.5 27.56 0.8940 17.7 29.48 0.9111 14.5
8 32.66 0.9398 1.4 31.75 0.9333 17.3 33.72 0.9464 53.0
9 32.51 0.9618 1.5 30.84 0.9520 16.7 34.18 0.9719 57.6
10 28.55 0.9180 1.5 28.41 0.9169 17.9 29.59 0.9254 57.2
11 36.19 0.9381 9.8 35.84 0.9353 70.1 36.74 0.9380 56.8
12 32.98 0.9201 10.2 32.44 0.9147 69.3 33.55 0.9265 54.0

Before discussing the SR reconstruction performance, the execution time of three methods also
attracts great interest. SRCNN exhibits the least time consumption, while ScSR and our algorithm need
far more execution time. Most time of our algorithm is spent on solving the optimization problem for
compressive sensing architecture in (2). This is because the time complexity of IRLS is high, despite its
better accuracy in reconstruction. Another fact that draws great attention is that our algorithm needs
far less time for SR of upscaling factor of 3 than of 2, unlike ScSR and SRCNN. The reason is that LR
images produced by merging 3× 3 neighbor pixels from HR ones contain lower spatial resolution and
less amount of information than those produced by merging 2× 2 pixels, which means fewer constraint
conditions in (3) and fewer dimensions of vector s in the Ψ domain in (3). After fewer iterations, IRLS
will comes to the nearly accurate answers to get HR estimation. Therefore, we may predict that for
even larger upscaling factors, our algorithm may perform much better in execution time.
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Table 2. SR results with upscaling factor of 3.

Image
SRCNN ScSR Proposed Method

PSNR SSIM Time/s PSNR SSIM Time/s PSNR SSIM Time/s

1 28.22 0.8666 1.8 27.42 0.8851 47.6 28.73 0.9001 5.0
2 32.06 0.9222 1.4 31.50 0.9194 51.3 32.42 0.9259 4.2
3 29.47 0.9045 1.5 28.36 0.9070 52.2 29.27 0.9117 4.2
4 36.59 0.9452 1.4 35.61 0.9542 53.5 37.30 0.9528 4.0
5 30.93 0.9011 1.5 30.89 0.9096 52.5 30.57 0.9045 4.8
6 28.48 0.7134 1.6 27.97 0.7127 60.5 28.72 0.7216 5.1
7 26.53 0.8427 1.3 26.11 0.8342 45.2 27.24 0.8596 5.1
8 30.44 0.9117 1.2 28.69 0.8977 43.0 31.18 0.9269 18.7
9 29.04 0.9105 1.3 26.94 0.8835 44.8 30.27 0.9334 22.3
10 26.12 0.8693 1.3 25.75 0.8640 46.0 27.08 0.8838 22.4
11 33.40 0.9097 9.2 32.66 0.9041 183.3 33.48 0.9124 22.7
12 30.79 0.8636 9.8 30.14 0.8543 186.7 31.17 0.8731 22.4

We find that the proposed method has great advantages in PSNR values, while performing a little
better than SRCNN and ScSR in SSIM values. We choose image 6, the infrared surveillance, in the
test set as an example to show the performance visually. Figure 7 illustrates the visual comparison of
three methods. The original HR image is of 360× 240 pixels. After down-sampling, two kinds of LR
image images are produced, which are of 180× 120 pixels and of 120× 80 pixels. We produce the SR
images with SRCNN, ScSR and our method. The zoomed HR images are placed on the right.

The whole images comparison provides us the overall perception of different methods, where the
texture feature in our method appears to be clearer. Moreover, in our results, the surroundings near
the objects are of less distraction and less noise. From the zoomed images, we find that the edges in the
output of our method are more distinct. In details, the contours of the zebra crossing in our method
possesses higher fidelity and higher contrast compared to the one in SRCNN and ScSR. We believe this
advantage may help a lot in further image recognition tasks.
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4. Imaging Experiments

In this section, we apply our method to an infrared image sensor to testify the portability
and generality. As demonstrated in Figure 8, we use MARS-VLW-RM4 from the Sofradir Company
(Palaiseau, France) as the infrared image sensor, whose original resolution is 320× 256. Its sensitivity
to infrared radiation in the Very Long-Wave band (8–12 µm) make ensure its applicability for military
and civilian surveillance purposes. However due to the high cost of manufacturing, it is difficult to
increase the resolution. Using CS theory and deep learning, we are able to produce higher resolution
infrared images without changing the original sensor.

The parameters and trained models are the same as the ones in the simulation section. As lack
of ground truth for HR infrared images, the performance will be judged visually in this section.
With upscaling factor of 2 and 3, we will produce HR images of 640× 512 and 960× 768 resolution.
The results are shown in Figure 9.
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Figure 9. Imaging results comparison of the SR output.

Visual comparison between the LR and HR images and the 3 different methods demonstrate the
advantage of our method. In HR ones, image details, like textures and contours, are more sufficient and
mosaic effects caused by LR image sensor are relieved. Therefore, higher resolution infrared images
which surpass the original image sensor’s resolution are available by using our method. Moreover,
compared to zoomed images of ScSR, our results contain less blur and sharper features. As to SRCNN,
its reconstruction noise of the windowsill in the zoomed images shows its inferiority to our method.

5. Conclusions

In this paper we present a novel super resolution method that is the combination of compressive
sensing theory and deep learning. Our method consists of two parts. The first one utilizes the spatial
sparsity of CS theory to reconstruct a HR image which contains higher frequency information.
The second part uses the trained network to remove the fixed pattern noise that was introduced
in the first part and supplement some additional high frequency information which is learnt from
the training set. Its high performance helps us to acquire higher resolution infrared images without
suffering from the high cost and difficulty in applying large infrared sensors. The performance has
been demonstrated visually and quantitatively in the simulation tasks. Our method possesses better
performance with higher PSNR and SSIM values than SRCNN and ScSR in both visible and infrared
datasets. We apply our method to a Very-Long-Wave band infrared sensor to testify its portability and
generality. With low resolution infrared sensor, we are able to produce higher resolution images.

As our work only analyzes the monochrome images, we expect more studies will focus on spectral
images’ super-resolution problems.
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