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Abstract: The potential fuel savings of hybrid vehicles strongly depend on the energy management
strategy, which distributes the required power between the prime mover and the additional power sources.
Here, it is necessary to take into account the efficiencies of the whole propulsion system. In this paper,
a novel operating strategy is developed that considers the efficiencies of all major components of the
propulsion system. Fuel-optimal load points are calculated off-line by using a numerical sensitivity
analysis which takes the fuel consumption as well as the variable state of charge of the energy storage
system (ESS) into consideration. Using these fuel-optimal load points, the optimal operating strategy is
determined by means of an optimization approach which depends on the duty cycle itself.

Keywords: Optimal operating strategy, hybrid railway vehicles, sensitivity analysis, optimization,
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1. INTRODUCTION

Hybrid vehicles have a promising potential to reduce fuel con-
sumption by essentially improving the energy efficiency. In
this context, railway system suppliers worldwide invest in re-
search and development of such frameworks. Generally, a hy-
brid power train uses more than one power source. It combines
a combustion engine with a power supplement from an energy
storage device. The choices of the energy storage (ESS), further
system components, and the overall propulsion chain depend
on the vehicle’s duty cycle and on other issues such as cost
effectiveness as well as maintainability. The energy savings
mainly depend on the duty cycle and on the capacity and time
constants of the available ESS. Hillmansen and Roberts carried
out a kinematic analysis of ESS which suggests a potential of
up to 35 % energy savings for commuter vehicles (Hillmansen
and Roberts, 2007). The result of the research work on hybrid
concepts for diesel multiple units in (Hillmansen et al., 2009)
calculates a potential for the reduction of the fuel consumption
of up to 25 % on a fixed route. A large number of different op-
timized control strategies for hybrid electric vehicles have been
published in the past with the aim to minimize the fuel con-
sumption by managing the power flows of the energy sources.
In particular, they can be classified into three groups (Pisu and
Rizzoni, 2007):

(1) Dynamic programming approaches (Ogawa et al., 2007),
(Brahma et al., 2000)

(2) Rule-based (Dittus et al., 2011), fuzzy logic (Wang
and Yang, 2006), and neural network control techniques
(Moreno et al., 2006)

(3) Methods based on the conversion of the electric power
into an equivalent fuel consumption (Pisu and Rizzoni,
2007).

In comparison to road-based traffic, the great advantage during
the development of operating strategies for hybrid railway ve-
hicles is the fact that the duty cycles are known beforehand.

Thereby, optimal operating modes can be computed almost
completely off-line as in (Leska et al., 2013). Here, a param-
eter optimization is used to calculate the fuel optimal oper-
ating strategy. For each acceleration and cruising phase, one
optimization parameter describing the support of the ESS is
introduced. This leads to a similar treatment of all load points
within the same acceleration period and, furthermore, to a high
number of optimization parameters.
In this paper, an optimization approach with only one opti-
mization parameter is developed by the usage of a sensitivity
analysis. In Sec. 2, the simulation structure for a basic diesel
hybrid railway vehicle is summarized. Based on this simulation
model, fuel-optimal load points are calculated in Sec. 3 and
the optimization approach is described which aims at reducing
the fuel consumption by adjusting the operating strategy. Sec. 4
concludes this paper and gives an outlook on future research.

2. MODELING OF A BASIC DIESEL PARALLEL
HYBRID RAILWAY VEHICLE

The power train of a basic parallel hybrid railway vehicle
mainly consists of an internal combustion engine (ICE), an
energy storage device and an additional propulsion system
(Leska et al., 2012). In Fig. 1, a simplified structure of the
modeled diesel parallel hybrid railway vehicle is presented.
Here, the ICE is supported by an electric motor/generator
(M/G), which is directly connected to the drive shaft. The power
for the electric motor is supplied by a Lithium Ion battery.
Furthermore, the battery provides the power for the electric
auxiliaries. The power transmission from the ICE and the M/G
is realized via a mechanic gear box. The clutches C1 and C2
separate either the ICE and/or the M/G from the drive shaft.
By this architecture, the following six operating modes are
available:

• Mode 1: Pure ICE
• Mode 2: Pure M/G
• Mode 3: Boosting
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Fig. 1. Architecture of a basic diesel parallel hybrid railway
vehicle.

• Mode 4: Load level increase
• Mode 5: Coasting
• Mode 6: Recuperation

In Mode 1, the ICE provides the total power demand. Mode 2 is
the pure electric mode, thus, only the electric motor is active. In
Mode 3, the power boost mode, both the electric motor and the
ICE operate simultaneously. In the load level increase (Mode
4), the operating point of the ICE provides more power than
required for following the pre-specified duty cycle. The excess
power is used for recharging the ESS. This mode is also used
at standstill to fully recharge the ESS. In this phase, the clutch
C2 is open. In Mode 5, the coasting mode, neither the electric
motor nor the combustion engine are running, while the vehicle
is decoupled from all engines by opening C1 and C2. Finally,
in Mode 6, the recuperation mode, kinetic energy of the vehicle
is recovered in deceleration phases. The clutch C1 is opened
to separate the ICE from the drive shaft. In all six operating
modes, the ICE is running to supply the mechanical auxiliaries
with the required power.
In Fig. 2, the simulation structure reflecting the system ar-
chitecture according to Fig. 1 is given. Only the main effects
contributing to the longitudinal dynamics of the power train are
modeled. The individual blocks represent the component mod-
els of the hybrid system. For each component, low-order mod-
els based on dynamic equations and static characteristic maps
were derived and implemented in Matlab/Simulink. The arrows
represent the numerical evaluation order of the components
and not the directions of power flow. Note that this evaluation
order is opposed to the direction of power flow, corresponding
to an inverse problem. Therefore, the inputs of the simulation
approach are the velocity and altitude profiles, whereas the
outputs are the load points and the fuel consumption of the
ICE and the state of charge σ of the battery (Guzzella and
Sciarretta, 2005). According to the control strategy, the control
unit distributes the requested power for tracking the duty cycle
between the ICE and the M/G. In the following section, a short
description of the component models is given. The modeling of
the clutches and of the converter will not be described. These
elements are represented, for the sake of simplicity, by constant
efficiency factors.

2.1 Vehicle

The modeling of the vehicle is based on the equation of motion
Fw = mveh ·a+Fres +Finc , (1)

where Fw denotes the force at wheel, mveh the mass of the
vehicle, a the acceleration of the vehicle, Fres the resistance
forces, which include the air resistance and rolling resistance,
and Finc = mveh ·g · sin(γ) the inclination force.

According to (Wende, 2003), the maximum force at wheel
Fw,max is limited by the rail wheel contact as follows

Fw,max = µT GT . (2)
Here, GT represents the weight of the powered set of wheels
and µT denotes the adhesion coefficient which depends on the
actual velocity v of the vehicle. The adhesion coefficient µT is
calculated as

µT = k1 +
k2

k3 + v
with the constants k1, k2 and k3 by Curtius and Kniffler (Wende,
2003). The minimum force at wheel Fw,min can be determined
by

Fw,min =−µB GF , Fw.min ≤ Fw ≤ Fw,max ,

where GF indicates the weight of the train and µB the adhesion
coefficient for braking (Wende, 2003).

2.2 Axle Gear

The axle gear transmits the power from the drive shaft to the
wheels. With the torque at wheel Tw = Fw ·rw (rw: wheel radius)
and the angular velocity of the wheels ωw = v/rw, the torque Tag
and the angular velocity ωag at the input of the axle gear can be
computed by

Tag =
Tw

iag ·ηd
ag

and ωag = ωw · iag . (3)

The efficiency ηag and the gear ratio iag of the gear box are
constant. The exponent d has to be chosen according to the
direction of the power flow. For a positive power flow, directed
from the propulsion system to the wheels, its value is d = 1. In
the case of a negative power flow (for a power flow in opposite
direction) a negative exponent d =−1 is used.

2.3 Mechanic Gear Box

The mechanic gear box transmits the power from the propulsion
system to the axle gear; it consists of a mechanical gear set
with twelve different gears z ∈ {1, ...,12} with fixed gear ratios
igb(z). Depending on the exponent d, the torque Tgb and the
angular velocity ωgb at the input of the mechanical gear set can
be stated as

Tgb =
Tag

ηd
gb · igb(z)

and ωgb = ωag · igb(z) . (4)

The gear z and, consequently, the gear ratio igb(z) are deter-
mined in each time step. For that purpose, the shifting angular
velocities

ωup = gup (z,Tag) and ωdown = gdown (z,Tag) (5)
are calculated and compared with the actual angular velocity
ωgb. The gear will be shifted upwards if ωgb ≥ ωup holds; it is
shifted downwards for ωgb ≤ ωdown.

2.4 Internal Combustion Engine

The ICE represents the primary propulsion system. The simu-
lation inputs are the angular velocity ωICE and the power PICE
to be provided by the ICE. With their knowledge, the fuel con-
sumption of the ICE can be computed. For all simulation and
optimization stages, the specific fuel consumption map shown
in Fig. 3 is used.
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Fig. 2. Simulation structure of a diesel hybrid railway vehicle.
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Fig. 3. Specific fuel consumption be in g/kWh depending on the
angular velocity ωICE and the power PICE .

Using a linear 2D-interpolation, the specific fuel consumption
be can be determined and, thereby, the absolute fuel consump-
tion for the ICE becomes

V (t) =
∫ t

0

PICE(τ) ·be(τ)

ρ f uel
dτ . (6)

2.5 Electric Motor/Generator

The electric motor/generator (M/G) unit is used to support
the ICE during traction phases, to convert mechanical energy
into electrical energy and, finally, to charge the energy storage
device during braking phases.

ω
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Fig. 4. Efficiency ηMG of the M/G depending on the rotational
speed ωMG and the torque TMG.

By multiplication of the simulation block inputs TMG and ωMG,
the mechanical power PMG = TMG ·ωMG can be obtained. De-
pending on the direction of the power flow (d = 1: positive
power flow; d = −1: negative power flow), the electric power
Pel can be computed as Pel =

PMG
ηd

MG
.

The efficiency ηMG is determined by a linear 2D-interpolation
in the efficiency map of the electric motor/generator, see Fig. 4,
with ωMG and TMG as inputs.

2.6 Energy Storage

A Lithium Ion battery consisting of npar = 9 branches in
electric parallel connection, each branch itself contains nser =

192 cells in series connection, is used as energy storage device.
In traction phases, it provides power to the electric motor and in
braking phases it stores the recuperated energy. The simplified
model of the battery is derived at cell level on the basis of (Rauh
and Aschemann, 2012) for the equivalent electrical circuit
of the battery illustrated in Fig. 5. It consists of a state-of-
charge-controlled voltage source Uoc in series with a constant
resistance Rser, representing Ohmic losses.

=U OC

U cell

icellRser

Fig. 5. Equivalent electrical circuit for the battery.

The terminal voltage Ucell of the cell is defined by the cell
current

icell =
Pel

npar ·nser
· 1
Ucell

. (7)

according to
Ucell =Uoc−Rser · icell . (8)

Using equations (8) and (7), the output variables Ubat and ibat
can be formulated as

Ubat =Ucell ·nser and ibat = icell ·npar . (9)
The state of charge σ results from the cell current icell , its initial
value σinit = σ(0), and the nominal capacity Cnom of one cell

σ(t) = σ(0)−
∫ t

0

icell(τ)

Cnom
dτ . (10)

3. OPTIMIZATION OF THE FUEL CONSUMPTION BY
ADJUSTING THE OPERATING STRATEGY

An operating strategy for a hybrid vehicle mainly means to
allocate the demanded traction power among the propulsion
systems (ICE and M/G). For that purpose, the boost ratio x
is introduced which allows for splitting the required traction
power Pgb = Tgb ·ωgb between the ICE and the M/G. In Mode
1, the power values of the ICE and the M/G are defined as

PICE = (1− x) ·Pgb, PMG = x ·Pgb . (11)
If Mode 4 (load level increase) becomes active, the power of
the ICE and the M/G are calculated by

PICE =−x · (Pmax−Pgb)+Pgb, PMG = Pgb−PICE , (12)
where Pmax denotes the maximum recuperation power which is
limited by the maximum ICE power and the maximum power
of the ESS.
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The optimization is done in two steps. First, the optimal boost
ratio x in Mode 1 and 4 is computed by a sensitivity analysis.
Based on these results, a bisection method is used in the
following step to calculate the fuel optimal operating strategy
for the trajectory depicted in Fig. 6. In the upper plot a typical
velocity profile for a regional train, e.g. in the low mountain
range of Germany, is shown with the corresponding inclination
profile presented in the lower plot.
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Fig. 6. Reference trajectory.

The considered vehicle is a two-coach diesel multiple unit
(DMU), V T 642, with one propulsion unit (consisting of an ICE,
a gear box, a M/G and a battery) per coach and an increased
vehicle mass by 4000 kg accounting for the additional system
components of a hybrid system architecture, such as the electric
motor and the ESS. The auxiliaries are characterized by a
constant power demand, half of which has to be provided by
the ICE and half by the ESS. As a result, the ICE is operated
permanently during the whole operating time. To allow for
a comparison of the achievable fuel savings of the hybrid
railway vehicle, a simulation with a classical diesel vehicle is
performed. The resulting fuel consumption is employed as a
reference Vre f for the following optimization results with the
hybrid vehicle.

3.1 Evaluation of the optimal boost ratio x in Mode 1

To evaluate the optimal boost ratio x, a numerical sensitivity
analysis is performed by running the yellow shaded part of the
simulation structure in Fig. 2 in different load points (ω i

gb,T
j

gb).
For each of them k∈{1, ..,100} simulations are performed with
an initial state of charge of σinit = 0.5 and a simulation time
of 30 s, but varying boost values xi, j

k ∈ [0,1]. Corresponding
to the resulting fuel consumption V i, j

k and the resulting state
of charge σ

i, j
k , the optimal boost ratio xi, j for each load point

(ω i
gb,T

j
gb) can be determined by the evaluation of the optimal

boost sensitivity si, j
b . It indicates the potential fuel savings by

discharging the ESS by one percent of its the nominal capacity
and can be calculated by the resulting fuel consumption V i, j

k ,
state of charge σ

i, j
k and the reference values V i, j

d and σ
i, j
d of a

pure diesel propulsion (xi, j
k = 0) as

si, j
b = max

xi, j
k

{
V i, j

d −V i, j
k

σ
i, j
d −σ

i, j
k

}
·100 . (13)

The higher the boost sensitivity si, j
b , the more efficient is a

support of the diesel engine by the electric motor at the current
load point (ω i

gb,T
j

gb).

ω
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Fig. 7. Optimal boost sensitivities sb and corresponding values
of the boost x.

Fig. 7 shows the best specific fuel savings for the different load
points and the corresponding boost values x. In the upper plot,
the optimal boost sensitivities sb are shown; the larger sb, the
higher are the fuel savings. The highest boost sensitivities of
sb = 0.7 are possible at low speeds and medium loads, but
there exists only a few load points with such high benefits.
In average, boost sensitivities of sb = 0.45 are possible. In the
lower plot of Fig. 7, the corresponding values of the boost ratio
x are visualized. At low torques Tgb, a pure electric drive (x = 1)
is the most effective way; in all other load points, the optimal
boosting factor changes nearly from point to point.

3.2 Evaluation of the optimal boost ratio x in Mode 4

A further sensitivity analysis is done to compute the best boost
ratio x∈ [−1,0] during the load level increase (Mode 4). Again,
k ∈ {1, ..,100} simulations are performed for different load
points (ω i

gb,T
j

gb), 30 s simulation time and varying boost values

xi, j
k ∈ [−1,0], but the initial state of charge is now chosen

as σinit = 0.4. Corresponding to the resulting fuel consumption
V i, j

k and the resulting state of charge σ
i, j
k , the optimal boost ratio

xi, j for each load point (ω i
gb,T

j
gb) can be determined by the eval-

uation of the optimal load increase sensitivity si, j
l . It indicates

the additional fuel consumption for charging the battery by one
percent of its nominal capacity. It can be calculated with the
reference values V i, j

d , σ
i, j
d of a pure diesel propulsion (xi, j

k = 0)
according to

si, j
l = min

xi, j
k

{
V i, j

k −V i, j
d

σ
i, j
k −σ

i, j
d

}
·100 . (14)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

945



The lower the load increase sensitivity si, j
l , the more efficient is

the load increase mode at the current load point (ω i
gb,T

j
gb).

Fig. 8 presents the optimal load increase sensitivities sl in the
upper plot and the corresponding values of the boost x as a
result of a load level increase in the lower plot. The lowest
values of the load increase sensitivity sl are located at low
speeds and low loads. Here, only 0.5 l are needed to recharge
the ESS by one percent of its energy content. In average, 0.55 l
are necessary to recharge the ESS by one percent.
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Fig. 8. Optimal load increase sensitivities sl and corresponding
values of the boost ratio x.

3.3 Calculation of a fuel optimal operation strategy using the
bisection method

Basically, the maximum support of the ICE by the electric
motor (x = 1) leads to the maximum absolute fuel savings, but
causes also a higher decrease of the state of charge σ . Such an
operating strategy usually results in a smaller state of charge
σ at the final destination than at the beginning, or in the worst
case to a completely discharged ESS. The operating costs are
then composed of the costs for the used fuel and the costs for
recharging the ESS to its initial state of charge σinit . Due to
this fact and for a fair comparison w.r.t. the fuel consumptions
between a purely diesel driven and a hybridized vehicle, an
identical battery charge at the starting point σ(0) = σinit and
the final destination σ(t f ) is demanded in the following. This
implies that only the recuperated energy should be used to
support the ICE during traction phases. Hence, the boosting
mode is only used at load points with the highest efficiencies
according to the results of the sensitivity analysis. To guarantee
a balanced battery charge for the duty cycle, the parameter slim
is introduced which defines the minimum value of sb as shown
in Fig. 9. At load points with a lower value of sb than the
minimum value slim, the boosting mode is avoided.

A load level increase is only meaningful if the resulting addi-
tional fuel consumption is smaller than the fuel savings which
can be achieved by the boosting mode using the increased
energy content of the ESS. This is only the case if there exist
load points with a lower value of sl than the value of slim. For
the chosen scenario, such load points do not exist, hence, Mode
4 is neglected.
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t in s  →

s b in
 l/

%
 →

s
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Fig. 9. Boost sensitivities sb for the given duty cycle.

The fuel optimal operating strategy is calculated by a bisection
method, which adjusts the optimization parameter slim until
the state of charge σ is balanced for the given duty cycle
σ(0) = σ(t f ). In every iteration step, one simulation run of
the complete model shown in Fig. 2 is performed for a certain
factor slim. The resulting fuel consumption V of the hybrid
vehicle is 19.9 % less than Vre f of the standard diesel vehicle.
Fig. 10 shows the corresponding development of the state of
charge σ , which is identical at the starting point and at final
destination σ(0) = σ(t f ) = 0.5.
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σ 
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Fig. 10. Progression of the state of charge σ during the duty
cycle for the sensitivity-based optimization approach.

3.4 Global fuel optimal operating strategy

For a comparison with the sensitivity-based optimization ap-
proach, the global fuel optimal operating strategy is determined
by means of the dynamic programming technique of Bellman
(DP). This approach is a computationally expensive algorithm
calculating the optimal control sequence for each time step. The
algorithm finds the optimal control sequence on a chosen grid
in negative time direction based on Bellman’s optimality princi-
ple: ”Regardless of the decisions taken to enter a particular state
in a particular stage, the remaining decisions made for leaving
that stage must constitute an optimal policy” (Bellman, 1952).
The resulting operating strategy is characterized by frequent
switches in the boosting factor x, but the results can be regarded
as the global optimum. In general, the dynamic programming is
used to calculate the optimal control sequence for multi-stage
decision processes.

First, the optimization problem is discretized into k ∈ {0, ...,N}
with N = 5043 time steps which means a step length of ∆t = 1 s,
in i ∈ {1, ...I} with I = 2001 values for the state of charge
σ i(k) ∈ [0.4,0.6] and in j ∈ {1, ...,M} with M = 21 values for
the boost ratio x j(k) ∈ [−1,1]. The resulting state of charge

σ(k+1) = f (σ i(k),x j(k)) (15)
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and the actual costs (fuel consumption)

V0(k) = g(σ i(k),x j(k)) (16)
are computed then in each decision k by running either the
lower path of the yellow shaded part of the simulation model
given in Fig. 2 or the upper path. Hence, the minimum costs
V N−(k+1) for the remaining trajectory can be obtained for all
states σ i(k) by solving the following optimization problem

V N−k(σ i(k)) = min
x j(k)
{V0(σ

i(k),x j(k))+V N−(k+1)(σ i(k−1))} ,

(17)

where V N−(k+1)(σ i(k−1)) denotes the remaining costs starting
from the resulting state σ(k+1) up to the final stage N.

The dynamic programming starts at the stage k = N − 1 and
is evaluated according to Bellman’s optimality principle in
negative time direction until the first stage k = 0 is reached.
For that purpose, at first, the load points (Tgb(k),ωgb(k)) that
are needed as simulation inputs are identified off-line for every
time step k by evaluating the grey shaded part of the simulation
model in Fig. 2. With the load point (Tgb(k),ωgb(k)) and the
initial state of charge σ i(k), the resulting state of charge σ(k+
1) and the actual costs V0(k) can be computed. If the resulting
state of charge σ(k + 1) is not equal to one of the N discrete
values of the state of charge σ i, the remaining costs V N−(k+1)

will be determined by an interpolation between the two closest
states to the resulting states σ(k+1). The overall costs then can
be calculated by

V N(x(0)) =
N−1

∑
k=0

(V0(σ(k),x(k))+V (x(N))) . (18)

For the given scenario in this paper, the resulting fuel con-
sumption obtained by dynamic programming is 20.2 % smaller
than the reference fuel consumption Vre f of the standard diesel
vehicle. The corresponding progression of the state of charge σ

of the battery is given in Fig. 11.

0 1000 2000 3000 4000 5000
0.48

0.49

0.5

0.51

0.52

t in s  →

σ 
 →

Fig. 11. Progression of the state of charge σ during the duty
cycle for the dynamic programming approach.

4. CONCLUSIONS

In this paper, a new operating strategy is developed for hybrid
railway vehicles. The power split between the diesel engine and
the electric motor occurs only in optimal load points which
are calculated off-line beforehand by a sensitivity analysis. For
that purpose, a simulation model is developed containing the
main effects contributing to the longitudinal dynamics of the
main components of the power train. The adjustment of the
operating strategy to the driving cycle can be performed by only
one parameter slim, which has to be chosen in such a way that

the battery charge at the starting point and at final destination
is balanced. The performance of the new operating strategy
is nearly identical to the globally optimal solution obtained
by the dynamic programming. Due to the fact that only one
parameter is necessary to adapt the operating strategy to the
driving cycle, the presented approach is also very promising for
an on-line power management. For that, an adaptive and/or a
model predictive controller shall be developed in future work.
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