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Abstract 

 
The purpose of this study is to present evidence of how base-ten-blocks have been developed and emphasized as a tool for 
learning in mathematics education. After an introduction of the theme, we discuss the theoretical and epistemological 
perspectives that provide the basis for our analysis of the literature. Then, we illustrate how base-ten-blocks have historically 
been associated with the numeral concepts from the prehistoric era to today. We also review studies about different 
manipulatives that focus on numerical concepts (e.g., Cuisenaire rods). This discussion will broaden our understanding 
regarding how perspectives toward mathematics instruction have changed with the introduction of base-ten-blocks. The intent 
was not to understand the process of developing base-ten-blocks but rather to suggest that teachers must consider the 
underlying mathematical concepts and structures of base-ten-blocks when they use them. In summary, this study revealed that 
base-ten-blocks as concrete materials seems to have been presented as different isomorphic numeral concepts for various 
educational purposes throughout its developmental process. 
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1. Introduction 
 
Much has been stated about the mediating role of manipulatives in mathematics education. For example, Seefeltdt and 
Wasik (2006) asserted that manipulatives might foster students’ understanding of mathematics concepts. Among diverse 
mathematical manipulatives, the use of base-ten-blocks might be the key for supporting elementary students’ learning of 
numbers, because they are useful when demonstrating an abstract mathematical concept of the number system such as 
one-to-one correspondence, place value, and basic addition and subtraction (Bartolini, 2011; Fuson, 1990; Harrell, 2009). 
However, recent studies have pointed out that it may not be helpful to young children if a teacher does not understand the 
mathematical meaning of base-ten-blocks (Green, 2008; Tare, 2010).  

The purpose of this study is to provide a framework for understanding the mathematical meaning of base-ten-
blocks based on the process of their development. This also might offer an extended metaphor of base-ten-blocks as a 
bridge for connecting abstract numeric concepts with visualized models. To illustrate this point, we provide evidence of 
the influence of different types of base-ten-blocks in mathematics education throughout history. We consider not only the 
history and mathematical meaning of base-ten-blocks that are used in a mathematics classroom currently, but also 
mathematical tools that may relate to numeric concepts that were used in the prehistoric era. It is important to note how 
mathematics concrete materials that might represent numeric information may have had different meanings throughout 
history. Currently, base-ten-blocks are considered as one type of manipulatives that support students’ modeling abstract 
numeral concepts. In the prehistoric era, the prototype of base-ten-blocks may have been developed as a vehicle through 
which people might visualize abstract numeral concepts as an observable form of communication. Although there are 
limited mathematics instructional purposes in the prototype of base-ten-blocks, it might be helpful to broaden our 
understanding of the relationship between mathematics concepts and tools that represent them.  

In this study, we will reflect on how base-ten-blocks have been intertwined with mathematical concepts based on a 
review of the literature. In reviewing a significant part of the literature that deals with the role of base-ten-blocks in the 
production of teaching and learning, we hope to demonstrate how base-ten-blocks have been the focus of discussion in 
mathematics education at the elementary level. To add to the historical perspectives of the connection between base-ten-
blocks and their mathematical meaning, we also take a brief detour into different manipulatives that focus on concepts of 
numbers (e.g., Cuisenaire Rods) and mathematical discussions about them in the history of mathematics education. To 
develop our analysis, we first present our theoretical perspectives regarding the relationship between base-ten-blocks 
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and mathematics concepts in the following section. 
 
2. Theoretical Perspectives 
 
The analysis presented in this study is supported by theoretical views that base-ten-blocks may take the role of 
intermediary between the real world and the mathematical world (Lesh, 1979). The number only exists in the 
mathematical world, since it is an abstraction; we may see illustrations of the number in the real world, but we do not see 
the concept itself. Young (1983) pointed out that manipulatives such as base-ten-blocks might help young children 
understand the concepts in the mathematical world based on their structural similarity to abstract concepts. Post (1977) 
used the term isomorphic (p. 5) to represent the similarity between the mathematical world and the real world. Post 
argues that isomorphism is significant in students’ mathematics learning, since it may transform an abstract concept into 
an accessible form in the students’ real-life. However, it is significant to acknowledge that manipulatives may represent 
only a part of an abstract mathematics concept (Post, 1977). For example, there are various real world situations to 
demonstrate the number 2, as shown in Figure 1. Among diverse mathematical concepts that may relate to the number 2, 
teachers may use base-ten-blocks to explain isomorphism that emphasizes discrete quantities of 2.  
 

 
Figure 1. Isomorphism of the mathematics concept. 
 
Thus, it is important for teachers to understand the isomorphism between base-ten-blocks and mathematical concepts of 
numbers. As noted by Post (1977), “the extent to which partial isomorphism approximates the concept is the extent to 
which the more accessible structure is useful in teaching the concepts” (p. 332).  

Another significant epistemological viewpoint of this study is that tools or materials may produce mathematics 
concepts (Borba & Villarreal, 2005). This notion is based on the idea that mathematics concepts are not an individual 
enterprise, and tools or materials are essential elements of mathematics concepts (Villarreal & Borba, 2009). The process 
of developing a specific teaching tool may include complex interactions between pedagogical theories, mathematical 
ideas, instructional purposes, and teaching techniques (Kidwell, Ackerberg-Hasting & Roberts, 2008). Thus, diverse tools 
and materials might be related to various mathematics concepts, and concrete materials in the past are useful to reveal 
how mathematics concepts have developed over time. Revealing the past that lies behind base-ten-blocks may help us 
understand how they reflect a wide range of discussions about teaching numerical concepts to students. Thus, we will 
analyze the development process of base-ten-blocks with observations of different concrete materials used during the 
prehistoric era, in the following section. 
 
3. Concrete Materials for Representing Numbers and Mathematics 
 
It is an interesting exercise to observe diverse concrete materials that represent numeral concepts in the prehistoric era 
because they show how collectives of humans with concrete materials produced numeral concepts. In particular, ancient 
concrete materials might demonstrate that numeral concepts were developed based on the concept of one-to-one 
correspondence. One-to-one correspondence is a mathematical function offering pairings of elements in two sets. With 
this concept, prehistoric mankind may have represented numbers of things by making marks to symbolize amounts. For 
example, the carved marking on Ishango bones from Africa, believed to be more than 20,000 years old, show that 
prehistoric mankind had a mathematical understanding of one-to-one correspondence (Brooks & Smith, 1987; Rudman, 
2007). Although there are various approaches to understanding the meaning of marks mathematically (e.g., Gerdes, 
1991; Rudman, 2007), one thing is clear: Prehistoric mankind carved marks according to the amount of something in 
order to represent numeral information based on one-to-one correspondence, as shown in Figure 2.  
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Figure 2. Ishango Bones from Africa (Kim, 2012, p. 16). 
 
Finger numerals used by the ancient Greeks, Romans, Europeans of the middle ages, and later, the Asiatic also 
demonstrate prehistoric mankind’s understanding of numeral concepts based on one-to-one correspondence (Dantzig, 
2005). As illustrated in Figure 3, people developed different shapes of fingers according to each number. Although we 
may not say that fingers are concrete materials, finger numerals also illustrate that the early concept of numbers might 
have emerged from the concept of one-to-one correspondence.  
 

 
 
Figure 3. Finger numbers (Kim, 2012, p. 17). 
 
Further interesting evidence of concrete materials that have been associated with mathematics historically comes from 
quipu. Quipu (or khipus) usually consisted of colored thread or string and was a recoding method used in the region of 
Andean South America. Quipu flourished across the Andes from around 1450 B.C. to A.D. 1532, but it faded from use 
after the Spanish Empire invaded. Quipu records numeric information through the making of knots (Roberts, 2001). The 
preliterate notation of numbers by rope knots showed not only the numeric concept of one-to-one corresponding, but also 
described the concept of equal increments in an increasing amount according to the numbers (Roberts, 2001). Unlike the 
current number system, which uses ten different symbols for each digit (0 to 9), quipu manufacturers tangled several 
knots in a tight sequence to represent a digit. Digits might range from empty knots representing zero, to nine knots 
representing nine. Quipu demonstrated the basic approach of expressing numeric information by adding a certain amount 
of a unit. Representing numbers by an equally incremented amount with a knot is akin to current base-ten-blocks. In 
addition, we may observe the basic concepts of a ten-based number system and place values. The location of knots 
represents place values. As shown in Figure 4, the number 342 would be represented as three sequences of knots, the 
first one with three knots, the second with four knots, and the last one with two knots. 
 

 
 
Figure 4. Quipu (Kim, 2012, p. 19). 
 
The detour into concrete materials in the prehistoric era illustrates how mathematical concrete materials have historically 
been associated with the production of numeral concepts. The analysis of ancient concrete materials may reveal that the 
numeral concepts emerged associating with the concept of one-to-one corresponding from the beginning. The discussion 
in this section may provide some clues regarding how we may use base-ten-blocks in a mathematics classroom to 
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represent the mathematics concept of one-to-one corresponding. However, it does not indicate that the mathematical 
concrete materials might be used for developing students’ numeral concepts without mathematics instructions, although 
we have identified the presence of concrete materials representing numeral concepts in ancient mathematics. As 
discussed in the previous section, mathematical concrete materials might be used to produce mathematical knowledge 
according to the way people employ them. Subsequently, when did people start to use concrete materials in mathematics 
instruction to teach numeral concepts to students? In the sections that follow, we discuss the history of base-ten-blocks 
by examining how concrete models were introduced to the classroom in the period of Naturalism during the eighteenth 
century.  
 
4. Concrete Materials for Representing Numbers and Mathematics Education in the Period of Naturalism 
 
As society has developed, the representation of numbers has evolved into the use of symbols, such as Arabic Numbers. 
Concrete materials emerged in the developmental process of numeric symbols and gradually changed into numbers, 
although some concrete materials are still used for calculating (e.g., an abacus in Roma or China) (Cajori, 1930). In 
particular, after the era of Euclid, mathematics educational approaches had converged into conveying logical and formal 
mathematics knowledge to students, and no evidence was found that teachers use specialized concrete materials to 
teach numeral concepts in their mathematics classroom in the era of Euclid (Cajori, 1901; Vianna, 2010). Thus, the 
introduction of concrete materials might be a significant watershed in the fields of mathematics education because this 
might indicate that the center of mathematics education changed from teachers to students, since the era of Euclid 
(Herrera, 2001). The origin of this change might be founded in Naturalism, which emphasizes the behavior of the natural 
universe (Landman, 2001; Rosen, 1999). Naturalism primarily originated in the idea of medieval scholars during the 
Renaissance of the twelfth century (Post, 1995). Naturalism assumes that children’s learning does not depend on 
teachers’ explanations in a classroom or books. Instead, it focuses on learning based on manipulation of the real life of 
students (Landman, 2001; Rosen, 1999). Although teaching children how to count with familiar things was not new in this 
era, using specialized concrete materials to teach numeral concepts was a remarkable change in mathematics 
instruction.  

Naturalism’s principles and views on education laid the foundation for the modern education system (Butler, 1951; 
Dame, 1938; O’Connell, 1938; Punke, 1965). In addition, Naturalism had a pivotal role in developing diverse materials for 
teaching. For instance, Comenius, a pioneer of Naturalism, developed Ortis Pictus, which is considered to be the first 
picture book intended for children (Dooley, 1991). Rousseau suggested that children should learn with direct physical 
contact rather than learning with a book (Davidson, 1971). Another Naturalist, Pestalozzi, also emphasized object lessons 
(Gutek, 1968). Gladman (1886) represented well the basic concepts of lessons with concrete materials in his book School 
Works, as follows: 

Objective illustration, in which the eye and the other organs of sense are directly appealed to, and called in to help 
the verbal exposition, is almost always the best means of clearing up. Nothing aids the formation of clear ideas about 
things like actually seeing and handing the objects themselves. (p. 120–121)  

Naturalism had significant effects on the introduction of learner-centered mathematics education that emphasizes 
the use of diverse materials. Accordingly, the development of concrete materials for teaching numeral concepts in 
mathematics education became active in the era of Naturalism. Parents and teachers taught children to count familiar 
things in this era, although there were no concrete materials specifically designed to teach children basic mathematics 
concepts though manipulation. For example, Pestalozzi and his disciples advised teachers and parents to provide 
children with dried beans or other simple objects as they learned to count (Kidwell et al., 2008). 

Froebel laid a foundation for developing ways of teaching numeral concepts with concrete materials (Bowen, 
1893). Although it might not be anything new for children to play with concrete materials, Froebel’s approaches to the use 
of concrete materials in teaching was new in those periods (Manning, 2005). Froebel designed concrete materials named 
gifts and activities called occupations (Froebel & Lilley, 1967). Gifts consisted of a series of activity-based objects ranging 
from simple sphere-shaped ones to geometric wooden blocks. In particular, Froebel suggested that concrete materials 
should bridge the gaps among mathematics concepts, perceptions, and thoughts (Fennema & Romberg, 1999) and used 
gifts to support students’ understandings of the basic concepts of geometry, counting, and the relationship between the 
parts and the whole (Brosterman, 1997). For example, Froebel used third gifts, which was a set of eight identical cubes, 
for representing simple ideas about numeral concepts and basic algebra, such as addition and subtraction (see Figure 5; 
Kidwell et al., 2008).  
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Figure 5. Froebel’s third gift (Wiebe, 1869, pl. 1). 
 
Wiebe’s (1869) explanation of how to use gifts in mathematics education may illustrate that teaching numbers were 
associated with counting discrete quantities in this era: 

They instruct the pupil concerning the properties and relations of numbers, by a particular arranging and grouping 
of the blocks. Strictly speaking, the first effort to count, by laying them on the table one after another, is to be classed 
under this head…Proceeding further, he is taught to add, always by using the cubes to illustrate the successive steps. 
Thus, having placed two of the blocks at a little distance from each other on the table, he is caused to repeat, “One and 
one are two” (Wiebe p. 14). 

Although teachers might use gifts to teach the basic concept of numbers, Froebel’s gifts had limitations for 
demonstrating diverse numeral concepts such as the place-value system because they were developed not only for 
mathematics education, but also for the general education of children. 

Montessori, who also was affected by Naturalism, emphasized the use of concrete materials for teaching number 
concepts to students (Larson, 2010; Lillard, 2006). Although Montessori’s teaching methods with concrete materials were 
more famous than concrete materials themselves, she developed the first elaborate and systemic concrete materials for 
mathematics education such as colored bead bars and ten-based bars (see Figure 6) (Larson, 2010). Montessori’s 
colored bead bars are a series of beads on stiff wired bars. They are numbered one through nine, and each number has 
a different color. These bars can be used for number recognition as well as counting.  
 

 
Figure 6. Montessori’s colored bead bars. 
 
Similarly to Froebel, Montessori argued that concrete materials should be used as mediators between mathematics 
concepts and students’ understanding based on their real lives, in mathematics education. Based on this assumption, 
Montessori developed educational concrete materials called sensorial materials that lead to the understanding of abstract 
concepts (Larson, 2010; Lillard, 1973; Standing, 1959). Montessori’s colored bead bars and chains of beads were 
concrete materials much like today’s base-ten-blocks, although students could not break the bars into individual beads. 
Montessori used them only for teaching how to count numbers and the names of each number. They were used in 
different ways: colored bead bars for teaching numbers from one to nine, and ten bars for multiples of ten. Although 
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Montessori did not classify her tools as isomorphic, it is interesting that colored bead bars could be used for representing 
continuous quantities. We can represent discrete quantities with beads, themselves. However, Montessori changed the 
isomorphism of the beads by connecting them with solid wire.  

Both Froebel and Montessori’s works highlighting children’s activities with concrete materials provide some clues 
for understanding the relationship between children’s perception and comprehension of numbers. Also, they both had the 
effect of using peculiar objects for mathematics education for children. For example, Thorndike, a behavioral 
psychologist, used cubes to teach the amounts represented by numbers in his book The Psychology of Arithmetic (see 
Figure 7; 1922).  

 

 
 
Figure 7. Thorndike’s cube picture (Thorndike, 1922, p. 250). 
 
However, at the turn of the twentieth century, their attempts to use concrete materials in child education had declined 
because they were nonscientific and they overemphasized personal activities (Kilpatrick, 1914). In addition, both Froebel 
and Montessori’s concrete materials were not enough for teaching mathematic concepts of numbers because they were 
focused on naming and counting numbers based on one-to-one corresponding, which were only parts of the number 
concepts. 
 
5. Concrete Materials for Representing Numbers and Mathematics Education in the Period of the New Math 

Movement 
 
After Froebel and Montessori, the development of base-ten-blocks began to become active with the New Math Movement 
in the 1960s (Kidwell et al., 2008). Before the era of the New Math Movement, teachers did not focus on teaching the 
basic concepts of mathematics to their students, because mathematics instruction had emphasized how to use math 
skills in daily life rather than understanding the basic concepts (Bester, 1953). In contrast, mathematics education in the 
era of the New Math Movement focused on systemic mathematical concepts with the precise and definitive terms and 
structure of mathematics (Howson, 1981). Although the New Math Movement did not guarantee success, the 
approaching structure of mathematical knowledge had changed basic concepts of teaching and learning mathematics 
(Bruner, 1971). Subsequently, the development of concrete materials in mathematics education after the 1960s might be 
comprehended with respect to both its significant effect and its reverberation of the New Math Movement—reflecting the 
structure of mathematics and students’ participation in operating materials. Bruner (1971) pointed out that traditional 
mathematics instruction overemphasized the superficial facts and results of mathematics, and proposed that the basic 
concepts, principles, and ideas inherent to the structure of mathematics should be accentuated. Piaget (1968) also 
claimed that students might obtain mathematical or logical forms of abstraction by acting or operating on things, which 
reflects the basic concepts and properties of mathematics. In particular, Bruner (1960) argued that model devices, such 
as Cuisenaire rods or base-ten-blocks, can lead students to improve their sense of conceptual mathematics structure of 
the numeric system. Specifically, there became diverse shapes of base-ten-blocks after the New Math Movement: the 
unit blocks, the Cuisenaire rods, the color-factor set, and the multi-base arithmetic blocks. We present the four major 
shapes of base-ten-blocks in this section in chronological order with discussions of the mathematical meanings of the 
models. 
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Stern claimed that a structural approach toward arithmetic is crucial because arithmetic skills follow naturally from 
the structural properties of the number system (as cited in Mock, 1973). Stern and Stern (1948) argued that students 
should learn number sense as a basic structure of numeral concepts as well as the art of counting based on one-to-one 
correspondence. Stern and Stern (1948) define number sense as “based on the fact that a number of objects may be 
arranged to make a characteristic pattern, which is changed when objects are added or subtracted. Primitive men may 
have used many such natural model collections” (p. 2). Stern designed the counting board and the unit blocks in order to 
grow students’ number sense, as illustrated in Figure 8 (Horner & Patterson, 2008). Stern and Stern (1948) asserted that 
students should develop basic number senses such as sequence and values of each number, and a pair of numbers that 
makes ten with these materials, before they learn the name of each number.  
 

 
 
Figure 8. Stern’s counting board (adapted from Stern & Stern, 1948, p. 25). 
 
The authors also point out that students may connect each number with numeric information when they have experience 
with values of numbers. To represent large numbers, Stern developed devices that represent the structure of the ten-
base system. Stern and Stern (1948) used it for teaching place values. Although they did not use the terms for naming 
base-ten-blocks such as bars or cubes, the blocks Stern promoted for teaching have been sold under the name base-ten-
blocks, as shown in Figure 9 (Ruth, 1926).  
 

 
 
Figure 9. Stern’s concrete model for place values (Stern & Stern, 1948, p. 347). 
 
Cuisenaire and Gattegno (1961) also suggested that students have to have an experience with values of numbers before 
they learn the number names. They proclaimed that students could develop understanding, reckoning, and verifying 
numbers through manipulating concrete materials. Cuisenaire developed the Cuisenaire rods to cultivate students’ 
number senses; however, Cuisenaire and Gattegno focused on the diverse relationships among numbers as well as the 
numeric information of each number, as illustrated below:  

Cuisenaire came to the conclusion that the learning of arithmetic could be greatly simplified through the use of rods 
of from 1 to 10 centimeters in length colored as follows: red family: vermilion (2), crimson (4) yellow family: yellow (5), 
orange (10); black (7); white (1). Even within one color family there may already exist a variety of number relationships, 
e.g. 2, 2+2=4, 2 2=4, 4+4=8, 2 4=8, 2= 4, 4=  8, 2=  8, etc. (Cuisenaire & Gattegno, 1961, p. 5) 

Similar to Cuisenaire’s rods, Pollock (1962) developed color-factor bars. However, Pollock focused more on the 
relationships among numbers than making students understand the numeric information of each number. Pollock used a 
twelve-based system in his color-factor set in order to represent the relationship among numbers clearly, such as 
multiples, divisors, and square numbers (see Figure 10). In addition, Pollock used color to replace the names of numbers 
and represent the relationships among numbers; Pollock set up a basic four colors and used them for representing prime 
number bars under twelve. Pollock defined the colors of the rest of the number bars by mixing colors of prime number 
bars.  
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Figure 10. Pollock’s color-factor bars (adapted from Pollock, 1962, p. 31). 
 
Dienes affirmed that the presentation of mathematical symbols tended to be introduced at too early of a stage in school 
mathematics education (Hirstein, 2007). Also, Dienes (1963) proclaimed that teaching materials should be used based on 
the mathematical subjects rather than students’ developmental stages based on their ages. From his assumption, Dienes 
(1963, p. 27) designed multibase arithmetic blocks (MAB) with an emphasis on the basic concepts of the number system; 
MAB provides concrete representations for the number bases. The most notable point of MAB is to apply basic principles 
of the number system as a structure of mathematics concepts regardless of the number for base. If the base is equal to n, 
the sum of n Units becomes Long, the sum of n Longs becomes Flat, and the sum of n Flats becomes Blocks. The name 
of each Block is denoted by the following abbreviations: 

I  I  I = U (Unit) 
I  I  N = L (Long) 
I  N  N = F (Flat) 
N  N  N = B (Block) 
N  N   = LB (Long Block) 
N     = FB (Flat Block) 

     = BB (Block Block) (Dienes, 1963, p. 28) 
Although the devices that Stern designed are similar to the current base-ten-blocks in their forms and functions, the 

most salient point in this era is to understand the structures of mathematics that the different shapes of base-ten-blocks 
represent; the relation among numbers such as fraction, multiple, divisor, or system of numbers like decimal or binary 
system. In addition, the instruction of base-ten-blocks may differ depending on the mathematics educational purpose. 
Cuisenaire suggested that students might use devices before they learn names of each number (Cuisenaire & Gattegno, 
1961). Otherwise, Stern asserts that teachers may use her device before or after teaching names of numbers based on 
the structure of numbers that teachers are willing to teach (Stern & Stern, 1948). 

Subsequently, why are the base-ten-blocks so widely used? The patronage for education and the invigoration of 
professional organizations in the late 1950s may provide some clues to explain the propagation of base-ten-blocks 
(Kidwell, et al., 2008). From the late 1950s, the federal government offered funds for the purchase of teaching materials 
in schools, and diverse mathematics materials were propagated, along with textbooks, due to this economic support. 
Stern provided her materials with a textbook titled Experimenting with Numbers: Teacher’s Manual for Use with 
Beginners, and Cuisenaire also built his own company and made strong claims for the Cuisenaire Rods (Roberts, 2001). 
The professional organizations of mathematicians and mathematics teachers invigorated schools to improve their use of 
teaching materials, such as the Mathematical Association of America (MAA) and the National Council of Teachers of 
Mathematics (NCTM). Their activities inspired rich discussions of materials for teaching (Kidwell, et al, 2008).  
 
6. Concluding Comments 
 
According to the Representation Standard in Principles and Standards for School Mathematics, “instructional programs 
from pre-kindergarten through grade 12 should enable all students to use representations to model and interpret physical, 
social, and mathematical phenomena” (NCTM, 2000, p. 136). In particular, base-ten-blocks may provide a proper model 
of the number system and the concepts of place values to students. Students may observe the complex relationship 
among numbers such as multiples, divisors, and square numbers. In this case, the most pivotal point of using base-ten-
blocks is that teachers should understand how the structure of numeral concepts could be exemplified by using base-ten-
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blocks.  
To reveal the mathematical structure that base-ten-blocks can include, we have presented a review of literature on 

the history of base-ten-blocks that presents discussions in the field of mathematics education. The intent was not to 
understand the process of developing base-ten-blocks but rather to suggest that teachers must consider the underlying 
mathematical concepts and structures of base-ten-blocks when they use them. In summary, this study revealed that 
base-ten-blocks as concrete materials seems to have been presented as different isomorphic numeral concepts for 
various educational purposes throughout its developmental process. In addition, the history of base-ten-blocks reflects 
new educational ideas and changing views of mathematics education. We believe that the analysis developed in this 
study can help us understand mathematics education as well as how mathematics instruction might be better structured 
with the use of base-ten-blocks.  
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