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Abstract

Humans and other mammals flexibly select actions in
noisy, uncertain contexts, quickly using feedback to
adapt their decision policies to either explore other op-
tions or to exploit what they know. Drawing inspira-
tion from the plasticity of cortico-basal ganglia-thalamic
circuitry, we recently developed a cognitive model of
decision-making that uses both a value-driven learning
signal to update an internal estimate of state action-value
(i.e., conflict in the probability of reward between two
choices) and a change-point-driven learning signal that
adapts to changes in reward contingencies (i.e., a pre-
viously high value target becoming devalued). In this
work, we expand on previous results from our group
(Bond, Dunovan, & Verstynen, 2018) to more carefully de-
tail how these environmental signals drive changes in the
decision process. Across nine separate behavioral test-
ing sessions, we independently manipulated the level of
value-conflict and volatility in action-outcome contingen-
cies. Using a hierarchical drift diffusion model, we found
that the belief in the value difference between options had
the greatest influence on decision processes, impacting
drift rate, while estimates of environmental change had a
smaller, but detectable influence on the decision thresh-
old. Taken together, these findings bolster our previous
work showing how separate environmental signals im-
pact different aspects of the decision algorithm.

Keywords: change point detection; decision-conflict; cor-
ticobasal ganglia networks; adaptive decision-making

Introduction

In natural contexts, successful behavior in a dynamic envi-
ronment requires making fast, accurate decisions and updat-
ing those decisions based on an internal model of the state
of the environment. Drawing inspiration from the computa-
tional architecture of cortico-basal ganglia-thalamic circuitry
(Dunovan & Verstynen, 2016), we previously proposed a cog-
nitive model that 1) updates the rate of evidence accumulation
using estimates of value differences between possible actions

and 2) updates the threshold of decision processes using esti-
mates of change point probability. Using an adaptive-decision-
making algorithm that unifies drift diffusion models and rein-
forcement learning (Dunovan & Verstynen, 2017; Pedersen,
Frank, & Biele, 2017), we modeled decision processes under
more expansive conditions of value-conflict, or the proximity
of the probability of reward between two choices, and feed-
back volatility, or the instability of action-value associations.
We sought to replicate our previously observed effects show-
ing that value-conflict decreases the rate of evidence accumu-
lation and that volatility in action-value associations decreases
the amount of evidence needed to make a decision. For this
replication, we adopted a high-power, within-subject design
(N = 4 subjects, 3600 trials/subject) where we independently
manipulated the degree of conflict in reward values and volatil-
ity in action-outcome contingencies.

Methods

Task

Participants Four participants were recruited from the Paid
Psychology Subject Pool and the local community. They were
paid $10 per session in addition to a performance bonus.
These experiments were approved by the Institutional Review
Board at Carnegie Mellon University.

Stimuli and procedure Each participant completed nine
sessions composed of 400 trials each, generating 3600 tri-
als per subject. Data were collected from four participants in
accordance with a replication-based design, with each partic-
ipant serving as a replication experiment 1. Participants com-
pleted these sessions across three weeks in randomized or-
der. Each trial presented a male and female greeble (Gauthier
& Tarr, 1997), with the goal of selecting the sex identity of the
greeble which was most profitable. Individual greeble identi-
ties were resampled on each trial; thus, the task of the partic-
ipant was to choose the sex identity rather than the individual
identity of the greeble which was most rewarding (Figure 1).
Probabilistic reward feedback was given in the form of points
drawn from the normal distribution N(µ = 3,σ = 1) and these
points were displayed at the center of the screen. Participants
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Figure 1: The behavioral task. Participants chose one of two
greebles and received probabilistic reward. The total number
of points earned was displayed at the center of the screen.
Three levels of conflict and volatility were independently ma-
nipulated, yielding nine total sessions. Each session was
composed of 400 trials with multiple change points within a
session, as determined by the level of volatility. Sample re-
ward sessions are shown at the bottom of the figure.

began with 200 points and lost one point for each incorrect de-
cision. To promote incentive compatibility, participants earned
a cent for every point earned. If participants responded in
< .1s, > 1s, or failed to respond altogether, the point total
turned red and decreased by 5 points. Each trial lasted 1.5
s and reward feedback for a given trial was displayed from
the participant response to the end of this window. Reaction
time was constrained such that participants were required to
respond within 0.1 and 0.75 s from stimulus presentation.

To manipulate change point probability, the sex identity of
the most rewarding greeble was switched probabilistically. To
manipulate the belief in the value of the optimal target, the
probability of reward for the optimal target was manipulated.
Further, the position of the high-value target was pseudo-
randomized on each trial to prevent prepotent response se-
lections on the basis of location.

Throughout the task, the head-stabilized diameter of the left
pupil was measured with an Eyelink 1000 at 1000 Hz from
within a custom-built booth designed to eliminate the influence
of ambient sources of luminance. Because the dynamic range
of the pupillary response is known to be highly sensitive to
a variety of influences (Sirois & Brisson, 2014), participants
were exposed to a sinusoidal variation in luminance prior to
the reward-learning task to establish the dynamic range of
the pupillary response for that session. During the reward-
learning task, all stimuli were rendered isoluminant with the
background of the display to further prevent luminance-related
confounds of the task-evoked pupillary response. To minimize
the convolution of the task-evoked pupillary response from
trial to trial, the inter-trial interval was sampled from a trun-
cated exponential distribution with a minimum of 4 s, a maxi-
mum of 16 s, and a rate parameter of 2.

The pupillometry data are not presented at this time, but will

be used in follow-up analyses.

Cognitive Model

Here we propose that the drift rate (v) and the decision thresh-
old (a) are modulated on a trial-by-trial basis according to two
estimates of uncertainty from an ideal observer.

Updating action-values To model how learners update
action-values, we calculate an estimate of how often the same
action will give a different reward. We call this learning signal
change point probability (Ω). The change point probability will
be close to 1 as the probability of a sample coming from a uni-
form distribution, relative to a Gaussian distribution, increases:

Ωt =
U(r∆t )H

U(r∆t )H +N(r∆t |B∆t ,σ
2
t )(1−H)

(1)

H refers to the hazard rate, or the global probability of a
change point:

H =
∑

cpn
cp0

ntrials
(2)

Model confidence [φ] is a function of the change point prob-
ability [Ω] and the variance of the generative distribution [σ2

n],
both of which form an estimate of relative uncertainty (RU):

RUt =
Ωtσ

2
n +(1−Ωt)(1−φt)σ

2
n +Ωt(1−Ωt)(δtφt)

2

Ωtσ2
n +(1−Ωt)(1−φt)σ2

n +Ωt(1−Ωt)(δtφt)2 +σ2
n
(3)

Thus [φ] is determined as:

φt+1 = 1−RU (4)

Relative action-value Along with estimates of the stability
of action-value contingencies, feedback signals also drive the
belief in the reward of an action. We call this signal B, and it
is learned separately for each action target. Given that c = the
chosen target and u = the unchosen target, the belief in the
mean of the distribution of reward differences on the next trial
is calculated as:

Bt+1,c = Bt,c +αtδt (5)

The unchosen target value decays to the pooled expected
value of both targets, E(r):

Bt+1,u = Bt,u(1−Ωt)+ΩtE(r) (6)

E(r) =
r̄t0 + r̄t1

2
(7)

The signed belief in the reward difference between targets
is calculated as the difference in belief for targets 0 and 1:

B∆t+1 = Bt,1−Bt,0 (8)
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Update rules The learning rate of the model [α] is deter-
mined by the change point probability [Ω] and the model con-
fidence [φ]. Here, the learning rate will be high if either 1)
a change in the mean of the distribution of the difference in
expected values is likely [Ω is high] or 2) the estimate of the
mean is highly imprecise [σ2

n is high]:

αt = Ωt +(1−Ω)(1−φt) (9)

The prediction error, δ, is the difference between the model
belief and the reward difference observed:

δt = rt −Bt,c (10)

And the estimated variance, σ2, is calculated as:

σ
2
t = σ

2
n +

(1−φt)σ
2
n

φt
(11)

We propose that the belief in the relative reward for the two
choices, B, updates the drift rate, v, or the speed of evidence
accumulation:

vt+1 = β̂v ·B∆t + vt (12)

and that the change point probability, Ω decreases the de-
cision threshold, a, or the amount of evidence needed to make
a decision:

at+1 = β̂a ·Ωt −a0 (13)

We adapted the above ideal observer calculations from a
previous study (Vaghi et al., 2017).

Results
As change point probability increased, accuracy decreased
(p < 0.01 in 3/4 replicates, β̄ = −0.55± 0.24, Figure 2). As
the belief in the value of the optimal target increased, accuracy
increased (Figure 2, p< 0.03 in all replicates, β̄= 0.15±0.1).
Reaction times decreased as change point probability in-
creased in the majority of cases (p < 0.03 in 3/4 replicates,
β̄=−0.02±0.01, Figure 3). The belief in the value of the opti-
mal target had minimal impact on reaction times (β̄ = 0.00±0
in 4/4 subjects).

The RT distributions generated from each participant were
then submitted to hierarchical drift diffusion model regression
(Wiecki, Sofer, & Frank, 2013). For these regressions, we
evaluated the fit of either our hypothesized update rule or the
inverse model to the data, with Ω and B as predictors of ei-
ther a or v. Consistent with our hypothesis, we found strong
evidence for the model that mapped drift-rate updates onto
trial-wise changes in the belief of the value of the optimal tar-
get and decision threshold updates onto changes in change
point probability (hypothesized model best accounted for the
data in 3/4 cases; DIC∆ =−31 points; Figure 4).

Using the posterior probability distributions of the regres-
sion coefficients, we found that the drift-rate increased with
the belief in the value of the optimal target (Figure 5; observed

p(reward) = 0.85
p(reward) = 0.75
p(reward) = 0.65

Figure 2: Accuracy. The mean accuracy in selecting the
most probably rewarding option is plotted for each participant
across varying levels of conflict and volatility. Error bars rep-
resent bootstrapped 95% confidence intervals.

p(reward) = 0.85
p(reward) = 0.75
p(reward) = 0.65

Figure 3: Reaction times. The reaction time distributions
for each participant are plotted as a function of the manipu-
lated levels of conflict and volatility. Error bars represent boot-
strapped 95% CIs.

p(β̂v < 0) < .01 in all cases; mean p(β̂v < 0) = 0± 0 ). We
found a weak effect of change point probability on the decision
threshold (mean observed p(β̂a > 0) = 0.27±0.11).

Conclusions

Using a high-powered within-subject design, we replicated
and expanded our previous work to show that different
environmental signals modulate different aspects of the
accumulation-of-evidence process during decision making.
Future work will explore how pupil responses, as a proxy for
noradrenergic activity, track with estimates of environmental
volatility as a possible mechanism for the dynamic modulation
of decision threshold.
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Figure 4: Deviance Information Criterion (DIC) scores for the
hypothesized two-parameter model and the reversal of the hy-
pothesized relationship. Model fit results are calculated rela-
tive to an intercept-only model. The hypothesized model fits
the data best in three out of four replicates.
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