Cyber Security Analysis of Power Networks by Hypergraph Cut Algorithms

Yutaro Yamaguchi1, Anna Ogawa2,
Akiko Takeda1, Satoru Iwata1

1. Department of Mathematical Informatics, University of Tokyo
2. Department of Administration Engineering, Keio University

SmartGridComm 2014 @Venice November 4, 2014
Cyber Threat to Power Networks

Power network

State

Measurement

Estimate to control

System administrator
Cyber Threat to Power Networks

- Power network
- State
- False data injection
- Measurement
- Misrecognize!!
- System administrator
Outline

• Model and Problem Definitions
 — Undetectable (false data injection) attacks
 — Sparsest attack problem (Global security analysis)
 — Security index problem (Local security analysis)

• Existing Methods vs. Proposed Methods
 — Approx. by LP-relaxation
 — Approx. by min-cut in graphs
 — Exact by min-cut in auxiliary graphs
 — Exact by min-cut in hypergraphs (Proposed)

• Experimental Results
Outline

• Model and Problem Definitions
 — Undetectable (false data injection) attacks
 — Sparsest attack problem (Global security analysis)
 — Security index problem (Local security analysis)

• Existing Methods vs. Proposed Methods
 — Approx. by LP-relaxation
 — Approx. by min-cut in graphs
 — Exact by min-cut in auxiliary graphs
 — Exact by min-cut in hypergraphs (Proposed)

• Experimental Results
Linearized State Estimation Model

Power network

State

Measurement

Estimate

System administrator
Linearized State Estimation Model

$G = (V, A)$: directed graph

System administrator
Linearized State Estimation Model

Power network

\[G = (V, A): \text{directed graph} \]

State: Voltage angle on each node
\[\theta \in \mathbb{R}^V \]

Measurement

Estimate

System administrator
Linearized State Estimation Model

\[G = (V, A): \text{directed graph} \]

Power network

\[\theta \in \mathbb{R}^V \]

State: Voltage angle on each node

Measurement: Active power on arcs & nodes

\[z \in \mathbb{R}^{A\cup V} \]

Estimate

System administrator
Linearized State Estimation Model

State: Voltage angle on each node
\[\theta \in \mathbb{R}^V \]

Measurement: Active power on arcs & nodes
\[z \in \mathbb{R}^{A\cup V} \]

Estimate
\[z = H\theta \]

System administrator

\[G = (V, A) \text{: directed graph} \quad H \in \mathbb{R}^{(A\cup V) \times V} \]
False Data Injection

State on each node: $\theta \in \mathbb{R}^V$

Measurement on arcs & nodes: $z \in \mathbb{R}^{A \cup V}$

$z = H\theta$

$H \in \mathbb{R}^{(A \cup V) \times V}$

System administrator

False data injection $\Delta z \in \mathbb{R}^{A \cup V}$

$z + \Delta z$
False Data Injection

Power network

State on each node: \(\theta \in \mathbb{R}^V \)

\[
z = H\theta
\]

\(H \in \mathbb{R}^{(A \cup V) \times V} \)

Measurement on arcs & nodes:

\(z \in \mathbb{R}^{A \cup V} \)

\[z + \Delta z\]

False data injection

\(\Delta z \in \mathbb{R}^{A \cup V} \)

Anything is OK.

No such \(\tilde{\theta} \) !!

Something wrong!!

Detectable!!

System administrator
False Data Injection

State on each node: $\theta \in \mathbb{R}^V$

Measurement on arcs & nodes:

$z = H\theta$

$H \in \mathbb{R}^{(A \cup V) \times V}$

$z \in \mathbb{R}^{A \cup V}$

$z + \Delta z$

False data injection

$\Delta z \in \mathbb{R}^{A \cup V}$

$\Delta z = H\Delta \theta$

($\Delta \theta \in \mathbb{R}^V$)

OK, $\tilde{\theta} = \theta + \Delta \theta$!!!

Misrecognize!!

System administrator
Undetectable (False Data Injection) Attack

(Liu, Ning, Reiter 2009)

A difference $\Delta z \in \mathbb{R}^{AUV}$ of measurement values is called an undetectable attack.

$$\begin{align*}
\text{def} & \quad \Leftrightarrow \exists \Delta\theta \in \mathbb{R}^V \text{ s.t. } \Delta z = H\Delta\theta \\
\text{Actual:} & \quad z = H\theta \\
\text{Attack:} & \quad \Delta z = H\Delta\theta \\
\text{Misrecognition:} & \quad z + \Delta z = H(\theta + \Delta\theta)
\end{align*}$$
Sparsest Attack (Global Security)
(Liu, Ning, Reiter 2009)

A nonzero undetectable attack $H\Delta \theta \in \mathbb{R}^{A \cup V} \setminus \{0\}$ with the fewest nonzero entries (attacked points)

\[
\begin{align*}
\text{minimize} & \quad ||H\Delta \theta||_0 \\
\text{subject to} & \quad H\Delta \theta \neq 0
\end{align*}
\]

Attacking many points
→ Easy to prevent

\[
\Delta z = H\Delta \theta
\]

Attacking few points
→ Hard to prevent

\[
\Delta z = H\Delta \theta
\]
The **minimum number of nonzero entries** of an **undetectable attack** $H\Delta \theta \in \mathbb{R}^{A \cup V}$ to attack a specified arc or node $k \in A \cup V$

minimize $\|H\Delta \theta\|_0$
subject to $H_k \Delta \theta \neq 0$

Attacking **many** points \rightarrow **Easy to prevent**

Attacking **few** points \rightarrow **Hard to prevent**
Sparsest Attack and Security Index

Fact

Any **sparsest attack** attains the **security indices** of the arcs and nodes to be attacked.

Δ\(z\)\(^k\) is a sparsest attack.

\((\text{security index of } k) = \|\Delta z\|_0\)
Sparsest Attack and Security Index

Fact

Any **sparsest attack** attains the **security indices** of the arcs and nodes to be attacked.

\[\Delta z \text{ is a sparsest attack.} \]

\[(\text{security index of } k) = \| \Delta z \|_0 \]

A **sparsest attack** can be found by computing the **security indices** of **ALL** arcs and nodes!
Sparsest Attack and Security Index

Fact
Any sparsest attack attains the security indices of the arcs and nodes to be attacked.

Fact
The security index of a node is equal to the minimum security index among its incident arcs'.

\[(S.I. \text{ of } v) = \min_{i=1,2,3} (S.I. \text{ of } a_i) \]

A sparsest attack can be found by computing the security indices of ALL arcs!!!
Outline

• Model and Problem Definitions
 — Undetectable (false data injection) attacks
 — Sparsest attack problem (Global security analysis)
 — Security index problem (Local security analysis)

• Existing Methods vs. Proposed Methods
 — Approx. by LP-relaxation
 — Approx. by min-cut in graphs
 — Exact by min-cut in auxiliary graphs
 — Exact by min-cut in hypergraphs (Proposed)

• Experimental Results
Solution Methods for **Security Index**

Approx. by min-cut
(Sou, Sandberg, Johansson 2011)

Approx. by LP-relax
(Sou, Sandberg, Johansson 2013)

Exact by min-cut
in auxiliary graph
(Hendrickx, Johansson, Junger, Sandberg, Sou 2012)

Exact by min-cut
in hypergraph
Solution Methods for Sparsest attack

Approx. by min-cut
(Sou, Sandberg, Johansson 2011)

Approx. by LP-relax
(Sou, Sandberg, Johansson 2013)

Exact by min-cut
in auxiliary graph
(Hendrickx, Johansson, Junger, Sandberg, Sou 2012)

Security indices of ALL arcs

Exact by min-cut
in hypergraph

Single computation!!
Why min-cut?
Elementary Attack

An undetectable attack $H\Delta \theta \in \mathbb{R}^{A\cup V}$ is \textit{elementary}. \iff $\Delta \theta \in \{0, 1\}^V$

Lemma (Sou et al. 2011)

For any arc or node, there exists an \textbf{elementary attack} attaining the \textbf{security index}.

→ Consider only \textbf{elementary attacks}

→ Assign 0 or 1 to each node (\textit{Bipartition the node set }V)
Elementary Attack

An undetectable attack $H \Delta \theta \in \mathbb{R}^{A \cup V}$ is **elementary**. $\iff \Delta \theta \in \{0, 1\}^V$

Fact

An arc $uv \in A$ is **attacked** in an elementary attack. $\iff \Delta \theta(u) \neq \Delta \theta(v)$

$\iff uv$ is **cut off** by separating 0-nodes and 1-nodes.

→ # of **attacked arcs** = # of **arcs cut off** = **cut capacity**

→ Approx. by min-cut (Sou et al. 2011)
Elementary Attack

An undetectable attack \(H\Delta \theta \in \mathbb{R}^{A \cup V} \) is **elementary**. \(\iff \Delta \theta \in \{0, 1\}^V \)

Fact

An arc \(uv \in A \) is attacked in an **elementary attack**. \(\iff \Delta \theta(u) \neq \Delta \theta(v) \)

\(\iff uv \) is cut off by separating 0-nodes and 1-nodes.

→ # of attacked arcs = # of arcs cut off = cut capacity

→ Approx. by min-cut (Sou et al. 2011) How about attacked nodes?
Counting **Attacked Nodes**

Construct auxiliary graph
(Hendrickx, Johansson, Junger, Sandberg, Sou 2012)

Use hypergraph

- Large size
- A **sparsest attack** requires (# of arcs) min-cut comps.

- No additional node
- A **sparsest attack** can be found by **single min-cut computation!!**
Hypergraphs

Each edge connects \textbf{two nodes}.

Each hyperedge connects an \textbf{arbitrary number of nodes}.
Construction of Hypergraph

- Start with the input graph (ignoring the direction)
Construction of Hypergraph

• Start with the input graph (ignoring the direction)
• For each node $v \in V$, add a hyperedge consisting of the node v itself and all neighbors of v.

[Diagram of hypergraph with a node v and its neighbors]
Construction of Hypergraph

• Start with the input graph (ignoring the direction)
• For each node \(v \in V \), add a hyperedge consisting of the node \(v \) itself and all neighbors of \(v \).
Construction of Hypergraph

Cut capacity in this hypergraph
\[\Delta \theta = 1 \]
\[\Delta \theta = 0 \]

of arcs & nodes to be attacked

\[\Delta \theta = 1 \]
\[\Delta \theta = 0 \]
Computing **Security Index**

Computing the *security index of an arc* $a = st \in A$

→ Finding a **minimum s—t cut** in a hypergraph

$$\Delta \theta = 1$$

$$\Delta \theta = 0$$

Fact

An arc $st \in A$ **is attacked**.

$\iff \Delta \theta(s) \neq \Delta \theta(t)$

$\iff st$ **is cut off**.
Computing Security Index

Computing the security index of an arc \(a = st \in A \)

\[\rightarrow \text{Finding a minimum } s-t \text{ cut} \text{ in a hypergraph} \]

For any arc in any directed graph \(G = (V, A) \), one can compute the security index in \(O(|V||A|) \) time.

- By a **hypergraph min s—t cut** algorithm (Pistorius, Minoux 2003)
- The same order as the existing exact method (Hendrickx et al. 2012), but **faster in practice** because their auxiliary graph is large.
Finding Sparsest Attack

Finding a **sparsest attack** in the whole network

→ Finding a **minimum cut** in a hypergraph

Theorem (Y.-O.-T.-I. 2014)

For any directed graph $G = (V, A)$, one can find a **sparsest attack** in $O(|V||A| + |V|^2 \log|V|)$ time.

- By a **hypergraph min-cut** algorithm *(Klimmek, Wagner 1996)*
- **Essential speeding up!!**

 Applying the existing exact method *(Hendrickx et al. 2012)* to all arcs

 $\rightarrow O(|V||A|^2)$ time
Outline

• Model and Problem Definitions
 — Undetectable (false data injection) attacks
 — Sparsest attack problem (Global security analysis)
 — Security index problem (Local security analysis)

• Existing Methods vs. Proposed Methods
 — Approx. by LP-relaxation
 — Approx. by min-cut in graphs
 — Exact by min-cut in auxiliary graphs
 — Exact by min-cut in hypergraphs (Proposed)

• Experimental Results
Problems and Solution Methods

• Finding a **sparsest attack** in the whole network
 — **hyp. global min. cut**: exact method by hypergraph min-cut

• Computing the **security index of an arc** \(a \in A \)
 — **hyp. min. s-t cut**: exact method by hypergraph min-cut
 — **min. s-t cut exact**: exact method by min-cut in auxiliary graph (Hendrickx et al. 2012)
 — **min. s-t cut relax**: approx. method by min-cut in input graph (Sou et al. 2011)
 — **L1-relax (LP)**: approx. method by LP-relaxation (Sou et al. 2013)
 — **L0-exact (MIP)**: exact method by MIP solver (CPLEX)

\[
\begin{align*}
\text{minimize} & \quad \|H\Delta \theta\|_0 \\
\text{subject to} & \quad H_a \Delta \theta \neq 0
\end{align*}
\]
Computational Time for Security Index

Proposed method

Fails to obtain an exact solution for 10~20% arcs

About 1.8 times faster on average than the existing exact method.
Proposed methods Predominantly fastest!!

Computational Time for Sparsest Attack

![Graph showing computational time for various methods across different data sets and system types.](image)

- IEEE data sets
- Tokyo-Tohoku (East Japan)
- Polish systems
Conclusion

• A sparsest attack and the security index of each measurement point are significant security criteria for power networks.

• A sparsest attack can be found fast and exactly by finding a minimum cut in a hypergraph.

• The security index of each measurement point can be computed fast and exactly by finding a minimum $s-t$ cut in a hypergraph.