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Abstract: With the popularity of using deep learning-based models in various categorization
problems and their proven robustness compared to conventional methods, a growing number of
researchers have exploited such methods in environment sound classification tasks in recent years.
However, the performances of existing models use auditory features like log-mel spectrogram (LM)
and mel frequency cepstral coefficient (MFCC), or raw waveform to train deep neural networks
for environment sound classification (ESC) are unsatisfactory. In this paper, we first propose two
combined features to give a more comprehensive representation of environment sounds Then,
a fourfour-layer convolutional neural network (CNN) is presented to improve the performance of
ESC with the proposed aggregated features. Finally, the CNN trained with different features are
fused using the Dempster–Shafer evidence theory to compose TSCNN-DS model. The experiment
results indicate that our combined features with the four-layer CNN are appropriate for environment
sound taxonomic problems and dramatically outperform other conventional methods. The proposed
TSCNN-DS model achieves a classification accuracy of 97.2%, which is the highest taxonomic accuracy
on UrbanSound8K datasets compared to existing models.

Keywords: Auditory Cognition; Environment Sound Classification; Convolutional Neural Network;
Dempster—Shafer evidence theory; Fusion Model

1. Introduction

Intelligent sound recognition (ISR) is a technology for identifying sound events that exist in the real
environment. This method is mainly based on analyzing human auditory awareness characteristics
and embedding such percept ability in machines or robots. Environmental sound classification
(ESC), also known as sound event recognition, serves as a fundamental and essential step of ISR.
The main goal of ESC is to precisely classify the class of a detected sound, such as children playing,
car horn and gunshot. With the popular applications of ISR in audio surveillance systems [1] and
healthcare [2], the ESC problem has received increasing attention in recent years. Depending on the
different properties of various sound sources, sound signals can be roughly classified into human voice,
music sound, and environmental sound. Recent developments have brought great improvements
in automatic speech recognition (ASR) [3] and music information recognition (MIR) [4]. However,
on account of considerably non-stationary characteristics of environmental sounds, this kind of signals
cannot be described as speech or music only. We can imagine that the system developed for ASR and
MIR will be inefficient when applying to ESC tasks. Therefore, it is essential to develop an efficient ISR
system for environment sound recognition.
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Environment sound taxonomy generally consists of two basic components: acoustic features and
classifiers. In order to extract acoustic features, sound signals are first separated into frames with a
cosine window function (Hamming or Hanning window). Then, features are extracted from each frame
and this set of features is used as one instance of training or testing [5]. The classification result of one
sound is the summation of probabilities predicted for each segment. Features derived from Mel filters:
Mel Frequency Cepstral Coefficients (MFCC) and Log-Mel Spectrogram (LM) are two widely used
features in ESC [6,7] with acceptable performance, although they are originally developed for ASR.
Moreover, a considerable number of research works indicate that combined features performed better
than only use one feature set in ESC tasks. While adding more conventional features cannot improve
the performance. Hence, a suitable feature aggregate scheme is an essential part of sound taxonomy.

Support-vector machines (SVM), Gaussian mixture model (GMM) extreme learning machine
(ELM) are widely used classifiers in sound related classification tasks in the past decades [8–11] and
other categorization problems as well. However, these conventional classifiers are designed to model
small variations which result in the lack of time and frequency invariance. In recent years, deep neural
network-based models have been proven to be more efficient than traditional classifiers in solving
complex categorize problems. The convolutional neural network (CNN) is one of the most commonly
used architectures of deep learning models, which could address the former limitations by learning
filters that are shifted in both time and frequency [12]. The CNN is designed to process data that
come in the form of multiple arrays: 1D for various kinds of sound signals, such as speech and music,
and 2D for image or audio spectrograms [13]. Ref. [14] first use the CNN in image recognition and
outperform all the traditional methods in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). CNN has been successfully used for ASR [15] and MIR [4], and this deep architecture is also
shown to be extremely powerful in ESC tasks. In 2018 Detection and Classification of Acoustic Scenes
and Events challenge (DCASE), 55 of the 97 submissions being based on a CNN architecture [16].
Although great improvement has been achieved by using CNN in ESC problems, however, there is
still a long way to go when compared with CNN based image classification algorithms. Therefore,
some researchers consider to merge two CNN or fuse CNN with other deep learning models to elevate
the performance.

Despite the fact that CNN can solve the limitations of conventional classifiers, the longer temporal
context information still cannot be captured by this method. Hence, several works propose to
use merged neural networks to address the above-mentioned shortcomings through integrating
information from the earlier steps [17–20]. In these methods, one or more CNNs are used to
extract the spatial information with different acoustic features firstly. Then, the outputs are merged
by concatenation and feed to recurrent neural network (RNN) layers or another CNN layers for
temporal information extraction. Inspired by sensor fusion framework, several research works apply
decision-level fusion in ESC tasks. The main idea of decision level fusion method is to fuse the softmax
values acquired from different neural networks through mean calculation, or uncertainty reasoning
algorithms such as Dempster—Shafer evidence theory (DS theory) and Bayesian Theory [20,21].
The experiment results indicate that merged neural networks with decision level fusion outperform
single deep architectures in taxonomic tasks [20–23].

The main obstacles of current algorithms for ESC tasks are as follows: 1) the most widely used
acoustic features applied to ESC tasks were originally designed for ASR and MIR, such as log-mel
spectrogram and MFCC. Since the environment sounds are mostly non-stationary signals without
meaningful patterns or sub-structures, use a single feature may lead to the failure of capturing
important information about environmental audio events. 2) In recent years, with the advancement of
deep learning models, the CNN becomes a primary choice in environment sounds recognition and
outperform the conventional classifiers like SVM or GMM [7,24]. Even though some research works
attempt to use deeper neural networks [25,26] or stacked deep architectures [17–20] to improve the
taxonomic accuracy, however, the performance is still unsatisfactory. Hence, there is need to develop
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appropriate auditory features and novel neural network models to achieve high categorization accuracy
for ESC tasks.

In order to address these two deficiencies, we propose a novel four-layer stacked CNN
architecture based on two combined auditory features and DS theory-based information fusion method,
called TSCNN. The proposed system consists of three components: feature extraction and combination,
CNN training and DS theory-based decision-level fusion. We extract five auditory features: log-mel
spectrogram (LM), MFCC, chroma, spectral contrast and tonnetz (in order to facilitate the description
in the rest of papers, we call the last features as CST). Then, LM and CST (LMC) are combined as
one feature sets, MFCC and CST (MC) are aggregated as another for training two CNNs, respectively.
At last, the outputs derived from the softmax layer of these two CNNs are fused by DS theory to
exploit both combined features. The experimental results indicate that the taxonomic accuracy of the
proposed architecture can surpass both LCNet (CNN use LMC feature) and MCNet (CNN use MC
feature), and is also outperforming the existing models on Urbansound8K [27] dataset. To our best
knowledge, this is the first time that the classification accuracy of CNN-based ISR system is higher
than 97% in ESC tasks.

The remaining structure of this paper is organized as follows. Section 2 introduces the related
works on environment sound recognition. Section 3 describes the feature extraction and the architecture
of the proposed model. The experiment results and detailed analysis are shown in Section 4.
In Section 5, the conclusion of our work is presented.

2. Related Works

With the growing number of evidence that the CNN-based models outperform conventional
methods in various categorization tasks, they have been applied in sound recognition tasks in recent
years. Ref. [28] first evaluated the performance of using CNN in ESC tasks. In this work, an ESC
system consists of 2-layer CNN with max-pooling and 2 fully connected layers is proposed. Log-mel
spectrograms are extracted as an auditory feature to train the neural network. The experiment results
indicate that the classification accuracy of this model is 5.6% higher than traditional methods. Ref. [12]
propose to use CNN with smoothed and de-noised spectrogram image feature in sound recognition
tasks. Ref. [29] presents a CNN model using mel-spectrograms as features. The performance of three
neural network layers as classifiers are investigated, which is a fully connected layer, convolutional
layer and convolutional layer without max-pooling. The results indicate that using a convolutional
layer as a classifier outperforms the model applying a fully connected layer as the classifier. Ref. [24]
presents a six-layer CNN model for acoustic event recognition. In this work, the log-mel spectrograms
with their first order derivation and second order derivation are extracted for each recording without
segmentation. Then, multiple instance learning is applied and the softmax layer is replaced by an
aggregation layer to aggregate the outputs of each network. The data augmentation is applied to
prevent over–fitting and improve the robustness of the model. CNN has a strong ability to extract
features directly from raw inputs, which has been verified in various image recognition problems.
Based on this, Ref. [30] proposes to use CNN to extract features from raw waveform and use SVM
or extreme learning machines as classifiers in ESC tasks. The results denote that this architecture
outperforms the CNN trained by MFCC. However, the accuracy is only 70.74%. Ref. [26] and uses raw
waveforms to train CNNs as well. In this work, the problem of how many layers are the most suitable
for CNNs has been studied. With considerable experiments, it is pointed out that deeper layers do not
give better performance. Meanwhile, the results also indicate that using waveforms just achieve an
approximative performance of models using log-mel features.

Traditional CNN models have several drawbacks for auditory tasks. For example, pooling layers
are generally applied in CNN models for feature dimensional reduction, however, these processes can
lead to information loss and hinder the performance of neural networks. Therefore, a considerable
number of works attempt to use improved CNNs for ESC tasks. Dilated convolution layers are
exploited for ESC [31,32] to avoid the above-discussed obstacles. Several research works exploit
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CNN models which were originally developed for image recognition tasks, and achieve outstanding
performance in ESC as well [25]; the environment sound classification accuracy of AlexNet and
GoogLeNet [33] are evaluated on UrbanSound8K, ESC-10 and ESC-50 [34] datasets. Spectrograms
(Spec), MFCC and Cross Recurrence Plot (CRP) feature sets are extracted and concatenated as
three-channel image feature to train both models. The experiment results indicate that the image
recognition models could also obtain good taxonomic accuracy for sound recognition problems.
The authors in Ref. [35] use an end-to-end ESC system using a convolutional neural network. In this
model, raw waveforms are used as inputs and two convolution layers are applied to extract features.
Then, three max-pooling layers are performed for feature dimensional reduction followed by two fully
connected layers as the classifier. A VGGNet [36] based ESC system is presented by Ref. [6], where the
convolution filters are set to 1-D for learning frequency patterns and temporal patterns, respectively.
Ref. [37] proposes a CNN based model called WaveNet, which uses multi-scale features to make a
CNN that learns comprehensive information of environment sounds. First, features are extracted
from one recording through the first convolution layer using three types of filter size. The second
convolution layer uses corresponding pooling stride to equal the dimension of these features and then,
the three features are concatenated to form the multi-scale features. This feature is further combined
with a log-mel spectrogram and perform better than other systems on an ESC-50 dataset. The DS-CNN
model presented by Ref. [20] also uses a raw waveform and log-mel spectrogram as inputs to train
CNN based ESC system. The difference between WaveNet and DS-CNN is: the WaveNet combined
two kinds of features together while in DS-CNN, two different CNN use raw waveform and log-mel
spectrogram as inputs, respectively, and the outputs are fused by DS theory.

From these works, we can notice that most ESC models use raw waveform directly or single
auditory features to train neural networks. However, after a comprehensive investigation of a
considerable number of sound recognition works, Ref. [5] pointed out that aggregate features will
give better performance than single features in ESC problems. Meanwhile, from the classification
accuracy derived from these recently published works, we can also find out that the CNN-based ESC
or ISR systems still has great potentials for making further progress. Hence, we hope to find efficient
aggregated features and appropriate CNN architecture to elevate the performance for environment
sound categorization.

3. Two-Stream CNN with Decision-Level Fusion

In this section, we first describe the feature extraction and combination method. Then, the structure
of CNN model and DS theory-based information fusion algorithm will be presented.

3.1. Feature Extraction and Combination

Several works [4,9,38,39] have proven that aggregated features achieve higher classification
accuracy of environment sounds than single features for both ASR and MIR. The same feature
combination methods are introduced in our work to classify environment sounds.

As log-mel spectrogram and MFCC are the most widely used auditory features in sound
recognition, these two feature sets are extracted at first. Then, chroma [40], spectral contrast [41] and
tonnetz [42] are extracted through Librosa [43] library. Log-mel spectrogram, chroma, spectral contrast
and tonnetz are aggregated to form the LMC feature sets, and MFCC is combined with chroma,
spectral contrast and tonnetz to form the MC feature sets. Both feature sets are combined in a linear
way, and their time-frequency representations are shown in Figure 1.
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Figure 1. The spectrogram of LMC and MC feature sets.

3.2. Structure of the MCNet and LMCNet

The two networks of TSCNN both contain four convolution layers and one fully connected layer.
The framework of the proposed four-layer CNN is shown in Figure 2; the architecture of the model is
as follows:

(1) The first layer uses 32 kernels with 3 × 3 receptive field and the stride step is set to 2 × 2
and batch-normalization is performed. The Rectified Linear Unit (ReLU) is exploited as the
activation function.

(2) The second layer uses the same settings as the first layer, where 32 convolution kernels with
receptive filed of 3 × 3 and stride step of 2 × 2. The batch-normalization is performed and
activation function is ReLU as well. The difference is that the second layer applies max-pooling
for dimensionality reduction of feature maps.

(3) The third layer uses 64 convolution kernels with a receptive field of 3× 3 and the stride step is
also 2× 2, where batch-normalization is used. Followed by the activation function, ReLU.

(4) The fourth layer 64 convolution kernels with receptive filed of 3× 3 and stride step of 2× 2.
The batch-normalization is performed and activation function is ReLU.

(5) The fifth layer is the fully connected layer with 1024 hidden units and the activation function
is Sigmoid.

(6) The output is ten units according to the datasets, followed by the softmax activation function.

At the training stage, we use a 0.5 dropout probability for the second layer, fourth layer and
the fully connected layer to prevent overfitting. The CNN is trained through a variant of stochastic
gradient descent [44]. The batch size is set to 32, while all weight parameters are subjected to L2

regularization and learning rate is set to 0.001 with the momentum of 0.9. The cross-entropy is applied
as loss function. At the testing stage, all parameters are the same as the training stage, while the
dropout will not be implemented.
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3.3. Dempster—Shafer Evidence Theory-Based Information Fusion

Dempster-Shafer evidence theory (DS theory) was originally established by Ref. [45], it is also
known as belief function theory. The DS theory is mainly about quantified beliefs like Bayesian
probability. The main idea of is the notion of evidence and how different pieces of evidence should be
combined in order to make inferences [46].

The basis of DS theory is to establish a frame of discernment Θ and a subset of hypothesis
{A 1, A2 . . . An} ⊆ Θ, where n is the number of hypothesis. Ai is an element of the power set P(Θ).
Mass function or basic probability assignment M is a mapping: P(Θ)→ [0, 1] distribute a mass value
to each hypothesis Ai ⊆ Θ. The mass function represents the trust level of each element itself. There are
two constraints of mass function:

(1) ∑
A⊆Θ

M(A) = 1, which means the sum of each probability in subset A is 1.

(2) M(∅) = 0, this indicate that the mass function cannot allocate any value to an empty set.
Meanwhile, a mass function with this characteristic is called normalized mass function.

In this work, the category of sounds in the dataset can be treated as an element in subset A under
the frame of discernment Θ. Here, n = 10 according to the classes number of UrbanSound 8K and each
element are independent. For solving reasoning problems, the mass function representing different
part of evidence must be combined in a meaningful way. Here, we use Dempster’s rule to combine
the two mass functions derived from each CNN. This combination rule allows combining normalized
mass function that are obtained over the same frame of discernment.

The outputs of softmax of LMCNet and MCNet are used as the mass function M1(B) and M2(C).
The combination of mass function (M1⊕2 = M1 ⊕M2) based on Dempster’s rule ⊕ is defined as:

M1⊕2(A) = α ∑
B∩C=∅

M1(Bi)M2(Ci), ∀A ⊆ Θ, A 6= ∅ (1)

M1⊕2(∅) = 0 (2)

α =
1

∑
B∩C=∅

M1(Bi)M2(Ci)
(3)

where, α is a normalization constant indicating the mass function is normalized. M1⊕2(A) is a mass
function as well and satisfied ∑

A⊆Θ
M1⊕2(A) = 1, which is the final probability assignment of M1(B)

and M2(C), it is also the result of the fusion process of LMCNet and MCNet.
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With the LMCNet, MCNet and the DS theory-based information fusion method, we propose the
TSCNN. The overall framework of the this ISR system is shown in Figure 3.
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From Figure 3, we can see that MFCC, Log-Mel Spectrogram, Chroma, Spectral Contrast and
Tonnetz features are extracted from sound waveforms. Then, MFCC and Log-Mel Spectrogram are
combined with the rest three features, separately. The MFCC-CST feature set is used to train the
MCNet and LM-CST is used to train the LMCNet. Finally, the softmax value derived from each neural
network are fused through DS evidence theory to form the sound classification results.

4. Experiment and Analysis

The UrbanSound8K dataset includes 8732 labeled urban sounds (the length is less than or equal
to 4 s) collected from the real-world, totaling 9.7 h. The dataset is separated into 10 audio event classes:
air conditioner (ac), car horn (ch), children playing (cp), dog bark (db), drilling (dr), engine idling (ei),
gunshot (gs), jackhammer (jh), siren (si) and street music (sm).

The same feature extraction method presented by Ref. [28] is used in this work. All sound clips
are converted to the single channel wave files with the frequency of 22,050 Hz. Then, divided into 41
frames with an overlap of 50% (each frame is about 23 ms). We use the pre-setting channels of Librosa
to extract the Chroma, Spectral Contrast and Tonnetz features. For the MFCC extraction, the value of
first twenty channels with their first and second order derivatives are used, resulting in 60-dimensional
feature vectors. The channels of Log-Mel Spectrogram are set to 60, in order to make the dimension to
be equal to the MFCC. Then, all the spectrograms are represented as a matrix with a size of 41× 60.
The feature size of chroma, tonnetz and spectral contrast is 41× 7, 41× 6 and 41× 12, separately.
Therefore, the size of LMC and MC are all 41× 85. Figure 4 shows the graphical representation of how
does the feature learned by the proposed fourfour-layer CNN.

It can be seen from Figure 4 that the feature maps derived from first and second convolutional
layers have the same size as the input feature. After 2× 2 max pooling processing, the size of input
feature maps for third convolutional layer is 21× 43. Since the max pooling is not performed after
convolutional layer 3, so that the size of input features for 4th convolutional layer is 21× 43 as well.
Then, features with size of 11× 22 are derived from the last hidden layer and feed to the fully-connected
layer which has 1024 hidden units. The output is a 1× 10 tensor according to the number of classed of
UrbanSound8K dataset is 10.
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For each experiment, the ten-fold cross-validation is performed to evaluate the proposed ISR
model on UrbanSound8K dataset. The combined features and four-layer CNN architecture are two
main contributions of this work. Hence, we first analyze the efficiency of the CNN model trained with
combined features. Meanwhile, the influence of the different number of convolution layers (six and
eight) on CNN-based ESC system is also investigated. The additional convolution layers in the CNNs
for comparison use the same receptive fields of 3× 3 and stride step of 2× 2, batch-normalization is
performed on each layer with ReLU as activation function. Dropout with a rate of 0.5 is exploited for
the sixth and eighth convolution layer in the two additional CNN models, respectively. Table 1 presents
the number of parameters and the memory cost of CNN with different number of convolutional layers.

Table 1. Parameters and memories of CNN with different number of convolutional layers.

four-layer 6-Layer 8-Layer

Layer param memory param memory param memory
input 0 3.5 K 0 3.5 K 0 3.5 K

Conv 3× 3− 32 288 111.5 K 288 111.5 K 288 111.5 K
Conv 3× 3− 32 9.2 K 111.5 K 9.2 K 111.5 K 9.2 K 111.5 K
Conv 3× 3− 64 18.4 K 57.8 K 18.4 K 57.8 K 18.4 K 57.8 K
Conv 3× 3− 64 36.8 K 57.8 K 36.8 K 57.8 K 36.8 K 57.8 K
Conv 3× 3− 128 0 0 73.7 K 31 K 73.7 K 31 K
Conv 3× 3− 128 0 0 147.5 K 31 K 147.5 K 31 K
Conv 3× 3− 256 0 0 0 0 294.9 K 4.6 K
Conv 3× 3− 256 0 0 0 0 589.8 K 4.6 K

Fc 1024 15.9 M 1024 8.7 M 1024 4.7 M 1024
Fc 10 10.2 K 10 10.2 K 10 10.2 K 10
Total 15.9 M 339.6 K 8.9 M 401.6 K 5.9 M 413.4 K

Furthermore, the classification performance of feature level fusion method is also presented.
We combined LM, MFCC and CST together to form a new feature set called MLMC, to make a further
investigation of the influence of various feature combination strategies in ESC tasks. The feature size
of MLMC is 41× 145. The spectrogram of MLMC is shown in Figure 5. The experiment results are
shown in Tables 2, 4 and 5. The class-wise classification accuracy and the average accuracy of ten-fold
cross-validation of three combined features and the proposed TSCNN-DS model on UrbanSound8K
dataset is presented in each table.
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The Table 2 describes the experimental results of each method with four-layer CNN models.
We can find that the feature combination of LMC and MC performs well in the four-layer CNN based
ISR system. Taxonomic accuracy of five and six classes are higher than 95% using LMC and MC,
respectively. While the feature aggregated of all feature sets not only reduces the performance but also
makes it slightly worse. The LMCNet and MCNet achieves 95.2% and 95.3%, which is 22.5% and 22.6%
higher than the model presented in Ref. [28], respectively. The feature combination of MLMC has the
worst performance among the four models, however, it is still 21.9% higher than the 72.7% of Piczak’s
model. It can be seen that for both methods, the classification accuracy of all categories is higher than
90% except for gunshot of LMC and MLMC. The proposed TSCNN-DS model reaches 97.2% which is
24.5% higher than Piczak’s work, and it significantly improved the classification accuracy of gunshots
(95.4%).

Table 2. Class-wise accuracy of four models with four-layer CNN evaluated on UrbanSound8K.

Class LMC (LMCNet) MC (MCNet) MLMC TSCNN-DS

ac 98.6% 99.9% 99.2% 99.9%
ch 93.9% 91.4% 93.2% 94.2%
cp 97.3% 93.9% 96.1% 97.5%
db 92.6% 90.4% 94.2% 95.3%
dr 94.8% 95.0% 95.7% 97.2%
ei 98.9% 99.6% 98.5% 99.6%
gs 88.6% 91.1% 85.9% 95.4%
jh 93.2% 95.9% 91.1% 97.1%
si 98.6% 98.3% 98.5% 98.9%

sm 95.0% 97.4% 94.1% 96.9%
Avg. 95.2% 95.3% 94.6% 97.2%

Moreover, in order to further illustrate whether the proposed TSCNN-DS model outperform
LMCNet, MCNet and four-layer CNN using MLMC feature sets, we show the standard deviation
and time cost in Table 3. The classification accuracy obtained by TSCNN-DS is 2% and 1.9% higher
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than LMCNet and MCNet. It is also shown in Table 3 that the standard deviation of TSCNN-DS is
much less than three other methods, which further demonstrate that the fusion model outperforms
three other single models. The mean time cost for LMCNet, MCNet, MLMC and TSCNN-DS is 0.023 s,
0.024 s, 0.028 s and 0.077 s, separately. The test is down in Python under Microsoft Windows 10 x64 OS
on a computer with Intel Core i7-8700 CPU, two GTX 1080 GPU (the memory of each GPU is 8 GB) and
32 GB RAM. Although the time cost of proposed model is almost three times longer than single neural
networks, the computational cost of TSCNN-DS is still well acceptable for ESC tasks in real time.

Table 3. Statistics analyze and time cost of four-layer CNN based models and TSCNN-DS model.

Mean N Std Deviation Time Cost

LMCNet 0.9515 10 0.03121 0.023
MCNet 0.9529 10 0.03352 0.024
MLMC 0.9465 10 0.03812 0.028

TSCNN-DS 0.9720 10 0.01788 0.077

It can be seen in Table 4 that, the six-layer CNN based models performs slightly worse than the
methods use four-layer CNN. The LMCNet, MCNet, MLMC-CNN and TSCNN is 2.2%, 6.0%, 1.9%
and 2.3% worse when compared with the four-layer CNN-based models. The categorization accuracy
of gunshot for both methods is less than 90% and it is less than 80% for LMC and MC feature sets.
Classification accuracy of dog barking with MCNet failed to reach 90%, and taxonomic accuracy on
children playing of MCNet dramatically reduced to 69.4%. The MLMC feature cannot improve the
classification performance as well, where the accuracy of children playing and gunshot failed to reach
90%. The same situation also appeared in the TSCNN model. Nevertheless, the proposed TSCNN
model still achieves the best classification result (94.9%).

Table 4. Class-wise accuracy of four models based on 6-layer CNN evaluated on UrbanSound8K.

Class LMC (LMCNet) MC (MCNet) MLMC TSCNN-DS

ac 98.9% 98.9% 97.5% 99.9%
ch 90.2% 69.4% 87.9% 89.2%
cp 94.8% 91.1% 93.6% 96.4%
db 91.3% 88.0% 91.6% 93.1%
dr 93.8% 90.9% 91.5% 95.5%
ei 98.2% 97.7% 98.1% 99.1%
gs 77.2% 77.2% 81.7% 85.1%
jh 92.6% 91.6% 93.4% 97.1%
si 99.0% 96.1% 99.0% 98.9%

sm 94.3% 92.1% 92.9% 94.7%
Avg. 93.0% 89.3% 92.7% 94.9%

From Table 5 we can find that the performance of all methods is unsatisfactory with the
eight-layer CNN. Most of the categories and all methods obtain a taxonomic result that less than
90%. This indicates that using deeper layers may not give a better result for deep architectures,
while appropriate layers and suitable parameter settings are the most important components of deep
learning models.
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Table 5. Class-wise accuracy of four models based on 8-layer CNN evaluated on UrbanSound8K.

Class LMC (LMCNet) MC (MCNet) MLMC TSCNN-DS

ac 94.8% 91.5% 93.2% 98.2%
ch 76.1% 47.3% 88.1% 69.9%
cp 84.0% 80.9% 87.9% 88.0%
db 79.9% 73.3% 86.8% 80.8%
dr 87.8% 87.4% 87.0% 91.6%
ei 96.8% 94.8% 95.3% 97.4%
gs 57.2% 63.4% 45.4% 67.8%
jh 89.8% 74.7% 85.9% 87.6%
si 97.8% 88.3% 96.5% 96.3%

sm 85.3% 71.8% 90.3% 80.3%
Avg. 84.9% 77.3% 85.7 % 85.8%

In general, we can find out that the proposed LMC and MC features present to be efficiency with
the proposed ISR system, which clarifies the advantage of the proposed feature combination strategies
in ESC tasks. The TSCNN-DS model outperforming other models for both CNN architectures with
different convolution layers. Then, the four-layer CNN achieves the best taxonomic accuracy when
compared with six-layer and eight-layer CNN models for both methods. Meanwhile, the classification
accuracy of both methods with the proposed four-layer CNN are higher than existing models.
These results demonstrate the efficiency of the proposed four-layer CNN and DS theory fusion
method based TSCNN-DS model.

In order to make a comprehensively comparison, we also investigate the two-stream CNN with
the layer stack method. This model combined the outputs of the second convolution layer of both
CNN and the concatenate feature maps are than used as inputs for the next convolution layers. We test
this stacked CNN with 4, 6 and 8 layers as well. The parameter settings of each convolution layers
and fully connected layers are equal to the 4-, 6- and 8-layer CNN described above. The classification
accuracy of these stacked CNNs on UrbanSound8K dataset are shown in Table 6.

Table 6. The ESC results of stacked CNNs with 4, 6 and 8 convolution layers.

Model Accuracy

Stacked four-layer CNN 86.4%
Stacked 6-layer CNN 79.8%
Stacked 8-layer CNN 80.1%

It is clearly that the stacked four-layer CNN models achieve the highest (86.4%) classification
accuracy among the three models. Which is 6.6% and 6.3% higher than stacked six- and eight-layer
CNN respectively. This result further proves that the proper number of layers and parameters is the
key to the deep learning model based ISR system, where the advantage of the proposed four-layer
CNN is further proved as well.

At last, we compare our TSCNN-DS model with several existing CNN based ISR models as
presented by Refs. [6,20,25,28,32,35]. The results are shown in Table 7. The LMCNet uses LMC feature
sets and achieves an accuracy of 95.2%, which is 22.5% higher than the Ref. [28] model that uses
LM features. Meanwhile, it is 11.5% higher than the Ref. [32] model and uses LM and Gammatone
Spectrogram combined feature. Furthermore, the performance of LMCNet is slightly higher (3%)
than the model presented by Ref. [20], which also applies DS theory as a sfusion method to fuse
two CNN models. The classification accuracy of MCNet is 95.3%, which is much higher than the
72.7% of the model proposed by Ref. [28]. Moreover, the proposed MCNet is also significantly higher
than the Ref. [28] model and is 2.3% higher than the Ref. [25] model with MFCC based aggregated
featurs. Finally, the proposed DS theory-based TSCNN-DS model obtains the highest taxonomic
accuracy (97.2%) among all the ESC models. The performance of our algorithm is much higher than
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the Ref. [28] model and is 5% higher than the Ref. [20] model which uses the same fusion strategy.
To our best knowledge, this is the first time that the categorization accuracy has reached over 95% on
the UrbanSound8K dataset and is the highest accuracy compared with existing models.

Table 7. Comparison of classification accuracy with other models on UrbanSound8K datasets. The bold
is our result.

Model Feature Accuracy

Piczak [28] LM 72.7%
Tokozume [35] Raw Data 78.3%
Zhang X. [32] Mel 81.9%
Zhang Z. [6] LM-GS 83.7%

Li [20]. Raw Data-LM 92.2%
Boddapati [25] Spec -MFCC-CRP 93%

LMCNet LM-C 95.2%
MCNet M-C 95.3%

TSCNN-DS MC and LMC 97.2%

5. Conclusions

In this paper, we proposed the TSCNN-DS model of intelligent sound recognition problems.
It consists of two four-layer convolutional neural networks, the LMCNet and MCNet trained by two
combined features, LMC and MC feature sets, respectively. Then, the outputs of the softmax layer of
both networks are fused through DS evidence theory; the result is the predicted categorization of an
environment sound. The performances of two CNNs with the novel combined feature sets and the
entire framework are tested on UrbanSound8K dataset and compared with existing models which
published in recent years. The LMCNet and MCNet reaches 95.2% and 95.3% on UrbanSound8K
dataset, which is 22.5% and 22.6% higher than the Piczak’s model [28], respectively. Meanwhile,
these two neural networks are all slightly higher than recent ESC models which use same feature
(LM or MFCC) to form a combined eigenvector. These results indicate that the proposed CNN is
more effective for environment sounds classification tasks according to the appropriate parameter
settings and a comprehensive representation of sound recordings through the combined feature
sets. The TSCNN-DS achieves 97.2% on the UrbanSound8K dataset, which is 4.2% higher than the
state-of-art methods (the Ref. [25] model), and is 5% higher than the Ref. [20] model where the same
fusion algorithm is exploited to fuse two CNNs.

The DS theory can substantially improve the taxonomic performance of the single CNN model in
ESC problems, however, from Table 2 we can find out that the accuracy of repeated discrete sounds
(car horn, dog barging and gunshot) is worse than other sound classes. This is maybe caused by
the number of convolutional layers, which prevents the model from extracting enough feature maps
to comprehensively represent important information of sound signals. Another probability is the
feature (LC and MC) which may neglect some needed information for representing such discrete sound
signals. To improve the categorization accuracy on these kinds of sounds with the TSCNN-DS model
will be among our future work. Both new feature extraction methods and novel CNN architectures
should be established for conquering these problems and improving the classification performance.
Meanwhile, the computation cost should also be considered to make an ISR model which can be
applied in real time.
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