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Abstract—This paper presents a newly developed approach 

for Differential Drive Mobile Robot (DDMR). The main goal is to 

provide a high dynamic system response in the joint space level, 

the low level control, as well as to enhance the DDMR 

localization. The proposed approach depends on a Linear 

Quadratic Regulator (LQR) for the low level control and an 

Adaptive LQR for the high level control. The investigated DDMR 

is considered highly nonlinear system due to uncertainty 

exhibited by the mobile robot incorporated with actuators 

nonlinearity. DDMR’s uncertainty leads to erroneous 

localization. An Extended Kalman Filter (EKF) -based approach 

with fusion sensors is used to enhance the robot degree of belief 

for its posture. Intensive simulation results obtained from the 

developed uncertain model and the proposed approach have 

shown very good dynamic performance on the low level control 

and very good convergence to the desired posture of the mobile 

robot path with the presence of robot uncertainty. 

Keywords—DDMR modelling; Localization; LQR; Adaptive 

LQR; EKF; System Uncertainty 

I. INTRODUCTION  

The question of “where am I?” exhibited by mobile robots, 
in general, remains challenging and incompletely covered in 
academics. The topic of mobile robot localization has been paid 
wide attention by academics and industry to enhance the robot 
performance in different aspects for which the robot can 
perform its motion towards any desired posture with as 
minimum error as possible. Different techniques proposed to 
enhance trajectory tracking of wheeled mobile robots. [1, 2, 3, 
4] utilize EKF algorithm with fusion sensors and gyroscope to 
localize the robot system as close as possible to the desired 
posture. The disadvantages of the work presented in [1, 2] do 
not pay attention to the dynamic performance of the system due 
to robot uncertainty but they considered only the noise 
affecting the proprioceptive and the exteroceptive sensors.  

However, in [2, 3] researchers use fusion sensors and vision 
sensor to help the system to be located correctly in a specific 
location. People in [3] implement EKF-based algorithm 
assisted with a gyroscope sensor to enhance the robot 
localization. Researchers in [3, 4] consider the proprioceptive 
sensors provide exact information about the robot motion in 
which the robot‟s posture is considered correct but noisy. Thus 
[3, 4] use EKF to purify the information about the robot‟s 

localization. [6, 8] have proposed trajectory tracking algorithm 
but considered the information comes from the proprioceptive 
sensors is correct enough to determine the robot‟s posture with 
no lack of accuracy. The uncertainty of the mobile robot due to 
inaccuracy in the mechanical robot design and due to joint 
space inaccuracy exhibited by the mobile robot actuators lead 
to accumulated drift and divergence from the desired robot‟s 
posture.  

This paper focuses on a novel control approach utilizing 
Linear Quadratic Regulator for joint space control of robot 
actuators as well as proposing EKF-assisted optimal controller 
to overcome the problem of robot uncertainty, which may lead 
to robot posture divergence. The proposed approach is 
supported by fusion sensors consisted of a gyroscope sensor 
(rate & accelerometer) which is fixed to the robot‟s center of 
gravity and robot‟s on board sensors (odometry sensors). The 
onboard sensors (proprioceptive sensors) assumed noisy, in 
addition to the robot‟s mechanical parameters also considered 
highly uncertain.  

It is presumed, as well, that the mobile robot is due to some 
random disturbance represented by τd which is very common in 
the system control areas [3]. The remaining sections of the 
paper are as follows: Section II provides details about the 
dynamic model of the mobile robot incorporating the actuators 
dynamics; section III explains the design of the proposed 
controller for the joint space control system i.e., low level 
control; section IV discusses mobile robot navigation and 
localization; section V exhibits intensive simulation results 
with different system uncertainty and section VI provides a 
conclusion for the presented work. 

II. DIFFERENTIAL DRIVE MOBILE ROBOT  MODEL 

A. Mobile Robot Motion Description: 

The HBE-RoboCar wheeled mobile Robot (WMR) has four 
driving wheels, which determine the moving direction of the 
robot through the rotating direction and speed of wheels. This 
WMR uses 4-DC geared motors for operation, and each wheel 
has one motor mounted. The wheels in the same side (left or 
right) are operated together as shown in Fig.1 to follow a 
certain robot trajectory. Such wheeled robots called Differential 
Drive Mobile robot (DDMR). In this section a mathematical 
description of DDMR moving on a planar surface is presented. 
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Fig.1. Block diagram of DDMR with actuators. 

Usually, the DDMR‟s posture is determined in its 
environment based on two coordinate frames: the Global frame 
{G} and Local Frame {L}. The global frame is fixed in the 
environment in which the robot moves in. The local frame 
attached to the DDMR at the middle point A between two back 
wheels. The movement of point A represents the movement of 
the robot [9]. 

 

Fig.2. DDMR Coordinates Systems 

As shown in Fig.2, ax and ay coordinate denote the 

position of DDMR in the global frame. The angle θ between 
the moving direction of the DDMR and the positive direction 
of the x-axis of the global coordinate frame denotes the 
orientation. Symbols used in this section are listed in Table1:  

TABLE I.  KINEMATIC & DYNAMIC MODEL VARIABLES: 

Parameter: Description: 

L2  Distance between two wheels (m) 

C  The center of mass 

A  the middle point between two back wheels 

d  Distance between A and C (m) 

r  Wheel radius (m) 

LR  ,  The angular velocity of the wheels (rad.s-1) 

v  The linear velocity of DDMR (m.s-1) 

 ω The angular velocity of DDMR (rad.s-1) 

N  
Gear ratio 

K  
back emf constant ( 1. radvs ) 

M  Robot mass (kg) 

J  Robot moment of inertia (kg.m2) 

uLuR FF ,
 

Tangential forces exerted on DDMR by the wheels.  

wLwR FF ,
 

Radial forces exerted on DDMR by the wheels. 

The study of DDMR motion is divided into three parts 
including kinematics, dynamics and drivers [8, 9]. 

B. Kinematic Model of the DDMR: 

Kinematics is the most basic study of how mechanical 
systems behave in order to model, analyze and simulate any 
control system design. The motion of this type of wheeled 
robot is classified as non-holonomic, which means, the motion 
constraint equations are needed to introduce into the DDMR‟s 
motion equations based on two main assumptions [9]: 

 The robot can‟t move sideward. These non-holonomic 
constraints are taken into account by defining the 
velocity of the center point A in the local frame and 
forcing it to be zero. This constraint introduces in the 
global frame related to the velocity of point A by the 
following equation (1):  

0)cos()sin(   G
a

G
a yx   (1) 

Where  TG
a

G
a

G yxq   is the coordinate of point A in 

the global frame. 

 To simplify the model, it is assumed that each wheel has 
one contact point with the ground and there is no 
slippage in its longitudinal axis and lateral axis. The 
velocities of the contact points in the local frame are 
related to the wheel velocities by (2): 
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The linear and angular velocities of the DDMR related to 
the wheels velocities and the geometric parameters of the robot 
are given as follows (3): 
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Fig.3. The DDMR new position and orientation 

To determine the new DDMR‟s position and orientation it 
is considered that the robot moves from the point A  with a 

position ( 11 y,x  ), and orientation ( NAC1  ) to A

through a circular arc with an Instantaneous Center of Curvature 
(ICC) [2]. 
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The increment of distance denoted by ( D ) and orientation 

denoted by (  ). As shown in Fig.3, based on triangular 
relationship the angle ( 2CAB  ) and the new orientation 

of DDMR given by (4): 

21     (4) 

Considering that the increment of distance and orientation 

is small then DAA  and the DDMR kinematic equation is 
given by (5): 
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Equation (5) is called Navigation Equation also. The 
navigation system analysis and design are based on equation 
(5). Another form for the kinematic model describes the robot 
behavior relative to the linear and angular velocities of the 
DDMR which can be written as follows (6): 
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The velocities of the center of mass C represented in the 
global inertial frame are given by (7): 
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Equation (7) is the relation between the velocities in local 

and global frames named as Guidance matrix G .  

C. Dynamic Model of the DDMR: 

In this subsection, the dynamic behavior of DDMR 
mechanisms based on Newton-Euler approach is presented [9]. 

By considering the free body diagram of DDMR; Fig.4 
shows the forces acting on the DDMR [9]. 

 

Fig.4. Active Forces of the DDMR. 

From Fig.4 the DDMR position, velocity and acceleration 
represented in the global frame using polar coordinate system 
and the equations (8) are divided using Newton‟s laws of 
motion in the robot frame:  
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where uLuR F,F  is linearly dependent on the wheel control 

input as follows: 

rFrF LuLRuR   ,   

Equations (8) represent the dynamic model of DDMR 
taking into account the non- holonomic constraints [9]. 

III. CONTROLLER SYSTEM DESIGN: 

In this section, a controller design based on solving 
quadratic optimal control problem has been presented to 
improve the dynamic performance of the DDMR for accurate 
trajectory tracking.  

Classical control methods are first designed and then their 
stability is examined. In optimal control, based on Liapunov 
approach the conditions for stability are formulated first and 
then the system is designed within these limitations. Thus, the 
designed system has a configuration with inherent stability 
characteristics [12]. 

 

Fig.5. Optimal High and Low Level Control Structure Based DDMR. 

The proposed control scheme shown in Fig.5 has two main 
controllers; high level control based on kinematic model of 
DDMR, that; correct the robot position and orientation to 
follow the commanded trajectory; and low level control based 
on dynamic model of DDMR which follows the velocities 
commands given by the high level controller. Both controllers 
employ quadratic optimal control approach. 

A. Low Level Controller: 

It is presumed in subsection (II, B) that, the linear and 
angular velocity of the DDMR related to the wheels velocities 
are given by (3) then the accelerations terms of the robot 
velocity and orientation angular speed are given by (9): 
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By substituting (9) equations in the dynamic equation of 
DDMR (8): 
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Where 21 , are the coupling terms between the left and 

the right wheels. An integral optimal control is proposed to 
control right and left wheels velocities by inserting an 
integrator in the feed forward path between the error 
comparator and the plant. 

Fig.6 shows the block diagram of the DDMR with optimal 
low level control. 

 

Fig.6. DDMR  with optimal low level control. 

The vector control opu which minimizes a selected cost 

function J  given in (11) is determined as follow to solve the 

quadratic optimal control problem for the system given in (9): 
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(11) 

Where: 

14x  :  System state vector.  

12u  :  Vector control. 

44Q  :  Positive semi-definite symmetric matrix determines the     

relative importance of the error. 

22R  : Positive definite symmetric matrix determines the 

relative importance of the expenditure of the energy of the 
control signals. 

The optimal control law is given as follows (12): 

PxBRu
T
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(12) 

44P   is the state covariance matrix which can be obtained from 

Reccati equation which is given as follows (13): 

01
1
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 (13) 

By designing the low level control system to have 
exponentially stable dynamic response with high dynamic 
performance response, the high level controller can be 
designed, considering linear dynamic response in the low level. 

B. High Level Controller: 

A proposed Adaptive Discrete Quadratic Optimal 
Controller formula based on DDMR kinematic system is 
described in this subsection. To derive the high level controller, 
the mathematical model of DDMR kinematic will be used. As 

seen the velocities of the center of mass C represented in the 
global frame are given by (7).  

It should be noted that the kinematic model of this type of 
wheeled robot is classified as nonlinear and involves non-
holonomic constraints. To apply the optimal controller, a linear 
model of DDMR kinematic needs to be obtained. But if the 
linearization was about a stationary operating point the system 

become not controllable (In case that 0  and the DDMR 

move straightforward the information about y  axes is lost. A 

novel technique is developed and applied on DDMR) by 
Adapting the discrete quadratic optimal algorithm to include 
this type of nonlinear systems using linear error model system 
along a desired trajectory [7]. 

First, equation (7) is discretized using the backward Euler 

method with sampling time sT . The discretized form of DDMR 

kinematic model is obtained as shown in (14): 
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where  Tkkkk yxx   is the system state vector and

 Tkkk wvu   is the input vector. 

Second, defining the same equations for a desired trajectory 
generated by Guidance System as follows (15): 
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(15) 

The posture error vector 
kxe  is given by (16): 
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The velocities error vector kue  is given by (17): 
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The linear error model is given by (18):  

kuukxxkx eFeFe 
1

 

(18) 

Where: 















 

























s

kdskds

kdskds

u

skdkdkdkd

skdkdkdkd

x

T

dTT

dTT

F

Tdwv

Tdwv

F

0

)cos()sin(

)sin()cos(

100

))sin()cos((10

))cos()sin((01









 (19) 

ux F,F are the Jacobian matrices of the system with respect to 

ku1kx e,e
 respectively which was derived around a desired 

trajectory. Now, considering the following discrete cost 
function: 
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The closed loop system state space will be (21): 
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Where K is the optimal control gain vector. These errors in 
position and orientation of DDMR are represented in the global 
frame, then the errors in the local frame have been found as 
follows (22): 

kxku eGe 1  (22) 

The velocities commands which tracked by the low level 
control given by (23): 
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IV. NAVIGATION SYSTEM AND LOCALIZATION: 

The robot navigation is the task of an autonomous robot to 
move safely from one location to another [13]. To make a truly 
autonomous robot an accurate localization is a key problem for 
successful navigation systems [4, 11]. 

The objective is to accurately determine DDMR‟s posture 
involving sensor noise uncertainties and potential failures in an 
optimal way with respect to a global or local frame of reference 
by integrating (fusing) kinetic information received from 
proprioceptive sensors (odometry and gyroscope) which give 
the robot feedback about its driving actions and obtaining 
knowledge about DDMR‟s environment [13]. 

In mobile robot navigation systems, onboard navigation 
sensors based on dead-reckoning are widely used. Dead 
reckoning is the process of calculating DDMR's current 
position by using a previously determined position and 
estimated speeds over the elapsed time [2, 5]. 

In the present section, EKF sensor fusion method is used 
for the estimation of DDMR‟s accurate posture and eliminates 
the effect of uncertainty associated with the system. 

The Extended Kalman filter (EKF) is a recursive optimum 
stochastic state estimator which can be used for parameter 
estimation of a non-linear dynamic system in real time by using 
noisy monitored signals that are disturbed by random noise [14, 
15, 16]. 

The EKF has been widely used for mobile robot navigation 
and system integration to address the nonlinearity in the system 
kinematic.  

The goal of the EKF is to estimate the unmeasurable state 
(e.g. DDMR‟s posture) by using measured states, and also 
statistics of the noise and measurement (i.e. covariance 
matrices P,R,Q of the system noise vector, measurement noise 

vector, and system noise vector respectively) [15, 16, 17]. So 
the problem of mobile robot localization can usually not be 
sensed directly. The robot has to integrate data over time to 
determine its pose as accurate as possible using EKF fusion 
sensors method [4].  

In order to apply the EKF algorithm [15], first, a discrete 
time Navigation Model for the DDMR based on equation (6) 

using the backward Euler method with sampling time sT  has 

been obtained (24): 
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Second, note that equation (24) is nonlinear. So, in order to 
apply EKF algorithm, a linear approximation of Navigation 
Equation using Taylor series have to be obtained as follows 
(25): 
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The terms ux J,J are the Jacobian which are obtained by 

differentiating equation (24) with respect to the state vector and 
input vector respectively (26): 
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The EKF algorithm contains basically two main stages [10], 
Fig.7:  

 
Fig.7. EKF Fusion Sensors Recursive Algorithm. 

1) Action (or prediction) update:   

Having a priori knowledge implies that 1k1k P,x  are 

initializing, the robot moves and estimates its position through 

its ideal proprioceptive sensors ku .  

),(ˆ
1 kkk uxfx 

   (27) 

The covariance matrix after moving is given by (28): 
T
uu

T
xkxk QJJJPJP  


1  (28) 

During this step, the robot uncertainty grows. 

2) Perception (or measurements) update: 
  The robot makes an observation using its uncertain model 

and corrects its position by opportunely combining its belief 
before the observation with the probability of making exactly 
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that observation. The Kalman gain is chosen to minimize the 
estimation error variance of the states to be estimated.  

1][   RHHPHPK T
k

T
kk  (29) 

The predicted state estimate kx̂  (and also its covariance 

matrix kP ) is corrected recursively through a feedback 

correction scheme which is the product of the Kalman gain K  
and the deviation of the estimated measurement output vector 

and the actual output vector ( ŷy  ) that makes use of the 

actual measured quantities.  
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During this step, the DDMR uncertainty shrinks. If one 
looks at the problem of probabilistically, one can say that the 
robot has a degree of belief (bel) about where it is [5]. 

The goal of localization is to make this belief get as close as 
possible to the real distribution of the robot location. The robot 
incorporates these measurements into its belief to form a new 
belief about where it is [5]. 

The determinant of kP provides a good measure of 

uncertainty as it is proportional to the volume of the deviation 
error ellipsoid. [5] 

The degree of belief is given by (31): 

10)det(1  belwherePbel k  (31) 

The higher )Pdet( k  is the less degree of belief there is in 

the measurements. 

V. SIMULATION RESULTS: 

This section, several test results are demonstrated for the 
proposed control-navigation system based DDMR using 
MATLAB/ SIMULINK and C code.  

The kinematics and dynamics model of the DDMR 
described in section II are used. The simulation is carried out 
by tracking different 3 DOFs desired paths with the high and 
low level control system of the DDMR. The proposed control-
navigation system is implemented based on the structures 
shown in Fig. 5.  

The DDMR with optimal low level control has been tested. 
Fig. 8.a shows the time response of the right and left motor 
wheels linear velocities and their corresponding control law 
i.e., actuator voltage control respectively to a step input 
command simulated using MATLAB/ Simulink.  

As seen from Fig. 8(a, b) the dynamic system response for 
the right and left wheels is high, and they converge to the 
desired set value exponentially with no overshot in the system 
response i.e., the equivalent damping ratio of the system is ζ=1. 
It is noted that the low level dynamic system is exponentially 
stable and shows high dynamic performance response with the 
limitation of volt12  

 
a. Time Response for step commend 

 
b. Motors voltages for left and right wheels 

Fig.8. Time responses of the right and left wheels velocity 

Two experiments were performed and compared for 
DDMR with adaptive optimal high level control, with several 
trajectories to examine the robot dynamic performance, one 
was implemented utilizing only the onboard sensors data, and 
the other used EKF assisted fusion sensors method as 
navigation system considering different system uncertainty. 

A. Square Trajectory Tracking: 

This section demonstrates the mobile robot control 
performance to a square path with a side length of 1 meter. Fig. 
9 shows the system dynamic response for the high-level 
control. As seen in Fig 9 that the system exhibited 
advancement trajectory tracking with a high degree of 
localization belief has explained by Fig. 10.  

As observed in Fig. 10 that the mobile robot system control 
in the high-level is very certain in its location i.e., where I am, 
since the degree of belief is high which is also very convincing 
indicator since the trajectory tracking error is negligible.  

Fig. 11 shows the mobile robot speed response, as seen in 
Fig. 11 the robot moved with maximum speed value 0.14 
m.sec-1 
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Fig.9. Square Trajectory EKF sensor fusion performance 

 
Fig.10. The Degree of  Belief  for System Navigation 

 

Fig.11. Speed Response of Mobile Robot 

B. Eight Shape Trajectory Tracking: 

This section provides two case simulation results for 8-
shape. These are simulation without system uncertainty and 
with system uncertainty. As seen in Fig. 12, the robot system 
tracks correctly the system the desired path (blue) and (red) real 
trajectory. 

The result, in this case, of Fig. 12, was obtained assuming 
the system is certain and there is no need to use any correction 
technique to correct the trajectory tracking.   

It is seen that the system exhibited a very good convergence 
to the desired posture of DDMR. The same system is now 
tested presuming such uncertainty the robot model. It is to 
kindly remind the reader that the system is to work with no 
correction technique. 

As seen in Fig. 13 the robot dynamics showed a remarkable 
divergence in the system trajectory tracking (see „black‟ 
reference trajectory and „blue‟ real trajectory). 

Fig. 14 shows the robot‟s dynamic performance for an 8-
shape with presence of uncertainty in the mobile robot, but the 
control system was supported with a correction technique for 
posture correction („blue‟ is the reference trajectory, and „cyan‟ 
the real trajectory). 

 

Fig.12. DDMR Trajectory Tracking with Adaptive Optimal Control. 

 
Fig.13. The Accumulated Divergence in the DDMR‟s Posture with Time 
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Fig.14. Path Correction based EKF Fusion Sensors Algorithm. 

Fig. 15 shows that the proposed Control-Navigation system 
enhances the robot‟s belief at different points in time. The solid 
line displays the actions, and the ellipsoids represent the 
uncertainty effects on the robot‟s dynamic performance for the 
trajectory. 
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Fig.15. The Posture Believe‟s DDMR for 8 Shape. 

C. Flower Shape Trajectory Tracking: 

More complex trajectory is used to examine the robot 
dynamic performance without the presence of uncertainty and 
with uncertainty. The system dynamic performance is shown in 
Figures 16, 17, 18 and 19. As noticed in Fig. 19 that the system 
showed high dynamic performance control for which is the 
system is capable to correctly track the desired path and even 
ensure high degree of belief for the robot posture. 

It can be observed that better performance control in real 
time has been obtained by integrating the control system (Low 
and high levels) with EKF fusion sensors approach to make the 
control system sensitive to the effects of the environment and 
able to eliminate the uncertainty effect.  

VI. CONCLUSION 

This paper has proposed a newly developed approach to 
enhance the dynamic response of a differential drive mobile 
robot with the presence of huge system uncertainty. The 
developed approach has considered a low-level system control 
developed on the joint space level (the actuators control level) 
and on the Cartesian space level control i.e., high-level control. 
For low-level control optimal type controllers (optimal and 
integral optimal) have been proposed for the actuator velocity 
control. It has been shown that the dynamic control response of 
the actuators is high and robust to system uncertainty.  

In the high-level control, the system has been incorporated 
with Extended Kalman Filter (EKF) to estimate, as accurate as 
possible, the mobile robot posture. Simulation results obtained 
from the developed control system have shown that a large 
divergence was due to occur because of system uncertainty, 
which may lead to erroneous system localization as well as 
exhibited low degree of belief in the robot location. The 
proposed control approach in high-level domain overcomes the 
problem of robot‟s posture mismatch and tries to correct and 
compensate the trajectory tracking which may happen due to 
uncertainty.  

The interactive navigation process with the degree of belief, 
which reflects how the present robot‟s posture is close to the 
desired one. The validation of the proposed approach for low-
level and high-level control has been confirmed through 
intensive simulation results obtained for different cases in 
which the robot has been imposed with uncertainty. As 
explained the proposed technique has given very encouraging 
results and has provided very good target tracking with high 
degree of belief for the robot localization. This work presented 
in this paper is basis for future. It is to be used for real time 
implementation for Mobile robot localization system control on 
the high and low levels identification e.g. UKF in real time 
utilizing dSPACE system board.  

 
Fig.16. DDMR Trajectory Tracking with Adaptive Optimal Control 
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Fig.17. The accumulated divergence in the DDMR‟s posture with time. 

 

Fig.18. Path Correction based EKF Fusion Sensors Algorithm. 

 

Fig.19. The Posture Believe‟s DDMR  for  flower shape. 
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