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1.  Introduction

In the control system of hot strip rolling, the prediction 
accuracy of roll force and roll torque model play a key role 
in the calculation of rolling schedule, which directly affects 
the thickness accuracy of strip and the stability of strip 
piercing in finishing rolling area. The commonly used meth-
ods for calculating roll force and roll torque are engineer-
ing method, energy method, finite element method (FEM), 
boundary element method and artificial intelligence method. 
Karman was the first researcher to use engineering method 
to study the rolling force. He put forward the Karman equa-
tion named by his name which was based on the assumed 
condition of the rolling process, mechanical equilibrium 
equation, the plastic equation, the contact arc equation and 
friction law. Orowan1) assumed that sliding occurs when 
the friction force between the roll and the strip is less than 
the shear strength of the strip material, and adhesion occurs 
when the friction force is equal to the shear strength of the 
material. On this basis, the differential equation of the roll-
ing unit pressure distribution was established combining 
the plate compression study of L.Prandtl. Sims2) developed 
analytical expressions of pressure distribution, roll force and 
roll torque by avoiding most of the numerical integration in 
Orowan’s theory. Ford and Alexander3) proposed a widely 
used rolling force model based on the modified Orowan 
model. The principle of the energy method is to establish the 
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kinematically admissible velocity field and find the optimum 
solution satisfying the energy principle by mathematical 
method, so the stress distribution in the deformation zone is 
obtained, and the rolling force is calculated. Johnson4) used 
upper bound method to analyze the problem of hot strip 
rolling. Assuming that the material was ideal steel-plastic 
and plane deformation occurs, the slip line field was taken 
as kinematically admissible velocity field to calculate the 
power, and the contact pressure was obtained. Kobayashi5) 
and Kato6) tried to analyze the 3D rolling problem by using 
the stream function velocity field and the weighted velocity 
field, respectively. Liu7,8) used the stream function method 
to establish the vertical rolling shape and rolling force 
model, and he established the mathematical model of fin-
ishing rolling force based on the exponential velocity field. 
FEM is another commonly used method to study roll force 
and roll torque model. The FEM divides the research object 
into some small elements and obtains the global approxi-
mate solution by solving each element. Shangwu9) used 
three-dimensional FEM to simulate the hot rolling deforma-
tion process, and predicted the roll force, roll torque and unit 
contact pressure in the process of deformation. Moon and 
Lee10) proposed a FEM model to study the roll force and 
roll torque of plate rolling. Zhang and Cui11) established a 
three-dimensional thermo-mechanical coupled FEM model 
to study the parameters which influence roll force and strip 
output thickness. Although the FEM has become a power-
ful tool to solve various engineering problems, this method 
takes up large computer memory space and consumes a lot 
of time. The boundary element method is different from the 
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FEM in dividing the element. Only the boundary of the solv-
ing area is divided. The function satisfying the governing 
equation is used to approximate the boundary condition and 
the approximate solution of the boundary is solved, then the 
point that needs to be solved internally is solved. Its char-
acteristic is that the unknown number of the unit is less. In 
recent years, with the development of science and technol-
ogy, artificial intelligence methods such as expert system, 
neural network and fuzzy control are also applied in rolling 
force and torque prediction and other problems. Siemens 
AG had used neural network to forecast the rolling force 
in industrial application.12) Pican13) used neural network to 
predict rolling force in temper rolling and achieved good 
results. Jeon and Kim14) designed a neural network algo-
rithm to calculate the appropriate rolling force and torque 
before the strip entered the rolling mill and the application 
of this design optimized the rolling process. In general, the 
application of artificial intelligence in strip rolling is still in 
the research and development stage, which will be a new 
direction and trend in the field of manufacturing.

This paper attempts to establish a data-driven roll force 
and roll torque model to replace the traditional mathemati-
cal mechanism model to solve the complicated problems 
of multi-variables, strong coupling and nonlinearity in the 
rolling process. The structure of this paper is arranged as 
follows. In section 2, a 3D rolling model is established by 
FEM. The influence of different rolling parameters on roll-
ing force and rolling torque are analyzed simply by solving 
the model. Section 3 introduces the theory of ELM and PSO 
algorithm and proposes hybrid PSO-ELM model based on 
ELM and PSO. In section 4, the experimental results are 
analyzed and discussed and the superiority of the PSO-ELM 
model is fully vindicated. Section 5 is the paper’s conclu-
sions.

2.  Influence Rules of Rolling Pressure and Roll Torque 
in Different Conditions

2.1.  Establishment and Verification of 3D FEM Model 
for Rolling

In the actual production process, the rolling conditions 
are changeable, which is very inconvenient to study the 
influence parameters of rolling on roll force and roll torque. 
FEM can be used flexibly to set parameters of hot rolling 
model according to the research needs, simulate various 
experimental scheme, reduce test time and funds. Therefore, 
the FEM is used to solve the corresponding roll force and 
roll torque under different rolling parameters. A data-driven 
model of roll force and torque is established by using a 
large number of data obtained by FEM under various roll-
ing parameters.

In the hot rolling process, back-up rolls have little effect on 
the roll force and torque, so, a simplified three-dimensional 
elastic-plastic FEM model composed of work rolls and strip 
steel is established in this paper. The model meets the needs 
of the research content, reduces the workload of model-
ing and saves the time of simulation calculation. The strip 
material is Q235, and the work-roll material is alloy forging 
steel. The strip and work-roll are set to the elastic plastic 
body and the rigid body, respectively. The parameters of 
the material model are shown in Table 1. The geometry of 

the sheet and work rolls are shown in Fig. 1. The rolling 
parameters used in the experiment are shown in Table 2. 
The variation curves of rolling force with time under differ-
ent reduction are shown in Fig. 2.

In order to verify the validity of the FEM, several groups 
of calculation results of traditional mathematical model of 
rolling force are collected, and the calculated data of the 
FEM model are compared with the mathematical model 
results data. The results of comparison are shown in Fig. 
3. Because of the roll flattening and bouncing in hot roll-
ing, the reduction of FEM simulation can only be close to 
the actual value. The rolling forces calculated by FEM are 
slightly higher than the measured ones, but the errors are 
less than 10.71%.

2.2.  Distribution of Rolling Pressure in Different Pro-
cess Parameters

The rolling force model of hot strip rolling is a typical 

Table 1.  Material and geometry of models in FEM.

Items Strip Work-roll

Material model Bilinear elastic-plastic
isotropic hardening material Rigid material

Density/kg·m −3 7 850 7 850

Elasticity modulus/GPa 207 210

Poisson’s ratio 0.362 0.33

Length/mm 750 400

Fig. 1.  Finite element analysis model. (Online version in color.)

Table 2.	 Condition of hot rolling experiments employed for the 
simulation.

Reduction. 
(%)

Roll radius 
(mm)

Roll speed 
(m/s)

Strip width 
(mm)

Roll temperature 
(°C)

10 100 2 650 870

15 150 3 750 900

20 200 4 850 930

25 250 5 950 960

30 300 6 1 050 990

35 350 7 1 150 1 020

40 400 8 1 250 1 050
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nonlinear engineering problem. In order to better study the 
effect of a certain parameter on the rolling force, we select 
two parameters as independent variables and the unit width 
rolling force as the function result to draw the rolling force 
surface under different parameters with the data obtained 
by finite element solution. As shown in Fig. 4. Figures 4(a) 
and 4(e) indicate that reduction and radius of work roll are 
the dominant parameters for the rolling force, and the roll 
force rises observably as the reduction or radius of work roll 
increases. However, the effect of rolling speed on the roll-
ing force is not significant. The rolling force will increase 
slowly with the rolling speed, and the increase of strip width 
will increase the total rolling force, but will not cause the 

rolling force to change on the unit width of strip. Rolling 
temperature has a negative correlation and rolling force 
decreases as the rolling temperature increases.

2.3.  Distribution of Roll Torque in Different Process 
Parameters

In the same way, the influence of different parameters 
on rolling torque is also studied. The rolling torque surface 
drawn from FEM is shown in Fig. 5. It can be seen from 
the Fig. 5 that the rolling torque rises as the increase of strip 
width, work roll radius and rolling speed. It will decrease 
as the increase of rolling temperature, because in the roll-
ing temperature range studied in this paper, the deformation 
resistance of strip steel decreases gradually with the increase 
of temperature. Based on the above analysis, it can be con-
cluded that the results of rolling force and rolling torque 
solved by FEM are accurate and feasible in both numerical 
and physical sense.

3.  Brief Description of ELM and PSO Algorithm

3.1.  Principle of ELM
Single-hidden Layer Feedforward Neural Network 

(SLFN) has been widely used in many fields due to its 
good learning ability. However, this method has the dis-
advantages of slow training speed, easy to fall into local 
minima and sensitivity to learning rate selection. Therefore, 
it is a trend of research in recent years to study a training 
algorithm with high training speed, global optimal solution 
and good generalization performance. The ELM adopts a 
new SLFN algorithm proposed by Huang.15–18) The algo-
rithm randomly generates the connection weights between 
the input layer and the hidden layer and the biases value of 
the hidden layer neuron, and needs no adjustment during the 
training process, and only needs to set the number of the 
hidden layer neurons, so that the unique optimal solution 
can be obtained.

Consider N arbitrary distinct samples ( , )X ti i
n m� �R R

, Xi =  [xi1,xi2,...,xin]T, ti =  [ti1,ti2,...,tim]T. If a SLFN with L 
hidden nodes can approximate these N samples with zero 
error, it then implies that there exist βi and bi such that
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where βi is the output weight, bi is the learning parameters 
of the hidden nodes, g(x) is the activation function and Wi 
is the connection weights for the input layer and the hidden 
layer Wi =  [wi1,wi2,…,win]T.

The goal of learning in a single hidden layer network is to 
minimize the error of the output, which can be expressed as

	 o tj j
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This means the existence of βi, Wi and bi so that Eq. (3) 
holds.
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.............. (3)

A matrix can be represented as

	 H T�� � .................................... (4)

Fig. 2.	 The rolling force changing curves with time under differ-
ent reduction. (Online version in color.)

Fig. 3.	 Comparison of rolling force between simulation and math-
ematical model results. (Online version in color.)
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According to ELM theories,16,17) all the hidden nodes can 

be randomly assigned instead of being tuned. The solution 
of Eq. (4) is estimated as:

	 �� ��� � � �min� H T H T ..................... (8)

Where H +  is the Moore-Penrose generalized inverse of the 
implicit layer output matrix H.

3.2.  Principle of PSO
PSO was proposed by Kennedy and Eberhart19) in 1995, 

which originated from the study of bird predation behavior. 
The particle has only two properties: velocity V and position 
X. velocity represents the speed of movement and position 
represents the direction of movement. Each particle searches 
the optimal solution separately in the search space, and its 
extreme value is recorded as the current individual extre-
mum Pbest, the individual extremum is shared with other 
particles in the whole particle swarm. In this way, the cur-
rent global optimal solution Gbest of the entire particle swarm 

Fig. 4.  Effect of different process parameters on rolling force. (Online version in color.)
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is found. All particles in the particle swarm adjust their 
velocity and position according to the current individual 
extremum Pbest found by themselves and the current global 
optimal solution Gbest shared by the whole particle swarm. 
The whole process is divided into: initialize particle swarm; 
evaluate particle; calculate fitness value; find individual 
extremum; find global optimal solution; modify the velocity 
and position of particle, and the update formula for velocity 
and position during optimization are as follows

	 V wV C rand P X

C rand P X

id
k

id
k

id
k

id
k

gd
k

id
k
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� �

1
1 0 1

0 1

( , )( )

( , )( )2

.............. (9)

	 X X Vid
k

id
k

id
k� �� �1 1 ........................... (10)

where the w is inertial factor, C1 and C2 are called the 
acceleration constant, rand(0,1) is random number belong 
to 0–1, Pid represents the dth dimension of the individual 

extremum of the ith variable, Pgd represents the dth dimen-
sion of the global optimal solution and k represents the 
number of iterations.

Standard 2011 PSO algorithm has been used in this paper, 
it involves some improvements in the implementation,20–25) 
and PSO basic parameters are set as Table 3.

Fig. 5.  Effect of different process parameters on rolling torque. (Online version in color.)

Table 3.  The parameters used in PSO.

Parameters Values

Size of population 100

Inertia weight
1

2 2ln

Acceleration factors C1 =  C2 =  ln2 +  0.5

Number of iterations 50
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3.3.  PSO-ELM Model Development
In the second part, it is found that the FEM is feasible to 

obtain the sample data needed for the ELM model. Accord-
ing to the research needs of this paper, reduction, roll radius, 
roll speed, strip width and roll temperature are taken as the 
input variables of the ELM model, and the rolling force 
and the rolling torque are taken as the output variables of 
the ELM model. The structure of ELM model established 
is shown in Fig. 6. All samples data are generated by the 
control variate method. In science researches, the control 
variate method is often used to study the influence of each 
independent variable on dependent variables. The specific 
operation is to change the value of one independent variable 
in order to determine the effect of this independent variable 
on the dependent variable under the condition that the other 
independent variables are invariant. In this paper, the FEM 
is used to solve the rolling force and rolling torque under 
different rolling parameters, and each independent variable 
has a default value. The bold type value in Table 2 repre-
sents the default value of this independent variable. In each 
group of FEM experiments, two independent variables are 
selected as the object of study, and the other three indepen-
dent variables are set as default values. The value of inde-
pendent variables selected as the object of study is divided 
into 7 levels to change. So, there are C5

2 = 10  groups of FEM 
experiments, and each group of experiments includes 7 × 
7 =  49 experiments. The 490 samples data of rolling force 
and rolling torque will be obtained. The data obtained by 
FEM is divided into training set and testing set. The train-
ing set sample is used to build the model of the ELM, and 
the testing set sample is used to test the model generaliza-
tion performance. All samples are normalized before input 
ELM. All the sample data is normalized to [−1,1].26,27) The 
normalized mapping methods are used as follows

	 x
x x

x x
i mi i

i i
i
’ 2

min( )

max( ) min( )
( 1), 1,2,3,...,� �

�
�

� � � ....... (11)

where max(xi) and min(xi) are the maximum and minimum 
number of data sequences.

Because the initial weights and biases of the ELM are 
generated randomly, the generalization performance of the 
network is difficult to reach the optimum. To address this 
problems, and then improve its generalization performance, 
PSO algorithm is used to optimize the initial weights and 

biases of ELM. Firstly, the swarm of PSO particles are 
randomly initialized. Each particle is composed of all the 
elements to be optimized which are the input weights and 
hidden biases that represent a candidate ELM. Secondly, 
the fitness of each particle in the swarm is calculated. The 
individual and global extremum under current conditions are 
recorded. Thirdly, adjusting particle velocity and position 
according to Eqs. (14) and (15). Fourthly, calculate the fit-
ness of each particle after update the velocity and position, 
and the individual extremum and global extremum under 
the current condition are recorded again. Finally, all previ-
ous steps except the first one are repeated for a predefined 
number of iterations. The detailed process can be illustrated 
as shown in the flowchart in Fig. 7.

After model training, the generalization performance of 
PSO-ELM model is tested by error criteria. The calculation 
formulas of each error criteria are as follows:
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4.  Results and Discussion

In this section, in order to show how PSO-ELM performs, 
we have carried out experiments on a computer running 
64-bit Windows 7 with a 2.6 GHz processor and 8 GB mem-

Fig. 6.  Architecture of the ELM model. Fig. 7.  Flowchart of PSO-ELM algorithm.
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ory. The algorithm is implemented by MATLAB language.
The performance of the proposed PSO-ELM model and 

the other two comparison models were plotted in Fig. 8, 
for both rolling force and rolling torque, on training and 
testing data respectively. It can be seen from the Fig. 8 
that the regression effect of using ELM algorithm model is 
obviously better than that of SVM algorithm. No matter the 
rolling force or the rolling torque, the determination coef-
ficient of PSO-SVM is not above 0.985 both on the training 
set and testing set, and the determination coefficient is all 
above 0.999 in the model of ELM, which fully shows that 
under the research background of this paper, ELM has more 
advantages than SVM. The essence of ELM and SVM algo-
rithm is to map the problem to high-dimensional space, and 
then make regression in high-dimensional space. In princi-

ple, the effect of regression is directly influenced by the way 
of mapping. If a key pattern shows obvious difference in 
high dimensional space, the effect of regression is good. If 
this critical pattern does not appear in the high-dimensional 
space, the regression effect is poor. The reason why ELM 
is superior to SVM is that ELM can be projected to higher 
dimensions in an infinite number of ways, and it trains very 
quickly. This algorithm can select a better part of the ELM 
to enhance the effect of regression. In the case of SVM, 
once the kernel function of SVM is determined, the mapping 
mode is only determined, and the possibility of other effects 
can be obtained only if another kernel function is selected. 
In addition, SVM training speed is slow. So, compared with 
ELM, the performance of SVM is slightly inferior.

With respect to ELM algorithm, after the PSO algo-

Fig. 8.  Scatter plot of models in prediction of training set and test set.
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rithm optimizes the initial weights and biases of ELM, the 
regression effect of the model is improved significantly. As 
aforementioned, a high prediction capability was achieved 
for both training and testing data sets of roll force and roll 
torque even though the latter was not used for the training 
of the PSO-ELM model. Therefore, the PSO-ELM model 
appears to have a high generalization capability.

Comparison of the three models predicted roll force and 
roll torque with respect to FEM experimental values of train-
ing set and test set are given in Fig. 9. Figure 10 demon-
strates the percentage error deviations of predicted roll force 
and roll torque using three models from FEM experimental 
results. The difference of prediction accuracy between the 
three models cannot be seen intuitively from Fig. 9. So, 
the relative error in the prediction models are chosen to be 
compared. Figure 10 shows clearly the difference between 
the relative error indices of PSO-ELM, single ELM and 
PSO-SVM models. For PSO-SVM model, the relative error 

of rolling force prediction is larger than that of ELM and 
PSO-ELM models, the reference range is y =  ±20% and 
most of the samples are in error range. However, there are 
scattered outliers whose relative errors exceed ±20% of the 
error lines. The prediction effect of rolling torque based on 
PSO-SVM model is worse than that of rolling force and the 
local outliers are above the relative error line of ±25%. For 
the single ELM model, the relative error accuracy of the 
prediction results has been significantly improved compared 
with that of PSO-SVM. From the prediction effect of rolling 
force, the relative error is within ±15% of both the train-
ing set and the testing set. As far as the prediction effect of 
rolling torque is concerned, the accuracy of other samples 
is still within a reasonable range except that a few abnormal 
values on the test set exceed 25% error line. In particular, 
it should be pointed out that the relative error fluctuation 
of ELM model on training set is very small, the prediction 
accuracy is very high and all of them are within ±5%. But 

Fig. 9.	 Model capability of predicting accurate roll force and torque for training set and testing set. (a) training set of roll 
force (b) testing set of roll force (c) training set of roll torque (d) testing set of roll torque. (Online version in color.)

Fig. 10.	 The relative error of the models. (a) training set of roll force (b) testing set of roll force (c) raining set of roll 
torque (d) testing set of roll torque. (Online version in color.)
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on testing set, the relative error fluctuation amplitude is 
large, and the prediction accuracy is also greatly reduced, 
the main reason for this phenomenon is that the training set 

samples are used in the modeling process of the data-driven 
model whether it’s predicting rolling force or rolling torque, 
but the testing set sample data are not involved in the model-

Fig. 11.	 Error histogram of three models. (a) (c) (e) for rolling force, (b) (d) (f) for rolling torque. (Online version in 
color.)

Table 4.  Analysis of the predictions given in Fig. 11.

Training Testing

Roll force Roll torque Roll force Roll torque

R2

PSO-ELM 0.99992 0.99983 0.99999 0.99999

ELM 0.99960 0.99960 0.99935 0.99917

PSO-SVM 0.98072 0.98316 0.98080 0.96913

MAE

PSO-ELM 11.0038 0.5164 4.1656 0.2655

ELM 49.8915 1.3086 303.1161 20.4076

PSO-SVM 468.2154 11.7260 443.6868 14.4773

MAPE (%)

PSO-ELM 0.1856 0.5430 0.0588 0.2305

ELM 0.6994 1.3564 3.4994 16.3247

PSO-SVM 6.8194 10.8226 6.9560 14.5969

RMSE

PSO-ELM 34.4303 1.3389 5.8771 0.38401

ELM 76.8788 2.0598 416.8847 21.4624

PSO-SVM 565.6218 14.3996 558.1674 19.0492
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ing. Therefore, the prediction accuracy of the testing set is 
reduced, which also shows that the single ELM algorithm 
model exists over-fitting resulting in inadequate generaliza-
tion performance. To address these problems, the single 
ELM model is optimized by PSO. The relative error of the 
optimization model is also presented in Fig. 10, it shows the 
relative error of PSO-ELM model is very small in terms of 
the prediction effect of rolling force or rolling torque, and 
the prediction effect of training set and testing set is also 
very excellent, all of them are near the straight line of y = 
0%. This fully shows that the generalization performance of 
the ELM model optimized by PSO is greatly improved and 
meets the practical application requirements.

In order to evaluate the generalization performance of 
each model more synthetically and quantitatively, MAE, 
MAPE and RMSE are also used as the error index to ana-
lyze the models. Table 4 lists the calculated values of the 
three kinds of errors. Figure 11 is a more intuitive histo-
gram of the three errors distribution drawn from the results 
of the calculation. From Table 4 and Fig. 11, the following 
can be analyzed.

When comparing the single ELM model with the hybrid 
PSO-SVM model, the advantage of ELM model is not obvi-
ous. On the training set, the three error indexes of rolling 
force and rolling torque prediction of ELM model are evi-
dently smaller than that of PSO-SVM model, on the test set, 
each index of rolling force prediction of the former is still 
superior to that of the latter, but the effect of rolling torque 
prediction shown by data is opposite. When comparing the 
PSO-ELM model with single ELM model, the performance 
of the PSO-ELM model is better than that of the single 
ELM model. The MAE prediction error of PSO-ELM model 
are smaller than that of single ELM model both in training 
set and test set, the MAPE and RMSE error indexes of the 
models also have the same law. The above results fully 
show that the PSO algorithm have promoted the prediction 
ability of single ELM. The reason for this phenomenon is 
that the PSO algorithms select the optimal initial weights 
and biases for the establishment of SLFN. When comparing 
the PSO-ELM model with the PSO-SVM model, the perfor-
mance of PSO-ELM model far exceeds that of PSO-SVM 
model. Both model is optimized by PSO, the performance 
of ELM model has been improved significantly, but SVM is 
not ideal, which shows that the data-driven model based on 
ELM and PSO algorithm can accurately predict the rolling 
force and rolling torque in hot strip rolling process.

5.  Conclusions
This paper presented an approach based on Particle 

Swarm Optimization (PSO) and Extreme Learning Machines 
for training Single hidden Layer Feedforward Networks 
(SLFN) to establish a data-driven roll force and roll torque 
prediction model. A three-dimensional finite element model 
was developed and verified to provide a data set for training 
and validation of the SLFN. The proposed PSO-ELM model 

utilizes the PSO algorithm to optimize the input weights 
and hidden biases of SLFN. The performance of PSO-ELM 
was evaluated using determination coefficient, relative 
error, mean absolute error (MAE), mean absolute percent-
age error (MAPE), and root mean square error (RMSE). 
Comparing the prediction results of the PSO-ELM model 
with the results established by single ELM and PSO-SVM 
under the same conditions, and the prediction accuracy and 
generalization capability of the proposed PSO-ELM model 
better than others was demonstrated. In short, the PSO-ELM 
is an effective and useful machine learning tool to replace 
the traditional mathematical mechanism model to solve the 
complicated problems of multi-variables, strong coupling 
and nonlinearity in hot strip rolling process.
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