Biomedical Optics EXPRESS

Impact of experimental setup parameters on the measurement of articular cartilage optical properties in the visible and short near-infrared spectral bands: supplement

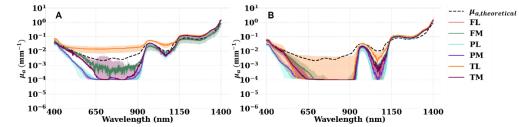
IMAN KAFIAN-ATTARI,^{1,2,*} D ERVIN NIPPOLAINEN,¹ FLORIAN BERGMANN,³ ARASH MIRHASHEMI,¹ PETRI PAAKKARI,^{1,2} FLORIAN FOSCHUM,³ ALWIN KIENLE,³ JUHA TÖYRÄS,^{1,4,5} AND ISAAC O. AFARA^{1,5} D

¹Department of Technical Physics, University of Eastern Finland, Finland
 ²Diagnostic Imaging Center, Kuopio University Hospital, Finland
 ³Institute for Laser Technologies in Medicine and Meteorology, University of Ulm, Germany
 ⁴Science Service Center, Kuopio University Hospital, Finland
 ⁵School of Information Technology and Electrical Engineering, University of Queensland, Australia
 *iman.kafianattari@uef.fi

This supplement published with Optica Publishing Group on 15 June 2023 by The Authors under the terms of the Creative Commons Attribution 4.0 License in the format provided by the authors and unedited. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.22819925

Parent Article DOI: https://doi.org/10.1364/BOE.488801


1 Supplementary Material I

2 Observation removal

Fig. 1 depicts the absorption coefficient of the samples, distorted due to the morphological
irregularity of the samples. These observations were removed at the first step of the analysis as
including them would cause deviation in the absorption coefficient of articular cartilage.
Furthermore, a theoretical absorption coefficient of articular cartilage with typical values of
volume fraction for its components was estimated as follows:

8 $\mu_{a, theoretical} = \mu_{a, water} \times V_{water} + \mu_{a, collagen} \times V_{collagen} + \mu_{a, elastin} \times V_{elastin} + \mu_{a, lipid}$ 9 $\times V_{lipid}$,

10 where $\mu_{a,theoretical}$ is the theoretical approximation of articular cartilage μ_a . $\mu_{a,water}$, 11 $\mu_{a,collagen}$, $\mu_{a,elastin}$, and $\mu_{a,lipid}$ are the absorption coefficients of water, collagen, elastin and 12 lipid, respectively. V_{water} , $V_{collagen}$, $V_{elastin}$, and V_{lipid} are the volume fractions of water 13 (68%), collagen (30%), elastin (1%), and lipid (1%), respectively. $\mu_{a,theoretical}$ is shown in 14 Fig. 1 to emphasize distortion of μ_a of removed samples. Lack of the features seen in 15 $\mu_{a,theoretical}$, signal flattening, and low values of μ_a ($\leq 10^{-5}$) were considered signal 16 distoration.

Figure 1. The signal distortion in the estimated absorption coefficient (μ_a [18 mm⁻¹]) of the removed articular cartilage samples. The signal saturation is 19 20 mostly due to morphological irregularity of the samples occurred in the 21 sample preparation stage. Articular cartilage μ_a : (A) air as surrounding 22 medium; (B) the water as surrounding medium. $\mu_{a,\text{theoretical}}$ is the 23 theoretical approximation of articular cartilage absorption coefficient. The 24 anatomical locations are the lateral and medial femur (FL, FM), lateral and 25 medial patella (PL, PM), and lateral and medial tibia (TL, TM) of the bovine 26 knee. The dataset is presented as first and third guartiles (shaded area) and 27 median (the solid curve).

28

17