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Abstract: The changing on peaks structure of the 

speech spectrum is perhaps the most important cause 
of degradation of speech recognition systems under 
adverse conditions. Another drawback concerned to 
the additive noise effect occurs on the flat spectral 
zones which are usually raised proportionally to the 
noise level. These combined effects on both the peaked 
and the flat spectral zones can be alleviated by trying 
to restore its original structure, which assumes noise 
knowledge. However, the random nature and the 
variability of the noise, the difficulty in discriminating 
speech pauses, among others, discourage the use of 
noise estimates as the basis of robust speech 
recognition algorithms. Alternative approaches based 
on normalisation procedures become very promising 
since the noise effect can be alleviated without any 
knowledge regarding to its existence. This paper 
suggests a spectral normalisation that though being 
different can be viewed as a noise estimation procedure 
in a frame by frame basis, so assuming the clean 
database as lightly corrupted. This speech 
normalisation is used to restore the normalised speech 
spectrum. This normalised spectrum is then re-
normalised by a baseline spectrum normalisation 
method, which concentrates essentially in the speech 
regions of small energy, since in these regions the noise 
is more dominant, so they require a better degree of 
robustness. 
 

I. INTRODUCTION 
 

In [1] it is argued that a proper spectral normalisation, 
which concentrates essentially on the speech regions of 
less energy, could improve significantly the robustness of 
speech recognition systems when operating under additive 
noise conditions. From a theoretical point of view, the 
spectral regions with small energy would need more noise 
robustness, given that for the same noise level they are 
more corrupted. The spectral regions of small energies 
usually correspond to unvoiced sounds regions, which are 
spectrally not very well defined. Roughly speaking nearly 
half of the consonants can be classified as unvoiced, while 
the other half and the vowels are generally classified as 
voiced. Generally the importance of the vowels in 
classification and representation of written text is very 
low; however, most practical automatic speech recognition 
systems rely heavily on vowel recognition to achieve high 
performance. Consequently, the spectral regions which 

contains higher speech energy seems to be usually more 
important in speech recognition under difficult conditions 
once they are generally less corrupted. On the other hand, 
the spectral regions with small energy are more corrupted, 
thus they need a larger degree of robustness.  

Others authors [2] have also given an increasing 
importance to the spectral regions of small energy of the 
speech signal, although by using alternative approaches. 

The algorithm proposed in [1] does not take into 
consideration the properties of the voiced speech regions, 
which are usually characterised by “peaked” spectral 
zones. These portions of spectrum are flattening, as the 
noise becomes more and more dominant which degrades 
the system performance. 

The algorithm proposed in [3] tries to cope with this 
limitation by restoring partially both the original spectral 
“peaks” and the flat spectral regions where the signal 
power is increased by the wide band noise effect. This 
approach assumes the clean database lightly contaminated 
and the noise power is estimated in a frame-by-frame basis 
by the lowest power of all the sub-bands in each segment. 
The algorithm does not assume noise existence, in the 
sense that the features are extracted exactly in the same 
way in both noisy and noise free conditions. One 
drawback associated with this algorithm is concerned to 
the noise estimate which includes a significant amount of 
speech characteristics that is proportional to the number of 
spectral components that constitute a sub-band. This can 
mean that to many speech characteristics can be 
disregarded in the restoration of the clean speech 
normalised features. Another drawback of the algorithm 
proposed in [3] is that the spectral peaks classification is 
based on heuristics, which is obviously undesirable. In 
order to overcome these drawbacks the algorithm 
proposed in this paper differs from the algorithm proposed 
in [3] essentially in the following aspect: 

The frame by frame spectral normalisation is done 
before the baseline normalisation instead of after it, 
assuring that the spectrum that will be processed by the 
baseline spectral normalisation is always the normalised 
spectrum (by the small spectral component), which is not 
very dependent on the noise level. 

 The results show a significant improvement in 
performance when compared with the baseline method 
when used alone [1] and an interesting improvement in 
performance when compared with the algorithm proposed 
in [3].  

 



 
 

 

 
II. BASELINE SPECTRAL NORMALISATION 

 
The baseline spectral normalisation defined in [1] is 

motivated by the fact that the additive noise is not a 
narrow band noise, thus its spectrum is reasonably 
dispersed in frequency. Additionally a mechanism 
adequate to dealing with non-stationary additive noise 
situations, which frequently occurs in practical situations, 
is needed. One solution can be trying to extract the 
distribution of the speech energy along the spectrum, 
normalised by the total energy of the speech within the 
segment. Therefore noise variations can be attenuated 
once that which is really measured is the relative and not 
the absolute distribution of the spectral energy of the 
speech signal.  

The baseline normalisation process consists in a 
division of the frequency band in sub-bands given that 
usually a very fine detail in frequency is not required for 
western languages speech recognition applications. The 
method is based on the power spectral density components 
and consists in dividing the speech power inside each sub-
band by the total short-time speech power. The power in 
each sub-band is obtained by summing the components of 
the power spectral density inside the sub-band. All the 
sub-bands have the same number of spectral components 
and any spectral component is shared by different sub-
bands, thus avoiding increases of statistical dependence 
between sub-bands (feature components). The background 
noise contributes simultaneously to increase the sub-band 
and total power, which contributes for stabilising the 
amplitudes of the feature vectors. 

To best understand this reasoning, consider Si denoting 
the speech power in sub-band i and S denoting the short 
time speech signal power of the considered segment. 
Similarly, let Ni and N denote the power of the noise in 
sub-band i and the short time noise power, respectively. 
So, the ith component of the observation vector for clean 
and noisy speech are given respectively by 
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Figure 1 shows the clean speech and noisy speech 

spectral power normalisation features for 240 ms of the 
word “zero” where each sub-band has 16 power spectral 
components. The SNR is 0 dB.  

If the noise is stationary then its short time power 
equals its long time power. Note that this is not true for the 
speech due to its non-stationary property, but as an 
approximation we will consider that the short time speech 
signal power equals the long time speech signal power. 
Under this constraint, S and N can be related by the signal 
to noise ratio (SNR). Therefore the next expression holds 
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If the noise has white noise characteristics the 
environment will shift the clean speech vector by a noise 
dependent vector Ci(N), which can be calculated by 
subtracting equations (1). 

Let l, the number of components in each sub-band and 
L the FFT length. Then N and Ni, considering flat noise 
spectrum, are related by the quotient l/L. By using these 
considerations, the calculation of the shift vector imposed 
by the environment is accomplished by subtracting 
equations (1) and becomes [1] 
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Equation (3) shows that if the speech has a flat power 

spectrum density, the means of Ci(N) become null as Si/S 
equals l/L. Thus, this normalisation process becomes 
optimal in the sense that the environment does not affect 
the means of the speech features. This means that this 
normalisation procedure provides some noise robustness 
to unvoiced speech segments, where neither the speech 
nor the noise are spectrally well defined. More details can 
be found in [1] 

 
III. ADDITIVE WHITE NOISE EFFECT AND PRE-PROCESSING 

APPROACH 
 

Figure 1 shows that the noise effect, in the proposed 
power spectral baseline normalisation domain, is raising 
the “flat” spectral zones while the “peaked” spectral ones 
are “flatten”. In fact equation (1) in noisy conditions 
(equation shown on the right) shows that, for sub-bands 
with high speech power, as the amount of noise in the sub-
band is much smaller than the total amount of noise, the 
speech features in that regions are decreased 
proportionally to the amount of contaminating noise. For 
sub-bands with small speech power the opposite happens, 
given that the sum of all the coefficients extracted in each 
segment is unitary. As the spectral flattening is 
proportional to the amount of contaminating noise, for low 
signal to noise ratios the “peaked” spectral regions almost 
disappear, which is the main origin of degradation in 
performance under noisy conditions.  
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Figure 1. White noise effect in the power 
spectrum density normalization domain in the 
beginning of digit “zero”. Dashed line 
represents noisy speech features. 
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The main goal of a robust features extraction method is 
providing robustness against noise or other sources of 
variability by ignoring its presence. Although the noise 
can be compensated, the effectiveness of this approach 
becomes very dependent on the accuracy of the noise 
estimate, which is a very hard task in practical situations. 
Hence our main goal was searching for a compensation 
process independent of the noise level or characteristics, 
although the proposed baseline normalisation assumes a 
wide band additive noise for maximal performance. More 
details can be found in [1]. 

In this context we propose the following two steps 
approach: 

1) For task uniformity in clean and in noisy conditions 
the clean database must be considered lightly 
contaminated. Trying to clean completely the database, 
which can be viewed as another kind of normalisation, 
represents a procedure compatible with the noise 
compensation paradigm, however if the procedure is not 
particularised for any kind of noise, it can be used without 
concerning to the noise existence. Hence, under noisy 
conditions the features extraction method can compensate 
for the noise existence taking into account the noise level, 
which can be estimated in a frame-by-frame basis, 
becoming the procedure compatible with real time 
applications.  

2) The estimated noise level, which really constitutes a 
spectral normalisation by the smallest spectral component. 
This speech component, which has small significance and 
is proportional to the amount of noise must be used to 
alleviate the noise effect. Then the baseline spectral 
normalisation algorithm [1] can be more efficient since the 
noise effect was a priori reduced.  
 

IV. PROPOSED NOISE COMPENSATION 
 

To cope with the additive noise effect we propose 
estimating the noise power in each segment, which can be 
viewed as a secondary normalisation procedure (the first 
normalisation procedure is behind the normalisation 
proposed in the baseline system [1]) by taking the value of 
the lowest component of the power spectrum density in 
each speech frame.  

We propose alleviating the noise effect by subtracting 
the estimated noise level from all the others components 
of the feature vector. Therefore the power spectral 
components of the speech must be changed so that 
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where Pi denotes the amplitude of the ith component of 

the power spectral component of the speech, and ci 
denotes the ith component of the normalised spectrum 
(observation vector) that will be processed by the baseline 
spectral normalisation algorithm proposed in [1]. The 
spectral normalisation procedure described by equation (4) 
reduces clearly the noise effect since a factor (lower 
spectral component in each segment) that is proportional 

to the noise level is subtracted from all the others spectral 
components. Additionally the speech characteristics 
described by the smallest spectral component are 
maintained since this component is included in the 
observation vector. However these mathematical 
operations involving all the spectral components can 
increase the statistical dependence among them, which is 
undesirable regarding to the HMM modelling. In this 
context the baseline spectral normalisation procedure 
helps to decorrelate the data since the data are grouped  
and processed inside the group independently of the data 
inside the other groups. 

 Therefore considering wide band noise its effect is 
reduced in terms of means. It is obvious from equation (1) 
that the variance effect is also reduced by the baseline 
normalisation procedure once that each observation is 
divided by the power of the speech segment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

This a priori noise effect attenuation obtained by 
spectral normalisation in each frame shows better 
effectiveness than the a posteriori noise effect attenuation 
described in [3] as can be observed by comparing figure 2 
and figure 3. It is clear that in figure 3 the recovered peak 
structure is more closed to the peak structure of the clean 
speech than the recovered peak structure in figure 2. 
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Figure 2. Spectral speech structure recovered by the 
algorithm proposed in [3] for the first half of the word 
“eight” at an SNR of 0 dB. Normal line stands for 
clean speech. 
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V. EXPERIMENTAL RESULTS 
 

The proposed algorithm was tested in an Isolated 
Word Recognition system using Continuous Density 
Hidden Markov models. The database of isolated words 
used for training and testing is from AT&T Bell. The used 
speech was acquired under controlled environmental 
conditions band-pass filtered from 100 to 3200 Hz, 
sampled at a 6.67 kHz and analysed in segments of 45 ms 
duration at a frame rate of 66.67 windows/sec. Only the 
decimal digits were used. The noise has white noise 
characteristics, is speech independent and computationally 
generated at various SNR as shown in table 1. The goal is 
to compare the performance of the proposed and 
contemporary speech robust features. Some of these 
robust features are the OSALPC (One-Sided 
Autocorrelation Linear Predictive Coding), the 
conventional cepstrum with liftering (CEPS + liftering) 
and the well known MFCC (Mel-Frequency Cepstral 
Coefficients). In table 1, MMC stands for conventional 
Markov model composition in the power spectrum density 
domain, Norm. stands for the baseline normalisation 
procedure described in [1], N. + MMC stands for Markov 
model composition in the baseline power normalisation 
domain [1], PR stands for the post-processing spectral 
restoration procedure proposed in [3] and BN stands for 
the bi-normalisation proposed in this paper. Table 1 shows 
that the suggested spectral multi-normalisation features 
are more effective against additive white noise than both 
the baseline normalisation, which is more effective than 
some robust features used nowadays, and the PR 
algorithm proposed in [3].  For SNR greater than or equal 
to 5 dB the baseline spectral normalisation outperforms 
the conventional Markov model composition (MMC) 

when the noise parameters are learned from the 
periodogram method in a data segment of 100ms without 
speech. As in the Parallel Model Combination, the 
distortion can be integrated (compensated) in the 
composite model increasing thus the recogniser 
performance [1]. On the first six entries of the table 1, all 
the features are 8 static, energy and dynamic features 
excepting * (12 static + energy + dynamics) and ** (13 
static + energy + dynamics). 

 

Table 1 – Performance of the spectral normalisation 
SNR (dB) 15 10 5 0 -5 
LP 56.5 39.5 30 16.25  
OSALPC 98.25 92 65.75 32.25  
CEPS * 97.5 95 72 34.5  
+liftering 98.25 95 75.25 39  
MFCC ** 97.75 94.75 72.25 37.5  
OSALPC* 98.5 96.25 74.25 32.5  
MMC 98 96.75 92.5 91 78.5 
Norm. 98.5 97.75 93.75 88 42.5 
PR 99.25 98.25 95 89.75 61.5 
BN 99.25 98.5 95.75 90.75 64.25 
N.+ MMC 99.5 98.75 97.25 92.25 84.75 
 

VI. DISCUSSION 
 

The main advantage of this bi-normalisation process is 
the recognition performance obtained when no knowledge 
of the noise statistics exists. As a robust extraction 
features, the suggested method seems to be superior to the 
most used nowadays. Additionally, for white noise and at 
SNR greater than or equal to 5 dB it presents better 
performance than a standard noise compensation 
technique, which assumes integral noise knowledge. In 
fact for high Signal to Noise Ratios the spectral 
normalisation where the distortion is ignored outperforms 
the Markov model composition where the distortion is 
learned from a small amount of isolated noise samples and 
incorporated into the system. If isolated noise samples 
exist, the noise can be estimated and this knowledge can 
be incorporated into the system, and consequently 
increasing the recogniser performance.  
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Figure 3. Spectral speech structure recovered by the 
algorithm proposed in this paper for the first half of 
the word “eight” at an SNR of 0 dB. Normal line 
stands for clean speech. 
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