Bipartite graphs with every matching in a cycle

Denise Amara, Evelyne Flandrinb, Grzegorz Gancarzewicz, A. Paweł Wojda

aLABRI, Université de Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France
bLRI, UMR 8623, Bât. 490, Université de Paris-Sud, 91405 Orsay, France
cFaculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, Kraków, Poland

Received 26 November 2002; received in revised form 5 January 2005; accepted 18 November 2005
Available online 8 December 2006

Abstract

We give sufficient Ore-type conditions for a balanced bipartite graph to contain every matching in a hamiltonian cycle or a cycle not necessarily hamiltonian. Moreover, for the hamiltonian case we prove that the condition is almost best possible.

Keywords: Bipartite graph; Cycle; Hamiltonian cycle; Matching

1. Introduction

Let \(G = (B, W, E) \) be a bipartite graph. We will say that \(G \) is a balanced bipartite graph if \(|B| = |W| \).

In 1972, Las Vergnas obtained the following results [5]:

Theorem 1. Let \(G = (B, W, E) \) be a balanced bipartite graph of order \(2n \). If for any \(x \in B, y \in W, xy \notin E \) we have \(d(x) + d(y) \geq n + 2 \), then every perfect matching in \(G \) is contained in a hamiltonian cycle.

For the existence of a perfect matching, he gave the sufficient condition:

Theorem 2. Let \(G = (B, W, E) \) be a balanced bipartite graph of order \(2n \) and let \(q \geq 2 \). If for any \(x \in B, y \in W, xy \notin E \) we have \(d(x) + d(y) \geq n + q \), then every matching of cardinality \(q \) is contained in a perfect matching.

Using these two results he obtained the following corollary:

Corollary 3. Let \(G = (B, W, E) \) be a balanced bipartite graph of order \(2n \) and let \(q \geq 2 \). If for any \(x \in B, y \in W, xy \notin E \) we have \(d(x) + d(y) \geq n + q \), then every matching of cardinality \(q \) is contained in a hamiltonian cycle.

About cycles through matchings in general graphs Berman proved in [1] the following result conjectured by Häggkvist in [3].
Theorem 4. Let G be graph of order n. If for any $x, y \in V(G)$, $xy \notin E$ we have $d(x) + d(y) \geq n + 1$, then every matching lies in a cycle.

Theorem 4 has been improved by Jackson and Wormald in [4]. Häggkvist [3] gave also a sufficient condition for a general graph to contain any matching in a hamiltonian cycle. We give this theorem below in a slightly improved version obtained in [6].

For any integer $p \geq 1$, K_p denotes a complete graph K_p with empty set. Let \mathcal{G}_n be the family of graphs $G = K_{(n + 2)/3} \ast H$, where H is any graph of order $(2n - 3)/3$ containing a perfect matching, if $(n + 2)/3$ is an integer, and $\mathcal{G}_n = \emptyset$ otherwise (\ast denotes the join of graphs).

Theorem 5. Let G be a graph of order $n \geq 3$, such that for every pair of nonadjacent vertices x and y, $d(x) + d(y) \geq (4n - 2)/3$. Then, every matching of G lies in a hamiltonian cycle, unless $G \in \mathcal{G}_n$.

We give sufficient conditions in a balanced bipartite graph for a matching to be contained in an hamiltonian cycle or a cycle not necessarily hamiltonian. Moreover, for the hamiltonian case we prove that the condition is almost best possible. Results are presented in Section 3 and will be proved in Sections 4 and 5.

2. Definitions

Let $G = (B, W, E)$ be a balanced bipartite graph and M a matching in G.

A subgraph H of G is said to be a Θ-graph compatible with M if H is a union of two cycles C_1 and C_2 satisfying the conditions:

1. The intersection of C_1 and C_2 is a path R of length at least one.
2. Every edge of M is an edge of H.
3. Every edge of M incident with a vertex of R lies in R.
4. $|V(R)|$ is even and the end vertices, say x and y, of R are in different partite sets.

We denote $P: x C_1 \setminus C_2 y$, $Q: x C_2 \setminus C_1 y$ and $H = (P, Q, R)$.

The notion of the Θ-graph is based on the paper of Berman [1]. In Fig. 1 there is an example of a Θ-graph.

![Fig. 1. A Θ-graph compatible with M and containing all the vertices of the graph G.](image-url)
A subgraph H of G is said to be a strict Θ-graph compatible with M if H is a Θ-graph (P, Q, R) such that if we label the vertices of the paths as

\[
P : xp_1 \ldots p_\frac{1}{2} y, \quad Q : xq_1 \ldots q_\frac{1}{2} y, \quad R : xr_1 \ldots r_\gamma y,
\]

then $q_1 \in V(H) \setminus V(M)$, $p_\frac{1}{2} \in V(H) \setminus V(M)$, $xr_1 \in M$ and $r_\gamma y \in M$.

In Fig. 2 there is an example of a strict Θ-graph.

If on a path $\pi : x_1 x_2 \ldots x_k$ of $G = (B, W, E)$ is given an orientation from x_1 to x_k, π is said to be a BB-path if $x_1 \in B$, $x_k \in B$, a WW-path if $x_1 \in W$, $x_k \in W$, a BW-path if $x_1 \in B$, $x_k \in W$ and a WB-path if $x_1 \in W$, $x_k \in B$.

Let C be a cycle or path with an arbitrary orientation and $x \in V(C)$, then x^- is the predecessor of x and x^+ is its successor according to the orientation of C.

Let A be a subgraph of G, v a vertex of G, then $d_A(v)$ is equal to the number of neighbors of v in A, and for $S \subseteq V(G)$, we put $e(S, A) = \sum_{v \in S} d_A(v)$.

For notation and terminology not defined above a good reference should be [2].

3. Result

Theorem 6. Let $G = (B, W, E)$ be a balanced bipartite graph of order $2n$.

1. If for any $x \in B$, $y \in W$, $xy \notin E$ we have

\[
d(x) + d(y) > \frac{4n}{3},
\]

then every matching M in G is contained in a hamiltonian cycle.
2. If \(n > 4 \) and for any \(x \in B, y \in W, xy \notin E \) we have

\[
d(x) + d(y) \geq \frac{5n}{4},
\]

then every matching \(M \) in \(G \) is contained in a cycle of \(G \).

The first part of the theorem is almost best possible in the sense that if one decreases the sum of degrees of more than \(\frac{3}{2} \) then the theorem is no more true. By \(\overline{K}_l \) we denote the balanced bipartite graph of order \(2l \) with empty edge set.

Let \(\overline{K}_{p+1} = (B_p, W_{p+1}, E_{p+1}) \) and \(K_{2p+1,2p+1} = (B_{2p+1}, W_{2p+1}, E_{2p+1}) \).

Consider the following bipartite graph \(G = (B, W, E) \) with \(B = B_{p+1} \cup B_{2p+1}, W = W_{p+1} \cup W_{2p+1} \) and \(E = E_{2p+1} \cup \{uv : u \in B_{p+1}, v \in W_{2p+1}\} \cup \{uv : u \in W_{p+1}, v \in B_{2p+1}\} \).

Note that \(G \) is a balanced bipartite graph of order \(2n = 2(3p + 2) \). Let \(M \) be a perfect matching of \(K_{2p+1,2p+1} \). It is evident that there is no hamiltonian cycle containing \(M \) and that the minimum sum of degrees of two nonadjacent vertices is \((4n - 2)/3 \).

Let now \(G' \) be the graph obtained from \(G \) by replacing \(\overline{K}_{p+1} \) by \(\overline{K}_{p,p} \). Then \(G' \) is a balanced bipartite graph which satisfies the hypothesis of part 1 of Theorem 6 and by consequence there is a hamiltonian cycle which contains \(M \). Notice however that \(M \) is not contained in any perfect matching of \(G' \), and the degree constraint in part 2 of Theorem 6 is clearly not sufficient to imply that any matching can be extended into a perfect matching.

3.1. Conjecture

During works on the proof of Theorem 6, D. Amar posed the following conjecture:

Conjecture. Let \(G = (B, W, E) \) be a balanced bipartite graph of order \(2n \). If for any \(x \in B, y \in W, xy \notin E \) we have

\[
d(x) + d(y) \geq n + 2,
\]

then every matching \(M \) in \(G \) is contained in a cycle of \(G \).

It is not difficult to show the following:

Remark. If \(|M| = n - 1 \) and for any \(x \in B, y \in W, xy \notin E, d(x) + d(y) \geq n + 2 \), then \(M \) is contained in a hamiltonian cycle.

Suppose that \(G \) is not a complete graph (if \(G \) is complete then **Remark** is true). Let \(M \cup (pq) \), with \(p \in B, q \in W, pq \notin E \), be a perfect matching containing \(M \). From Theorem 1 it is contained in a hamiltonian cycle \(C \). Let \(D: qu_1u_2\ldots u_{2l}p \) be a hamiltonian path in \(G \) obtained from \(C \) by deleting the edge \(pq \). The edges \(u_1u_2, u_2u_3, \ldots, u_{2l-1}u_{2l} \) are edges of the matching \(M \). Since \(d(p) + d(q) \geq n + 2 \) then there exists a \(k \), such that \(qu_{k+1} \in E \) and \(pu_k \in E \). Note that \(p \in B, q \in W, u_k \in W \) and then \(k \) is even. The edge \(u_ku_{k+1} \) is not in \(M \). The cycle \(C: qu_1\ldots u_kpu_{k-1}\ldots u_{k+1}q \) is a hamiltonian cycle of \(G \) which contains \(M \).

4. Proof of part 1 of Theorem 6

Let \(G = (B, W, E) \) be a bipartite graph satisfying the conditions of part 1 of Theorem 6 and let us suppose that there is a matching \(M \) in \(G \) such that there is no hamiltonian cycle through \(M \). Without loss of generality we may suppose that:

(i) \(M \) is maximal, i.e. \(M \) is the only matching which contains \(M \).

(ii) \(G \) is maximal without a hamiltonian cycle through \(M \) (any addition of an edge \(uv, u \in B, v \in W, uv \notin E \) creates a hamiltonian cycle containing \(M \)).

So we have a hamiltonian path \(P_H: u_p \ldots u_{2n-2}v \) containing \(M \). Since \(uv \notin E \), we have \(d(u) + d(v) > 4n/3 \) and this implies that we have at least two vertices \(p_i, p_{i+1} \) satisfying \(u_{p_{i+1}}, vp_i \in E \).
Then the Hamiltonian cycle:

\[C': u_{i_1+1} p_{i_1+1} \ldots u_{i_l+1} p_{i_l+1} \ldots \]

contains all edges of the path \(P_{qq} \) except \(p_i p_{i+1} \). Since there is no Hamiltonian cycle containing \(M \) in \(G \) we have \(p_i p_{i+1} \in M \). Now take the cycles: \(C_1: u_{i_1+1} p_{i_1+1} \ldots u_{i_l+1} p_{i_l+1} \ldots v \) and \(C_2: v_{i_1} p_{i_1+1} p_{i_1+2} \ldots v \). The subgraph \(H = C_1 \cup C_2 \) is a \(\Theta \)-graph compatible with \(M \) and containing all the vertices of the graph \(G \). We can see an example of such \(\Theta \)-graph which is not a strict \(\Theta \)-graph in Fig. 1.

Following the notations from Section 2, label the vertices of the paths \(P, Q \) and \(R \) as follows:

\[P : x p_1 \ldots p_x y, \]
\[Q : x q_1 \ldots q_x y, \]
\[R : x r_1 \ldots r_x y, \]

and denote by \(P_i, i = 1, \ldots, n_P, Q_j, j = 1, \ldots, n_Q, \) and \(R_k, k = 1, \ldots, n_R, \) the paths obtained, respectively, from \(P, Q, R \) by removal of the edges of \(M \). Without loss of generality we may assume \(x \in B, y \in W \).

We may assume that \(H = (P, Q, R) \) is a \(\Theta \)-graph compatible with \(M \) such that \(|V(R)| \) is maximum.

Remark. Since \(M \) is maximal, for any \(i, j \) and \(k \) we have\(2 \leq |V(P_i)| \leq 3, 2 \leq |V(Q_j)| \leq 3, \) and \(1 \leq |V(R_k)| \leq 3. \)

From the assumption that every edge of \(M \) incident with a vertex of \(R \) lies in \(R \), if one of the edges \(p_x q_1, p_1 q_y \) exists then there is a Hamiltonian cycle in \(G \) containing every edge of \(M \), so we may assume that \(p_x q_1 \notin E \) and \(p_1 q_y \notin E \) and then we have

\[
\frac{d(p_1) + d(q_1) + d(p_x) + d(q_y)}{3} > \frac{8n}{3}. \tag{1}
\]

4.1. Neighbors of \(p_1, p_x, q_1, q_y \) on \(Q \) and \(P \)

Claim 1. If \(p_1 q_1 \in E \) and \(l > 1 \) (\(p_1 \) and \(q_1 \) are in the same partite set), then \(q_1 q_{l+1} \in M \). Moreover, for \(i = 2, \ldots, n_Q, e(p_1, Q_i) \leq 1 \) and if \(e(p_1, Q_i) = 1 \), then \(e(q_y, Q_i) = 0. \)

Proof. In fact if \(p_1 q_1 \in E \), then \(H' = (P', Q', R') \) with \(P': q_1 p_1 p_2 \ldots p_x y, Q': q_1 q_{l+1} \ldots q_y y \) and \(R': q_{l+1} \ldots q_1 x r_1 r_2 \ldots r_y y \) is a \(\Theta \)-graph compatible with \(M \) with \(|V(R')| > |V(R)| \) unless \(q_1 q_{l+1} \in M. \)

So let us suppose that \(p_1 q_1 \in E \) and \(q_1 q_{l+1} \in M \), with \(q_1 \in Q_{i_0} \). Then \(q_1 \in B \) for \(p_1 \in W \). The vertex \(q_{l+1} \) is the only vertex of \(V(Q_{i_0}) \) in \(W \).

If \(q_y q_{l+1} \in E \) then the cycle

\[
C': q_1 q_2 \ldots q_{l+1} x r_1 \ldots r_y y p_x p_{x-1} \ldots p_{l+1} q_{l+1} \quad \quad \tag{2}
\]

is a Hamiltonian cycle of \(G \) containing \(M \) and Claim 1 is proved. \qed

Claim 2. \(1 \leq e(p_1, Q_1) \leq 2 \) and if \(e(p_1, Q_1) = 1 \), then \(e(q_y, Q_1) \leq 1 \). If \(e(p_1, Q_1) = 2 \) then \(e(q_y, Q_1) = 0. \)

Proof. Since \(x \in N(p_1) \cap Q_1 \) we have \(e(p_1, Q_1) \leq 1. \) Note that \(|V(Q_1)| = 2 \) or \(|V(Q_1)| = 3. \) When \(|V(Q_1)| = 2 \) then \(q_y \) may be adjacent to \(q_2 \) and \(e(q_y, Q_1) \leq 1. \) If \(|V(Q_1)| = 3 \) and \(p_1 q_2 \in E \) then \(e(q_y, Q_1) = 0. \) because otherwise the cycle \(C' \) given by (2) for \(l = 2 \) is a Hamiltonian cycle of \(G \) containing \(M \) and Claim 2 is proved. \qed

Claim 3. 1. If \(Q_{i_0} \) is a BB-path and \(Q_{j_0} \) is a WW-path, \(2 \leq i_0, j_0 \leq n_Q, \) then

\[
e((p_1, q_y), Q_{i_0} \cup Q_{j_0}) \leq 3 = \frac{|V(Q_{i_0})| + |V(Q_{j_0})|}{2}. \tag{3}
\]

2. If \(Q_k, 2 \leq k \leq n_Q, \) is a BB-path or a WB-path then

\[
e((p_1, q_y), Q_k) \leq 1 = \frac{|Q_k|}{2}. \tag{4}
\]
3. In any case

\[e(\{p_1, q_\beta\}, Q_1) \leq 2. \] (5)

Proof. For any \(i \), since the matching \(M \) is maximal we have \(|Q_i| = 3\), if and only if \(Q_i \) is a BB-path or a WW-path, and \(|Q_j| = 2\), if and only if \(Q_j \) is a BW-path or a WB-path. Consider a BB-path \(Q_{i_0} \) and a WW-path \(Q_{j_0} \) \((2 \leq i_0, j_0 \leq n_Q)\). From Claim 1 for \(2 \leq i_0, j_0 \leq n_Q \), we have \(e(\{p_1, q_\beta\}, Q_{i_0}) \leq 1 \) and \(e(\{p_1, q_\beta\}, Q_{j_0}) \leq 2 \). These prove inequality (3). If \(|Q_i| = 2\) from Claim 1 we have (4). Inequality (5) is an immediate consequence of Claim 2. \(\square \)

Let us denote \(v_3(Q) \) the number of paths \(Q_i \) with odd number of vertices and \(v_2(Q) \) the number of paths \(Q_k \) with an even number of vertices, \(1 \leq i, k \leq n_Q \).

As \(|V(Q)|\) is even, the number of BB-paths is equal to the number of WW-paths and so \(v_3(Q) \) is even i.e. \(v_3(Q) = 2\mu \). Clearly, \(|V(Q)| = \beta + 2 = 3 v_3(Q) + 2 v_2(Q) = 6\mu + 2 v_2(Q) \).

Now we shall estimate \(e(\{p_1, q_\beta\}, Q) \). From Claims 1–3 we have

\[e(\{p_1, q_\beta\}, Q) = \sum_{|V(Q_i)|=3} e(\{p_1, q_\beta\}, Q_i) + \sum_{|V(Q_j)|=2} e(\{p_1, q_\beta\}, Q_j) \]

\[\leq 3 \mu + v_2(Q) + 1 = \frac{\beta}{2} + 2. \] (6)

Similarly, we obtain the following three inequalities:

\[e(\{q_1, p_2\}, Q) \leq \frac{\beta}{2} + 2, \] (7)

\[e(\{p_1, q_\beta\}, P) \leq \frac{\alpha}{2} + 2, \] (8)

\[e(\{q_1, p_2\}, P) \leq \frac{\alpha}{2} + 2. \] (9)

4.2. Neighbors of \(p_1, p_2, q_1, q_\beta \) on \(R \)

Note that, for any \(k = 1, \ldots, n_R \), we have \(1 \leq |V(R_k)| \leq 3 \). If \(xr_1 \in M \) then \(R_1 = \{x\} \) and \(|V(R_1)| = 1 \). If \(r_1 y \in M \) then \(R_1 = \{x\} \) and \(|V(R_1)| = 1 \). For \(k = 2, \ldots, n_R - 1 \), we have \(2 \leq |V(R_k)| \leq 3 \).

It is easy to check that if \(|V(R_j)| = 2 \) then \(e(\{p_1, p_2\}, R_j) \leq 1 \) and if \(|V(R_j)| = 3 \) then \(e(\{p_1, p_2\}, R_j) \leq 2 \).

If \(|V(R_j)| = 1 \) then \(e(\{p_1, p_2\}, R_j) = 1 \).

Denote by \(v_3(R) \) the number of paths \(R_j \) with three vertices, by \(v_2(R) \) the number of paths \(R_j \) with two vertices and by \(v_1(R) \) the number of paths \(R_k \) with one vertex.

Note that \(v_1(R) + v_3(R) \) is even and \(\gamma + 2 = 3 v_3(R) + 2 v_2(R) + v_1(R) \).

We have

\[e(\{p_1, p_2\}, R_j) = \sum_{|V(R_j)|=3} e(\{p_1, p_2\}, R_j) + \sum_{|V(R_j)|=2} e(\{p_1, p_2\}, R_j) \]

\[+ \sum_{|V(R_k)|=1} e(\{p_1, p_2\}, R_k) \]

\[\leq 2 v_3(R) + v_2(R) + v_1(R) \]

\[= \frac{2\gamma + 4 + v_1(R) - v_2(R)}{3} \]

\[\leq \frac{2\gamma + 6}{3}. \] (10)
Similarly, we have
\[e((q_1, q_\beta), R) \leq \frac{2\gamma + 6}{3}. \] (11)

4.3. Conclusion

Now we shall estimate the sum \(d(p_1) + d(p_2) + d(q_1) + d(q_\beta) \).

From (6)–(11) we have
\[
d(p_1) + d(p_2) + d(q_1) + d(q_\beta) \\
= e((p_1, q_\beta), Q) + e((q_1, p_2), Q) + e((q_1, p_2), P) + e((p_1, q_\beta), P) \\
+ e((p_1, p_2), R) + e((q_1, q_\beta), R) - 2e((p_1, q_1, p_2, q_\beta), \{x, y\}) \\
\leq \alpha + \beta + 8 + \frac{4\gamma + 12}{3} - 8 = \frac{3\alpha + 3\beta + 4\gamma}{3} + 4.
\]

As \(\alpha \geq 2 \) and \(\beta \geq 2 \), we obtain the following inequality:
\[
d(p_1) + d(p_2) + d(q_1) + d(q_\beta) \leq \frac{4(\alpha + \beta + \gamma) + 8}{3} = \frac{8n}{3},
\]
which contradicts (1) and part 1 of Theorem 6 is proven.

5. Proof of part 2 of Theorem 6

Let \(G = (B, W, E) \) be a balanced bipartite graph with \(|B| = |W| = n, n > 4 \) satisfying the conditions of Theorem 6. For \(n \geq 8 \) we have \(5n/4 \geq n + 2 \) and so from assumptions of Theorem 6 we have
\[
d(x) + d(y) \geq \frac{5n}{4} \geq n + 2,
\] (12)
for any \(x \in B, y \in W, xy \notin E \).

Note that, for \(n = 5, 6 \) and \(7, 5n/4 \) is not an integer, in fact \(d(x) + d(y) \geq \lceil 5n/4 \rceil \). It is easy to verify that for \(n = 5, 6 \) and \(7 \) we have \(\lceil 5n/4 \rceil = n + 2 \).

From the above and (12) we have
\[
d(x) + d(y) \geq n + 2,
\] (13)
for any \(x \in B, y \in W, xy \notin E \).

Let \(M \) be a matching in \(G \). We may assume that \(M \) is a maximal matching. If \(M \) is a perfect matching, then Theorem 1 implies that \(M \) is contained in a hamiltonian cycle. We can assume that \(M \) is not a perfect matching and consider a maximal counterexample, i.e. a balanced bipartite graph \(G \) and a maximal matching \(M \) such that

1. There is no cycle in \(G \) containing \(M \).
2. For every pair of vertices \((p, q), p \in B, q \in W, pq \notin E, p, q \notin V(M) \), then \(M \) is contained in a cycle in \(G \cup (pq) \).

Note that, since \(M \) is not a perfect matching, thus we have at least two vertices \(p, q \) such that \(p, q \notin V(M) \).

Thus there is a path
\[D: qu_1u_2 \ldots u_ip \] (14)
containing \(M \) and oriented from \(q \) to \(p \).

Since \(qp \notin E \) then from (13) there exists an \(i \) such that \(1 \leq i \leq l-1, qu_{i+1} \in E \) and \(pu_i \in E \).

The cycle
\[C': qu_iu_{i+1}u_{i+2} \ldots u_ipu_iu_{i-1} \ldots u_1q \]
cannot contain the matching \(M \), so \(u_1u_{i+1} \in M \).
Consider the paths
\[P : u_1 p u_I \ldots u_i u_{i+1}, \]
\[Q : u_i u_{i-1} \ldots u_1 q u_{i+1}, \]
\[R : u_i u_{i+1}, \]
and note that \(H = (P, Q, R) \) is a strict \(\Theta \)-graph compatible with the matching \(M \). (For an example cf. Fig. 2.)

Let \(u_s, u_r \in V(D) \), \(s < r \) be such that \(pu_r \in E, qu_r \in E, u_i u_{s+1} \in M, u_r u_{r-1} \in M \) (note that \(s = i, r = i + 1 \) satisfy these conditions) and \(r - s \) is maximal.

The graph \(H = (P, Q, R) \):
\[P : u_s p u_{i-1} \ldots u_r, \]
\[Q : u_s u_{s-1} \ldots u_1 q u_r, \]
\[R : u_s \ldots u_r, \]
is a strict \(\Theta \)-graph compatible with the matching \(M \) such that \(|V(R)| \) is maximum.

Since there is no cycle containing \(M \) we have \(E(P) \cap M \neq \emptyset, E(Q) \cap M \neq \emptyset \) and since \(H \) is a strict \(\Theta \)-graph \(|V(P)|, |V(Q)| \geq 6 \).

We label the vertices of \(H \) as follows:
\[P : xp_{1} \ldots p_{2} y, \]
\[Q : xq_{1} \ldots q_{2} y, \]
\[R : xr_{1} \ldots r_{y} y. \]

We assume that \(x \in B, y \in W, q = q_{1} \in W, a = q_{2} \in B, p = p_{2} \in B \) and \(b = p_{2} \in W \).

Let \(G_M \) be the subgraph of \(G \) induced by \(V(G) \backslash V(M) \) and let \(Z \) be the subgraph of \(G \) induced by \(V(G) \backslash V(D) \).

Subgraphs \(G_M \) and \(Z \) are independent i.e. \(e(V(G_M), Z) = 0 \).

Since \(V(G) = V(P \backslash \{y\}) \cup V(Q \backslash \{x\}) \cup V(R \backslash \{x, y\}) \cup V(Z) \) and the sets \(V(P \backslash \{y\}), V(Q \backslash \{x\}), V(R \backslash \{x, y\}) \) and \(V(Z) \) are vertex-disjoint for every vertex \(v \in V(G) \), we have
\[d(v) = d_{P \backslash \{y\}}(v) + d_{Q \backslash \{x\}}(v) + d_{R \backslash \{x, y\}}(v) + d_{Z}(v). \]

Let \(|M| = m, |V(M)| = 2m, |V(D \backslash M)| = 2\delta \) and \(|V(Z)| = 2t, \) then \(n = m + \delta + t \).

Remark. As \(p_{2} \notin V(M), q_{1} \notin V(M), \) \(|V(P)| \) and \(|V(Q)| \) are even, then \(\delta \geq 2 \). (There are at least two vertices of \(V(G) \backslash V(M) \) on \(P \) and on \(Q \).)

Denote by \(P_i, i = 1, \ldots, n_P, Q_j, j = 1, \ldots, n_Q, \) and \(R_k, k = 1, \ldots, n_R, \) the paths obtained, respectively, from \(P, Q \) and \(R \) by removal of the edges of \(M \).

Take an \(i \in \{1, \ldots, n_P\} \). Note that since \(M \) is maximal then if \(P_i \) is a path with an odd number of vertices, then \(|V(P_i)| = 3 \) and if \(P_i \) is a path with an even number of vertices, then \(|V(P_i)| = 2 \). Moreover, if \(|V(P_i)| = 3 \) then \(P_i \) is a \(BB \)-path or a \(WW \)-path. If \(|V(P_i)| = 2 \) then \(P_i \) is a \(BW \)-path or \(WB \)-path. As \(|V(P)| \) is even, the number of \(BB \)-paths is equal to the number of \(WW \)-paths. Let \(n_3(P) \) be the number of paths \(P_i \) with an odd number of vertices, \(v_2^B(P) \) the number of \(BW \)-paths \(P_i, v_2^W(P) \) the number of \(WB \)-paths \(P_i \) and \(v_2(P) = v_2^B(P) + v_2^W(P) \) the number of paths \(P_i \) with an even number of vertices.

The paths \(Q_j, i = 1, \ldots, n_Q, \) and \(R_i, i = 1, \ldots, n_R, \) have the same properties as the paths \(P_i \) and in the same way as above, we define \(v_2^B(P), v_2^W, v_2 = v_2^B + v_2^W \) and \(v_3 \) for paths \(Q \) and \(R \) (in which the number of \(BB \)-paths is also equal to the number of \(WW \)-paths).

From the maximality of \(G \) and \(M \) the graph induced by \(V(D) \backslash V(M) \) is independent. Thus, since \(bp_{x,y} \) is a \(WW \)-path we have
\[n_P = v_3(P) + v_2(P) = |M \cap E(P)| + 1. \]
Similarly, since \(xq_1a \) is a BB-path we have
\[
n_Q = v_3(Q) + v_2(Q) = |M \cap E(Q)| + 1.
\] (17)

Note that on the path \(R \{x, y\} \) we have
\[
n_R = v_3(R) + v_2(R) = |M \cap E(R)| - 1.
\] (18)

From (16)–(18) we have
\[
3 \sum_{i=2} (v_i(P) + v_i(Q) + v_i(R)) = m + 1.
\] (19)

In every path \(P_i \) with an odd number of vertices, there is one vertex of \(V(\overline{D}) \setminus V(M) \) and since \(|V(R)|\) is even we have
\[
v_3(P) = |V(P \setminus M)|.
\] (20)

Similarly, we have
\[
v_3(Q) = |V(Q \setminus M)|.
\] (21)

\[
v_3(R) = |V(R \setminus M)|.
\] (22)

From (20)–(22) we have
\[
v_3(P) + v_3(Q) + v_3(R) = 2\delta.
\] (23)

5.1. Lower bound of the sums of degrees

If one of the edges \(ab, p_2q_1, p_1q_\beta \) exists, we have a cycle in \(G \) containing every edge of \(M \). For example, if \(p_1q_\beta \in E \) then the cycle
\[
C: p_1q_\beta q_{\beta - 1} \ldots q_1x1 \ldots r_\gamma y p_2 \ldots p_1
\]
is containing \(M \).

We may assume that \(ab \notin E, p_2q_1 \notin E, p_1q_\beta \notin E \) and then
\[
d(a) + d(b) \geq \frac{5n}{4},
\] (24)
\[
d(q_\beta) + d(p_1) \geq \frac{5n}{4},
\] (25)
\[
d(p_2) + d(q_1) \geq \frac{5n}{4}.
\] (26)

5.2. Upper bound of the sum of degrees

5.2.1. Neighbors of \(a, b, p_2, q_1, q_\beta, p_1 \) on \(R \{x, y\} \)

1. Consider a WB-path \(R_i: vu \) on \(R, u \in B, v \in W, v = u^-, uv \notin M \). Since there is no cycle containing every edge of \(M \), the following inequalities are satisfied: \(e([p_2, p_1], R_i) \leq 1, e([q_1, q_\beta], R_i) \leq 1 \) and \(e([a, b], R_i) \leq 1 \).

Suppose that \(e([a, b], R_i) = 2 \), then \(av, bu \in E \) and the following cycle \(C \):
\[
C: avu^- \ldots r_1xp_1 \ldots p_2buu^+ \ldots r_\gamma y q_\beta \ldots a
\]
contains \(M \), a contradiction.
Now suppose that \(e([p_1, p_2], R_i) = 2 \). In this case \(p_1u, p_2v \in E(G) \) and the following cycle \(C \):
\[
C: p_2v^+ \ldots r_1xq_1 \ldots q_\beta yr_\gamma \ldots up_1p_2 \ldots p_2
\]
contains \(M \), a contradiction.

The case \(e([q_1, q_\beta], R_i) = 2 \) is the same as \(e([p_1, p_2], R_i) = 2 \) and so we have
\[
e([a, b, p_1, p_2, q_1, q_\beta], R_i) \leq 3.
\]

2. Consider a BW-path \(R_i: uv \) on \(R, u \in B, v \in W, v = u^+, uv \notin M \). The following inequalities hold: \(e([p_1, p_2], R_i) \leq 1, e([q_1, q_\beta], R_i) \leq 1, e([a, b], R_i) \leq 2 \).

Since \(a, u \in B \) and \(b, v \in W \) it is clear that \(e([a, b], R_i) \leq 2 \).

Suppose that \(e([p_1, p_2], R_i) = 2 \), then \(p_1u, vp_2 \in E \) and the following cycle \(C \):
\[
C: p_2v^+ \ldots r_\gamma q_\beta \ldots q_1xr_1 \ldots up_1 \ldots p_2
\]
contains \(M \), a contradiction.

The case \(e([q_1, q_\beta], R_i) = 2 \) is the same as \(e([p_1, p_2], R_i) = 2 \). Thus
\[
e([a, b, p_1, p_2, q_1, q_\beta], R_i) \leq 4.
\]

3. Consider a WW-path \(R_i: v_1uv_2, u \in B, v_1, v_2 \in W, u \in V(D \setminus M), u = v_1^+ = v_2^- \). As \(q_1 \notin V(M), u \notin V(M) \) and \(M \) is maximal, we have \(q_1u \notin E \). Since there is no cycle containing \(M \), the following inequalities hold: \(e([p_1, p_2], R_i) \leq 2, e([a, q_\beta], R_i) \leq 2 \).

We will start to compute \(e([p_1, p_2], R_i) \).

If \(p_1u \notin E \) then \(e([p_1, p_2], R_i) \leq 2 \).

Suppose now that \(p_1u \in E \) and \(e(p_2, R_i) \neq 0 \). \(e(p_2, R_i) \neq 0 \) implies that \(p_2v_1 \in E \) or \(p_2v_2 \in E \).

If \(p_2v_1 \in E \), then the following cycle \(C \):
\[
C: p_2v_1v_1^- \ldots r_1xq_1 \ldots q_\beta yr_\gamma \ldots up_1 \ldots p_2
\]
contains \(M \), a contradiction.

If \(p_2v_2 \in E \), then the following cycle \(C \):
\[
C: p_2v_2v_2^+ \ldots r_\gamma q_\beta \ldots q_1xr_1 \ldots up_1 \ldots p_2
\]
contains \(M \), a contradiction. So if \(p_1u \in E \) we have \(e([p_1, p_2], R_i) = 1 \).

Thus in any case we have \(e([p_1, p_2], R_i) \leq 2 \).

Now, we shall compute \(e([a, q_\beta], R_i) \). Note that \(a \) and \(q_\beta \) cannot be adjacent to two different vertices on \(R_i \). Since \(a, u, q_\beta \in B \) and \(v_1, v_2 \in W \), we shall consider the existence of four edges: \(av_1, q_\beta v_1, av_2 \) and \(q_\beta v_2 \).

Suppose that \(av_1, q_\beta v_1 \in E \), then the following cycle \(C \):
\[
C: av_1v_1^- \ldots r_1xp_1 \ldots p_2yr_\gamma \ldots v_2q_\beta \ldots a
\]
contains \(M \), a contradiction.

If \(av_2, q_\beta v_1 \in E \), then the following cycle \(C \):
\[
C: av_2v_2^+ \ldots r_\gamma xp_2 \ldots p_1xr_1 \ldots v_1a
\]
contains \(M \), a contradiction.

So we have \(e([a, q_\beta], R_i) \leq 2 \) and since it may happen that \(bu \in E \), we have
\[
e([a, b, p_1, p_2, q_1, q_\beta], R_i) \leq 5.
\]

4. Consider a BB-path \(R_i: u_1u_2, u_1, u_2 \in B, v \in W, v \in V(D \setminus M), v = u_1^+ = u_2^- \). Since \(p_2 \notin V(M), v \notin V(M) \) and \(M \) is maximal, we have \(p_2v \notin E \). Using the same arguments as in case 3, since there is no cycle containing \(M \), the following inequalities hold: \(e([q_1, q_\beta], R_i) \leq 2, e([b, p_1], R_i) \leq 2 \), and since it may happen that \(av \in E \), we have
\[
e([a, b, p_1, p_2, q_1, q_\beta], R_i) \leq 5.
\]
By summing over all the paths R_i from (27)--(30) we have
\[e([a, b, p_x, q_1, q_\beta, p_1], R - \{x, y\}) \leq 3v_2(R) + v_2^W(R) + 5v_3(R). \] (31)

5.2.2. Neighbors of a, b, p_x, q_1, q_β, p_1 on $Q\setminus\{x\}$

1. Consider the vertices $\{q_1, a\}$. Since there is no cycle containing M we have $e([p_1, q_\beta], \{q_1, a\}) \leq 1$, $aq_1 \in E$, $p_xq_1, ab \notin E$ and thus
\[e([a, b, p_1, p_x, q_1, q_\beta], \{q_1, a\}) \leq 3. \] (32)

2. Consider a BW-path $Q_1: uv, u \in B, v \in W, v = u^+, uv \notin M$. Since there is no cycle containing M we have $e([p_1, p_2], Q_1) \leq 1$ and $e([a, b], Q_1) \leq 1$.
Suppose that $e([p_1, p_2], Q_1) = 2$, then $p_1u, p_xv \in E$ and the following cycle C:
\[C: p_1uu^- \ldots q_1xr_1 \ldots r_2yq_\beta \ldots v_xp_x \ldots p_1 \]
contains M, a contradiction.

If $e([a, b], Q_1) = 2$, then $bu, av \in E$ and the following cycle C:
\[C: buu^- \ldots avv^+ \ldots q_\beta yr_\gamma \ldots r_1xp_1 \ldots b \]
contains M, a contradiction.

Note that since M is maximal, we have $q_1u \notin E$ and from this: $e([q_1, q_\beta], Q_1) \leq 2$.

3. Consider a WB-path $Q_2: v_1uv_2, v_2 \neq y, u \in B, v_1, v_2 \in W, u = v_1^+ = v_2^-$.
Since $v_2 \neq y$ and as R is maximal $p_xv_2 \notin E$. Suppose that $p_xv_2 \in E$, then the graph $H' = (P', Q, R')$ with
\[P': xp_1 \ldots p_xv_2, \]
\[Q': xq_1 \ldots v_2, \]
\[R': xr_1 \ldots r_2yq_\beta \ldots v_2 \]
is a strict Θ-graph compatible with M with $|V(R')| > |V(R)|$.
Since there is no cycle containing M, using similar arguments as in the case 2, we have $e([p_1, p_2], \{u_1, v\}) \leq 1$, $e([a, b], \{u, v\}) \leq 1$. Hence, $e([p_1, p_2], Q_1) \leq 1$ and since it is possible that $av_1 \in E$ we have $e([a, b], Q_1) \leq 2$.

From these inequalities we have
\[e([a, b, p_1, p_x, q_1, q_\beta], Q_1) \leq 5. \] (35)

5. In Case 4 we have assumed that $v_2 \neq y$. If $v_2 = y$, then $i = N_Q$ and the path Q_{N_Q} is a WW-path $Q_{N_Q}: q_\beta \ldots q_\beta y$. In fact, it is the same case as case 4, but since $p_xy \in E$, we have
\[e([a, b, p_1, p_x, q_1, q_\beta], Q_1) \leq 6. \] (36)

6. Consider a BB-path $Q_1: u_1uv_2, u_1, u_2 \in B, v \in W, v = u_1^+ = u_2^-$. Note that since $p_x, v \notin V(M)$ and since M is maximal we have $p_xv \notin E$.
Since there is no cycle containing M we have $e([a, b], \{u_1, v\}) \leq 1$, $e([p_1, q_\beta], \{v, u_2\}) \leq 1$.
Suppose that $e([a, b], \{u_1, v\}) = 2$, then $av, bu_1 \in E$ and the following cycle C:
\[C: bu_1u_1^- \ldots avv^+ \ldots q_\beta yr_\gamma \ldots r_1xp_1 \ldots b \]
contains M, a contradiction.
Suppose that $e([p_1, q_\beta], \{v, u_2\}) = 2$, then $p_1u_2, q_\beta v \in E$ and the following cycle C:

$$C: p_1u_2u_2^+ \ldots q_\beta vu_1 \ldots q_1xr_1 \ldots r_\gamma p_2 \ldots p_1$$

contains M, a contradiction.

Note that $p_1u_1 \notin E$, because if $p_1u_1 \in E$, then the graph $H' = (P', Q, R')$ with

$$P': u_1p_1 \ldots p_2y,$$

$$Q': u_1vu_2 \ldots q_\beta y,$$

$$R': u_1u_1^- \ldots q_1xr_1 \ldots r_\gamma y$$

is a strict Θ-graph compatible with M with $|V(R')| > |V(R)|$, a contradiction.

From the above we have $e([p_1, q_\beta], Q_i) \leq 1$, $e([a, b], Q_i) \leq 2$, and since $e([q_1], Q_i) \leq 2$ we have

$$e([a, b, p_1, p_2, q_1, q_\beta], Q_i) \leq 5. \quad (37)$$

By summing over all the paths Q_i from (32)–(37) we have

$$e([a, b, p_1, p_2, q_1, q_\beta], Q\setminus\{x\}) \leq 4v_2(Q) + 5v_3(Q) - 1. \quad (38)$$

5.2.3. Neighbors of $a, b, p_2, q_1, q_\beta, p_1$ on $P\setminus\{y\}$

Using the similar arguments as in Section 5.2.2 we have

$$e([a, b, p_1, p_2, q_1, q_\beta], P\setminus\{y\}) \leq 4v_2(P) + 5v_3(P) - 1. \quad (39)$$

5.2.4. Neighbors of $a, b, p_2, q_1, q_\beta, p_1$ in Z

Since G_M and Z are independent we have

$$d_Z(p_2) = d_Z(q_1) = 0$$

and thus

$$e([a, b, p_1, p_2, q_1, q_\beta], Z) \leq 4t. \quad (40)$$

5.2.5. Neighbors of p_2 and q_1 on $R \cup Q \cup P$

Using similar methods as those in Sections 5.2.1–5.2.3 we get the following inequalities:

$$e([p_2, q_1], R\setminus\{x, y\}) \leq v_2^{BW}(R) + 2v_2^{WB}(R) + 2v_3(R), \quad (41)$$

$$e([p_2, q_1], Q\setminus\{x\}) \leq v_2(Q) + 2(v_3(Q) - 1) + 1 = v_2(Q) + 2v_3(Q) - 1, \quad (42)$$

$$e([p_2, q_1], P\setminus\{y\}) \leq v_2(P) + 2(v_3(P) - 1) + 1 = v_2(P) + 2v_3(P) - 1. \quad (43)$$

Now we shall estimate the sum of degrees. From (41)–(43) we have

$$d(p_2) + d(q_1) \leq v_2^{BW}(R) + m + 2\delta - 1 = v_2^{WB}(R) + n - t + \delta - 1. \quad (44)$$

5.3. Conclusion

From (31), (38)–(40) we have

$$d(a) + d(b) + d(p_1) + d(p_2) + d(q_1) + d(q_\beta)$$

$$\leq 4\left(\sum_{i=2}^{3} (v_i(P) + v_i(Q) + v_i(R)) + v_3(P) + v_3(Q) + v_3(R) - 2 + 4t - 2v_2^{WB}(R). \quad (45)$$
From (19), (23) and (45) we deduce that
\[d(a) + d(b) + d(p_1) + d(p_2) + d(q_1) + d(q_\beta) \leq -2 + 4(m + 1) + 2\delta + 4t - v^w_B(R). \] (46)

Since \(n = m + \delta + t \), from (46) we have
\[d(a) + d(b) + d(p_1) + d(p_2) + d(q_1) + d(q_\beta) \leq 4n + 2 - v^w_B(R) - 2\delta. \] (47)

From (44) and (47) we can deduce that
\[d(a) + d(b) + d(q_\beta) + d(p_1) + 2d(p_2) + 2d(q_1) \leq 5n - t - \delta + 1. \] (48)

Note that \(\delta \geq 2 \) and from (48) we have
\[d(a) + d(b) + d(q_\beta) + d(p_1) + 2d(p_2) + 2d(q_1) \leq 5n - 1. \] (49)

Now we shall give the lower bound of the sum of degrees. From (24)–(26) we have
\[4 \frac{5n}{4} \leq d(q_\beta) + d(p_1) + d(a) + d(b) + 2d(p_2) + 2d(q_1). \] (50)

Assuming that there does not exist a cycle in \(G \) which contains every edge of the matching \(M \), we have obtained (49) and (50). Hence,
\[5n \leq 5n - 1, \]
a contradiction. Part 2 of Theorem 6 is proven.

References