
Target Generation for
Internet-wide IPv6 Scanning
Austin Murdock, Frank Li, Paul Bramsen,
Zakir Durumeric, Vern Paxson

Background

IPv4 scanning - Zmap

.

2

Background

3

●  2128 addresses => 1030 years to scan

●  32 nybbles (hex characters), 8 groups

●  2001:0db8:0000:0001:0000:0000:22:33333

●  n bit prefix + m bit subnet + 64 bit host ID

●  Before - 2001:0db8:0000:0001:0000:0000:22:33333

●  After - 2001:db8:0:1::22:3333

Current Strategy 1 – Use Known Patterns

Decouple where to scan from how to scan*

•  Target Generation Algorithm (TGA)

Previous Work:

Check Simple Patterns (2::1:0:0:0:1 … 2::f:0:0:0:f) Czyz et al.

Known Patterns eg. “wordy” (2001::cafe:face) RFC7707

4

Previous Work:
Recursive Algorithms Ullrich et al.
Machine Learning Pawel et al.

Current Strategy 2 – Discover Patterns

Extract patterns from “Seeds”

Seeds:
●  Network Taps
●  Traceroutes
●  DNS

○  Reverse
○  Passive
○  Forward

 5

New Strategy – Exploit Locality

Goal: maximize number of hosts found*

Hypothesis: Seed Density Hit Density

●  Find address ranges local to seeds with high seed density

●  Expand ranges to discover new addresses

Bottom up, expand from seeds to ranges

6

Motivation

●  Allocation patterns can be tricky to leverage

 1K seeds matching a random pattern

 prefix:subnet:<16 random nybbles>
 16^16 possible targets

 100 seeds matching a wordy pattern
 prefix:subnet::<word>

 1,296 possible targets

●  2/3 of routed prefixes had less than 10 seeds

7

Motivation 2

●  There may be different patterns in one subnet

2403:d000:0004:0100:0000:0000:0000:0001 Sequential
2403:d000:0004:0100:0000:0000:0000:0002
2403:d000:0004:0100:0225:90ff:fe37:358b Embedded MAC
2403:d000:0004:0100:0225:90ff:fe37:760f
2403:d000:0004:0100:0230:48ff:fe34:fe96
2403:d000:0004:0100:0000:0000:0000:café Wordy
(Actual Seeds)

8

●  Often networks do not allocate addresses using least significant nibbles

2a02:04e8:00de:1000:5b6d:0a03:0000:0001
2a02:04e8:00de:1000:5b6d:0a07:0000:0001
2a02:04e8:00de:1000:5b6d:0a08:0000:0001
2a02:04e8:00de:1000:5b6d:0a09:0000:0001
2a02:04e8:00de:1000:5b6d:0a0a:0000:0001
2a02:04e8:00de:1000:5b6d:0a0b:0000:0001
(Actual Seeds)

Find dense ranges not dense prefixes

Motivation 3

9

●  Whats going on here?

2800:0240:0001:0021:face:b00c:0000:00a7
2800:0240:0001:0022:face:b00c:0000:00a7
2800:0240:0001:0023:face:b00c:0000:00a7
2800:0240:0001:0024:face:b00c:0000:00a7
2800:0240:0001:0026:face:b00c:0000:00a7
2800:0240:0001:0029:face:b00c:0000:00a7
2800:0240:0001:002a:face:b00c:0000:00a7
2800:0240:0001:002d:face:b00c:0000:00a7
(Actual Seeds) | 64-bit host ID |
Do not rely on domain knowledge

Motivation 4

10

What don’t we do

●  Rely on known patterns or strategies

●  Reverse engineer allocation patterns

●  Set algorithmic parameters

○  E.g. No notion /64 is significant,

○  no “arbitrary” thresholds

11

6Gen

12

Strategy

●  Select ranges of addresses local to the seeds

●  Target the most promising ranges first (high density)

●  Expand these ranges to encourage discovery

●  Sole parameter: “probe budget”

13

Generating Ranges

Create a range

2::a
2::b 2::[0-f] 2::?

Grow a Range

2::1:?
2::2:b 2::[0-f]:[0-f] 2::?:?

14

“Tight” vs “Loose” Ranges

2::3
2::5
2::9

2::[3-9] Discovery space of 4

2::? -> 2::[0-f] Discovery space of 13

Uses more probes, but increases opportunity

15

Growing Ranges

Grow ranges incrementally to support granular budget levels

Compute change in size with Hamming distance

2::a Hamming distance 1
2::b (2::? is 161 times larger than 2::a)

2::1:? Hamming distance 1
2::2:b

16

Example

2::1
2::2
2::3
2::1:1
2::1:2
2::a0
2::b1
2::c3
2::ffff
2::dddd

17

Seed Closest Dist Range Density

2::1

2::2
2::ffff

1
4

2::?
2::????

3/161

8/164

Example

2::1
2::2
2::3
2::1:1
2::1:2
2::a0
2::b1
2::c3
2::ffff
2::dddd

18

Seed Closest Dist Range Density

2::1

2::2
2::ffff

1
4

2::?
2::????

3/161

-

2::1:1 2::1:2 1 2::1:? 2/161

2::a0 2::b1 2 2::?? 3/162

2::ffff 2::dddd 4 2::???? 2/164

...

Cost: 16

2::?

Output:

Example

2::1 2::?
2::2
2::3
2::1:1 2::1:?
2::1:2
2::a0
2::b1
2::c3
2::ffff
2::dddd

19

Seed Closest Dist Range Density

2::? 2::a0
2::1:1

1
1

2::??
2::?:?

 6/162

5/162

Output:

Example

2::1 2::?
2::2
2::3
2::1:1 2::1:?
2::1:2
2::a0
2::b1
2::c3
2::ffff
2::dddd

20

Seed Closest Dist Range Density

2::? 2::a0
2::1:1

1
1

2::??
2::?:?

 6/162

5/162

2::1:? 2::1 1 2::?:? 5/162

2::a0 2::b1 2 2::?? 3/162

2::ffff 2::dddd 4 2::???? 2/164

...

Output:

Example

2::1 2::? 2::??
2::2
2::3
2::1:1 2::1:?
2::1:2
2::a0
2::b1
2::c3
2::ffff
2::dddd

21

Seed Closest Dist Range Density

2::? 2::a0
2::1:1

1
1

2::??
2::?:?

 6/162

5/162

2::1:? 2::1 1 2::?:? 5/162

2::a0 2::b1 2 2::?? 3/162

2::ffff 2::dddd 4 2::???? 2/164

...

Cost: 162 + 16 = 272

Output:

Evaluation
1.  ~3M DNS AAAA seeds from Rapid7

○  ~ 8K routes prefixes*

○  ~ 7K ASes

2.  Run 6Gen on each routed prefix (1M budget per prefix)

3.  Convert list of target ranges to addresses (~6B targets)**

4.  Probe addresses on tcp/80 (SYN scan)

 22

Post talk note: *In the talk I mentioned that this total is for prefixes with 2 or more seeds.
In the paper we do not remove prefixes with one seed and report this number as 10,038.
**I mention in the talk that this total is less than 8B because 6Gen does not always generate 1M targets.

Where are the dynamic nybbles?

 | Prefix | Subnet | 64-bit host Identifier |

23

Evaluation

~55 million responses from ~6B probes

●  ~30 Million from Akamai
●  ~20 Million from Amazon

Encounter large blocks of responsive addresses
●  E.g., Akamai has “active” /56s

24

Randomly probe each /96 -> 232 possible addresses

Filter removed { 10.0 M / 10.2 M } /96s from 138 ASes

Manually removed two additional ASes (after /96 filtering)

/96 filter + manual inspection removed 98% of hits

How can we quickly detect large active regions?

25

Filtered Results

~ 1M new (non-seed) responses
 ~ 3K routed prefixes
 ~ 2K Ases

New addresses for ~40% of prefixes*

Hits by Number of Seeds

26

Post talk note: *In the talk I mentioned that this percentage is for prefixes with 2 or more seeds.
In the paper we do not exclude prefixes with one seed and report this metric as 28%.

Future Work

Better detection of “active” blocks

Adaptive Scanning

●  Density validation

●  Pattern recognition for ranges

27

Thank You

28

Austin Murdock

austinmurdock@berkeley.edu
@austinkarch

