..'li

IBM Research - Tokyo

- 3
.. /
4. -

Performance of Multi-Process and Multi
Processing on Multi-core SMT Processor .

i ————
g ————
S "I.'
1 _*.!-

.
=~
4 Y 1
L

Hiroshi Inoue and Toshio Naka_ | &
IBM Research — Tokyo .

HOSWC2010

[ISWC 2010 @ Atlanta © 2010 IBM Corporation

IBM Research - Tokyo

An Old Question on New Platforms

= Threads vs. Processes: Which is better to achieve
higher performance?

— Each process has own virtual memory space
=»Using processes provides better inter-process isolation
— Threads in one process shares a virtual memory space

=» Multi-thread processing is better for performance due to
its memory efficiency (smaller footprint)

= |s this answer still valid on today’s processors with
multiple cores and multiple SMT threads in a core?

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Approach

= Comparing multi-thread model and multi-process model
on two types of hardware parallelism

— SMT scalability

— Core scalability

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

SMT Scalability and Core Scalability

thread
thread
thread
thread

thread
thread
thread
thread

thread
thread
thread
thread

thread
thread
thread
thread

thread
thread
thread
thread

SMT scalability: performance improvement

thread
thread
thread
thread

thread
thread
thread
thread

using increasing number of SMT threads in one core

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors

thread
thread
thread
thread

© 2010 IBM Corporation

IBM Research - Tokyo

SMT Scalability and Core Scalability

thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread

SMT scalability: performance improvement
using increasing number of SMT threads in one core

Core scalability: performance improvement
using increasing number of cores with one thread in each core

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 1BM Corporation

IBM Research - Tokyo

Experimental Setup

= Systems
— Niagara system

» UltraSPARC T1 (Niagara 1) 1.2 GHz
« 8 cores with 4 SMT threads in each core
« Solaris 10

— Nehalem system

« Xeon X5570 (Nehalem) 2.93 GHz
* 4 cores with 2 SMT threads in each core
* Red Hat Enterprise Linux 5.4

= Software
— Benchmarks: SPECjbb2005, SPECjvm2008

— 32-bit HotSpot Server VM for Java 6 Update 17
— Java heap size: 256 MB per thread using large page

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

SMT Scalability of SPECjbb2005

multi-thread model
uses 1 JVM

on Niagara on Nehalem
14000 70000
A=
(0°]
12000 - 60000 ﬁr >
S 10000 & 50000 o
° o &
S 8000 - 2 40000 5
5 5
£ 6000 - 2 30000
()] (®)]
-} >
S 4000 © 20000
= : = :
2000 —Q—mult!-thread model | | 10000 —e— multi-thread model | |
—A— multi-proces model —A— multi-proces model
O | | | O | |
0 1 2 3 4 0 1 2
number of SMT threads number of SMT threads
multi-thread model was 9.2% faster multi-thread model was 5.5% faster

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Core Scalability of SPECjbb2005

on Niagara on Nehalem
40000 180000
35000 - 4 160000 - /‘l' Aog
—_ D
30000 - 2 140000 !/ 2
S, 120000 2
25000 a S
£ 100000 | o
20000 = -
o 80000 -
15000 S 60000 -
— c
10000 —e— multi-thread model ||~ 40000 —&— multi-thread model
5000 —A— multi-proces model | 20000 —A— multi-proces model -
O | | | | | O |
0 1 2 3 4 5 6 7 8 0 1 2 3 4
number of cores number of cores
multi-thread model was 3.4% faster multi-thread model was 2.1% slower

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Core Scalability and SMT Scalability on Niagara

SMT scalability Core scalabilitv

3.0 8.0
% 25 g 7.0 Ao%-
2 8 6.0 g
= 20 > 5.0 73
2 o =+
s 15 S 40 &
> (=g
z 2 30 &
3 1.0 3
@ o 20
8 2
S 05 ® 1.0

0.0 0.0

o) £ N Q > S O @
\ ¢ & & L e RPN

3 (190 619 ((Q% o(& ‘\\8‘3\\ Qé\o %«\ © @Q@ ~ < 0@%

QQ C)Q 90 K?, R \{b) o Q@ >
& PR ST L & & F

00 00 O

multi-thread model was 9.6% faster No performance advantage for

on average

multi-thread model

please refer to the paper on results for Nehalem

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Micro Architectural Statistics for SPECjbb2005

>

191399 sI
[opow ssad0.4d-i3jnw

using increasing number of SMT threads (up to 4 threads)
1.2

10 multi-process model = 1.0

0.8

M 1 thread

M 2 threads
M 3 threads
M 4 threads

0.6

191394 sI
[opow peaJy3-njnw

<€

relative number of events for multi-thread
model over multi-process model

L1l cache miss L2 instruction L1D cache miss L2 data miss DTLB miss
miss

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Micro Architectural Statistics for SPECjbb2005

using increasing number of cores (up to 8 cores)

e
S _ 80
£ _ S
Z 38 70 | m1core a.
g E 6.0 . M2cores G-_Q
q9§50 /W4 cores 8-9’
209 W 6 cores T Q
S 240 - o o
3 = W 8 cores 3
Y— E 3.0 [O
S o
—_ (‘D
é % 2.0 multi-process model = 1.0
C o 3
o g 0.0 c
=] , . 8
L L1lcache miss L2 instruction L1D cache miss L2 data miss DTLB miss = &
= miss o 3
v 28
= significant increase in DTLB misses for multi-thread model ® g
with increasing number of cores used. Q
0

(7.4x on 8 cores of Niagara and 3.3x on 4 cores on Nehalem)

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Difference in Memory Access Patterns

multi-thread (one-JVM) model multi-process (multi-JVM) model

M JVM 1 JVM 2 JVM 3

1 GB =256 MB x 4 256 MB 256 MB 256 MB 256 MB
® each core accesses 1-GB memory space © each core accesses only 256-MB heap
@ each memory page is accessed © each memory page is accessed

from 4 cores from only 1 core

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 1BM Corporation

IBM Research - Tokyo

Experimental Setup for a larger PHP workload

= Benchmark
— MediaWiki (wiki server used in Wikipedia)

. C database
client application server
server
x86 / Linux UltraSPARC T1 1.2 GHz / Solaris x86 / Linux
client
] lighttpd >~ mysqld
emulator PLIP
runtimes
FastCGl
over Unix domain socket

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

PHP runtime configuration

multi-process PHP runtime (default) multi-threaded PHP runtime

process process
sharing virtual memory space

PHP runtime
instance 1

PHP runtime
instance 1

PHP runtime
instance 2

PHP runtime
instance 2

HTTP
server

HTTP

server
PHP runtime
instance 3

PHP runtime
instance 3

PHP runtime
instance 4

PHP runtime
instance 4

= each runtime instance handles independent requests
= no communication among PHP runtime instances

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Core Scalability and SMT Scalability of MediaWiki

throughput (transactions/sec)

SMT scalability

16
14 /11‘
12 /
10 /
8 /
© e
4
—8— multi-thread model
2 —A— multi-proces model
0 | | |
0 1 2 3 4
number of SMT threads

(o)
o

A b

w
(&)

= N 8

-
o

throughput (transactions/sec)
N

multi-thread model was 5.5% faster

o O,

OO O O,

o O,

core scalability

/‘l' A
09

>

/ o)

@

=

2

(7]

L (=g
]

-

/ —e— multi-thread model
—aA— multi-proces model

0 1 2 3 4 5 6 7 8

number of cores

multi-thread model was 2.5% slower

= consistent with results for Java benchmarks

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Micro Architectural Statistics for MediaWiki

relative number of events for multi-thread

model over multi-process model

using increasing number of SMT threads (up to 4 threads)

1.2

1.0

0.8

0.6

0.4

multi-process model = 1.0

L1l cache miss L2 instruction L1D cache miss L2 data miss DTLB miss
miss

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors

3

C

=)

—.O

0 5

Ag‘ o

3 0

o wn

73

o

o

®

3

=3

M 1 thread . :T:
(7]

M 2 threads o-g

M 3 threads & 4
o

MW 4 threads S 3

2

v ©

© 2010 IBM Corporation

IBM Research - Tokyo

Micro Architectural Statistics for MediaWiki

>

19133q sI
[opow ssad0.4d-i3jnw

using increasing number of cores (up to 8 cores)

1.4 /
12 | multi-process model = 1.0

M 1 core

M 2 cores
M 4 cores
W 6 cores
Bl 8 cores

191399 sI
[opow peaJy3-njnw

<€

instruction L1D cache miss L2 data miss DTLB miss
miss

relative number of events for multi-thread
model over multi-process model

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Performance of MediaWiki using All SMT Threads

thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread

© multi-thread model
was 5.5% faster

© TLB misses were
reduced by 60%

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Performance of MediaWiki using All SMT Threads

thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread

© multi-thread model @ multi-thread model
was 5.5% faster was only |.7% faster
© TLB misses were @ TLB misses were
reduced by 60% reduced by only 19%

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Our Technique: Core-aware Memory Allocation

multi-threaded PHP runtime

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Our Technique: Core-aware Memory Allocation

multi-threaded PHP runtime

physical page size (4 MB)

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Our Technique: Core-aware Memory Allocation

Core-aware Memory Allocation

multi-threaded PHP runtime multi-threaded PHP runtime

Y)
physical page size (4 MB) physical page size (4 MB)

- avoid sharing the memory space among cores within a physical page

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Performance of MediaWiki with Our Core-aware Malloc

relative throuahput of multi-thread model over multi-brocess model

1.08

3 A
e 1.06 *— - =
5 = 3.0% |2
® 5 &
£2 104 —4 >
..T- (%]
zZ 3
5 2 ®
E 8102 - o
°s
a = multi-process model = 1.0
< 1
o £
= R
oo
£ 3
° 0.98 —@— default allocator
% —&— our core-aware allocator
© 096 ‘ ‘ | |

(non-zero 0 1 2 3 4 5 6 7 8

origin) number of cores

= Qur core-aware allocator improved the performance of multi-thread model
by 3.0% over the default allocator in libc

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

DTLB misses with Our Core-aware Malloc

multi-process model = 1.0
=3
E 809
§ &
w 3 08 -0
2 8
w o 07 /
EQ
m= 06
= g 05
© 304 - .
23 03 reduced DTLB misses
- by 46.7%
© 3 0 —e— default allocator
%’ fa: 0.1 —&— our core-aware allocator
[l 0 | | | |
0 1 2 3 4 5 6 7 8
number of cores

<

491S®} S| J=23JOoys

= Qur core-aware allocator reduced the DTLB misses for the multi-thread

model by 46.7%

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors

© 2010 IBM Corporation

IBM Research - Tokyo

Summary

= The multi-thread model tends to generate fewer cache
misses but more DTLB misses on multi-core processors

= The increase in DTLB misses becomes more significant
with increasing number of cores

= Core-aware memory allocation can maximize the
benefit of multi-thread processing by reducing DTLB
misses

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors © 2010 IBM Corporation

IBM Research - Tokyo

Our Answer to the Question

= Threads vs. Processes: Which is better to achieve
higher performance?

=» Multi-thread model has advantage over multi-process
model, but memory allocator need to be enhanced

© 2010 IBM Corporation

Performance of Multi-Process and Multi-Thread Processing on Multi-core SMT Processors

