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An Old Question on New Platforms

= Threads vs. Processes: Which is better to achieve
higher performance?

— Each process has own virtual memory space
=»Using processes provides better inter-process isolation
— Threads in one process shares a virtual memory space

=» Multi-thread processing is better for performance due to
its memory efficiency (smaller footprint)

= |s this answer still valid on today’s processors with
multiple cores and multiple SMT threads in a core?
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Approach

= Comparing multi-thread model and multi-process model
on two types of hardware parallelism

— SMT scalability

— Core scalability
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SMT Scalability and Core Scalability

thread
thread
thread
thread

thread
thread
thread
thread

thread
thread
thread
thread

thread
thread
thread
thread

thread
thread
thread
thread

SMT scalability: performance improvement

thread
thread
thread
thread

thread
thread
thread
thread

using increasing number of SMT threads in one core
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SMT Scalability and Core Scalability
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SMT scalability: performance improvement
using increasing number of SMT threads in one core

Core scalability: performance improvement
using increasing number of cores with one thread in each core
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Experimental Setup

= Systems
— Niagara system

» UltraSPARC T1 (Niagara 1) 1.2 GHz
« 8 cores with 4 SMT threads in each core
« Solaris 10

— Nehalem system

« Xeon X5570 (Nehalem) 2.93 GHz
* 4 cores with 2 SMT threads in each core
* Red Hat Enterprise Linux 5.4

= Software
— Benchmarks: SPECjbb2005, SPECjvm2008

— 32-bit HotSpot Server VM for Java 6 Update 17
— Java heap size: 256 MB per thread using large page
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SMT Scalability of SPECjbb2005
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Core Scalability of SPECjbb2005

on Niagara on Nehalem
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Core Scalability and SMT Scalability on Niagara
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multi-thread model was 9.6% faster No performance advantage for

on average

multi-thread model

please refer to the paper on results for Nehalem
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Micro Architectural Statistics for SPECjbb2005
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Micro Architectural Statistics for SPECjbb2005

using increasing number of cores (up to 8 cores)
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Difference in Memory Access Patterns

multi-thread (one-JVM) model multi-process (multi-JVM) model

M JVM 1 JVM 2 JVM 3

1 GB =256 MB x 4 256 MB 256 MB 256 MB 256 MB
® each core accesses 1-GB memory space © each core accesses only 256-MB heap
@ each memory page is accessed © each memory page is accessed

from 4 cores from only 1 core
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Experimental Setup for a larger PHP workload

= Benchmark
— MediaWiki (wiki server used in Wikipedia)

. C database
client application server
server
x86 / Linux UltraSPARC T1 1.2 GHz / Solaris x86 / Linux
client
] lighttpd >~ mysqld
emulator PLIP
runtimes
FastCGl
over Unix domain socket
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PHP runtime configuration

multi-process PHP runtime (default) multi-threaded PHP runtime

process process
sharing virtual memory space

PHP runtime
instance 1

PHP runtime
instance 1

PHP runtime
instance 2

PHP runtime
instance 2

HTTP
server

HTTP

server
PHP runtime
instance 3

PHP runtime
instance 3

PHP runtime
instance 4

PHP runtime
instance 4

= each runtime instance handles independent requests
= no communication among PHP runtime instances
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Core Scalability and SMT Scalability of MediaWiki
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= consistent with results for Java benchmarks
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Micro Architectural Statistics for MediaWiki

relative number of events for multi-thread

model over multi-process model

using increasing number of SMT threads (up to 4 threads)
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Micro Architectural Statistics for MediaWiki
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Performance of MediaWiki using All SMT Threads

thread thread thread thread thread thread thread thread
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© multi-thread model
was 5.5% faster

© TLB misses were
reduced by 60%
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Performance of MediaWiki using All SMT Threads

thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread
thread thread thread thread thread thread thread thread

© multi-thread model @ multi-thread model
was 5.5% faster was only |.7% faster
© TLB misses were @ TLB misses were
reduced by 60% reduced by only 19%
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Our Technique: Core-aware Memory Allocation

multi-threaded PHP runtime
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Our Technique: Core-aware Memory Allocation

multi-threaded PHP runtime

physical page size (4 MB)
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Our Technique: Core-aware Memory Allocation

Core-aware Memory Allocation

multi-threaded PHP runtime multi-threaded PHP runtime

\_Y_)
physical page size (4 MB) physical page size (4 MB)

- avoid sharing the memory space among cores within a physical page
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Performance of MediaWiki with Our Core-aware Malloc

relative throuahput of multi-thread model over multi-brocess model
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= Qur core-aware allocator improved the performance of multi-thread model
by 3.0% over the default allocator in libc
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DTLB misses with Our Core-aware Malloc
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= Qur core-aware allocator reduced the DTLB misses for the multi-thread

model by 46.7%
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Summary

= The multi-thread model tends to generate fewer cache
misses but more DTLB misses on multi-core processors

= The increase in DTLB misses becomes more significant
with increasing number of cores

= Core-aware memory allocation can maximize the
benefit of multi-thread processing by reducing DTLB
misses
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Our Answer to the Question

= Threads vs. Processes: Which is better to achieve
higher performance?

=» Multi-thread model has advantage over multi-process
model, but memory allocator need to be enhanced
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