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Abstract: In energy-constrained wireless sensor networks, low energy utilization and unbalanced
energy distribution are seriously affecting the operation of the network. Therefore, efficient and
reasonable routing algorithms are needed to achieve higher Quality of Service (QoS). For the
Dempster–Shafer (DS) evidence theory, it can fuse multiple attributes of sensor nodes with reasonable
theoretical deduction and has low demand for prior knowledge. Based on the above, we propose an
energy efficient and reliable routing algorithm based on DS evidence theory (DS-EERA). First, DS-EERA
establishes three attribute indexes as the evidence under considering the neighboring nodes’ residual
energy, traffic, the closeness of its path to the shortest path, etc. Then we adopt the entropy weight
method to objectively determine the weight of three indexes. After establishing the basic probability
assignment (BPA) function, the fusion rule of DS evidence theory is applied to fuse the BPA function
of each index value to select the next hop. Finally, each node in the network transmits data through
this routing strategy. Theoretical analysis and simulation results show that DS-EERA is promising,
which can effectively prolong the network lifetime. Meanwhile, it can also reach a lower packet loss
rate and improve the reliability of data transmission.
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1. Introduction

With the development of efficient wireless communication and the progress of electronic
information technology, the wireless sensor network (WSN) is widely used in various fields because
of its low cost, miniaturization and multi-function characteristics [1–4]. However, in most cases, the
nodes in WSN are powered by batteries and are usually deployed in unmanned outdoor or more
dangerous environments, which make it inconvenient to replenish energy. The cost of redundant
deployment and node replacement is also usually high. Therefore, an efficient routing strategy is
needed to minimize network energy consumption and prolong the network lifetime.

Since the energy of the sensor node is mainly used for data reception and transmission [5],
the traditional routing strategy mainly considers how to utilize the shortest path to transfer data
from the source node to the destination as quickly as possible. However, in the energy-constrained
sensor network, a large amount of data is transmitted from the source node to sink by “many-to-one”
mode, which easily causes serious “funnel effect” and “energy hole” problems. As a result, the energy
consumption of nodes located around the shortest path or the sink node is much faster than that of
others, resulting in energy imbalance and lower network lifetime.

In addition, the “many-to-one” data transmission mode may also cause congestion in the network.
For example, when a key event is triggered, the nodes need to transmit a large amount of data to
the sink node in a short time, and congestion may occur at this time. Congestion can cause a large
number of data packets to be discarded, reducing the reliability of data transmission. Meanwhile,
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the network will generate unnecessary energy consumption and increase transmission delay due
to data retransmission, which will reduce energy utilization. In some research on congestion, once
congestion is found, certain measures are usually used to control the data rate of the inflow [6], and it is
difficult for the upstream node to control the data rate flowing into the downstream to avoid congestion.
There are also many routing strategies that prefer to idle nodes to reduce congestion, but the nodes
may lose more energy due to detours [7,8].

Therefore, in order to improve the energy efficiency, prolong the network lifetime and increase the
reliability of data transmission, we propose an energy-efficient and reliable routing algorithm based
on Dempster–Shafer (DS) evidence theory (DS-EERA) by adopting multi-attribute decision-making
method. The main contributions of this paper are as follows:

• From the perspective of energy consumption reduction, DS-EERA establishes the node evaluation
function. That is, the attributes of the nodes are considered comprehensively and abstracted into
three indexes: transmission energy efficiency ratio, idleness degree and energy density factor.

• Considering the operation of each round of the network, we objectively determine the weight of
each index based on the difference coefficient of entropy values.

• The application of DS evidence theory in node attributes fusion as routing is very few in WSN.
DS-EERA regards three indexes as evidence, and determines whether the node can become the
next hop as the recognition target. We innovatively apply DS fusion rules to the fuse the node
indexes and take the fusion results as the basis of routing decisions.

• Significantly, the simulation results show that DS-EERA can not only reduce energy consumption
effectively and prolong network lifetime in energy-constrained networks but also achieve lower
packet loss rate and increase the reliability of data transmission.

The rest of the paper is organized as follows: Section 2 reviews the related research works.
The network model and DS evidence rule are introduced in Section 3. We describe the DS-EERA
algorithm in detail in Section 4. The performance of our algorithm is analyzed and discussed according
to relevant simulation results in Section 5. Finally, the conclusion is summarized in Section 6.

2. Related Works

Since sensor nodes are mostly powered by batteries, once some nodes are exhausted, the network
may not work properly. Therefore, energy-saving has always been one of the keys to the efficient
operation of WSN. Some traditional methods mainly reduce the transmission distance and energy
consumption of the path, thus prolonging the overall lifetime of the network [9,10]. Authors in [9]
select the neighbor node with the fewest hops from the source node to the sink node as the relay,
and when there are multiple paths with the fewest hops, the remaining energy of the node is
used as the determinant. Ho et al. [10] proposed a ladder diffusion algorithm based on ant colony
optimization (ACO) to solve the problem of energy consumption in routing. The algorithm mainly
uses the ACO mechanism to determine transmit paths, which effectively reduces energy consumption.
In some way, these algorithms based on minimum hop count are equivalent to the minimum energy
routing [11]. Although this kind of method can reduce the energy consumption of the path, it has
obvious disadvantages of only some nodes undertake the data transmission in a period of time while
other nodes are idle. That is to say, when they choose the forwarding node, they do not consider the
residual energy, which is very easy to make some nodes run out of energy prematurely and result in
uneven energy distribution between nodes. Thus the network lifetime is always at a lower level.

In response to the above problems, in some algorithms for solving load balancing [12–14],
Zhang D et al. [12] proposed a forward-aware factor-based energy balance routing protocol
(FAF-EBRM), which uses the energy density of the forward region and the traffic on the link to
alleviate congestion. However, without minimizing the energy consumption of the path, it will
lead to energy loss due to detours. For this reason, some algorithms minimize the path energy
consumption as much as possible while ensuring the energy balance of nodes [13,14]. The ACOHCM
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proposed by Ailian J et al. [13] combines the advantages of the ant colony optimization algorithm
and minimum hop routing strategy to effectively reduce network energy consumption. The ESRA
proposed by Tang L et al. [14] first constructs the minimum energy consumption tree and then propose
the “cut edge” strategy to balance the load between nodes, which can effectively utilize the energy and
extend the network lifetime. However, the computational complexity and communication overhead
required by the two algorithms are large and may consume too many resources in practical applications.
Therefore, it is unreasonable to only consider single routing information or adopt a simple mathematical
model in routing decisions, and it is also necessary to comprehensively consider various attributes
of the network. Among them, the method of multi-attribute decision-making (MADM) can be well
applied to routing.

The most widely used multi-attribute decision-making methods include the technique for order
preference by similarity to ideal solution (TOPSIS), fuzzy theory and DS evidence theory. In some
routing protocols [11,15,16] that use TOPSIS, such as the Multi-criteria based centralities measures
routing protocol (MCRP) [15], it is mainly to sort multiple network attribute matrices to obtain
the optimal solution. However, the routing decision using the TOPSIS can only reflect the relative
closeness of each attribute to its ideal solution, which does not reflect the closeness to the overall ideal
solution. In addition, in other algorithms that adopt fuzzy theory for route selection [17–19], such as
fuzzy-logic-based energy optimized routing (FLEOR) algorithm [18], the determination of attribute
weight has a strong subjectivity, that is, the fuzzy rules are determined artificially, and the lack of
objectivity may lead to the final decision not be the optimal. The DS evidence theory is simple to
calculate and has low demand for prior knowledge. It can use reasonable theoretical derivation to fuse
the multi-faceted attributes of the sensor nodes and obtain a good judgment. Meanwhile, DS evidence
theory is easy to calculate and has a low demand for prior knowledge. It can use reasonable theoretical
derivation to fuse multiple attributes of sensor nodes and get good decision results. However, in WSN,
a lot of previous research on DS evidence theory mainly focus on data fusion of nodes to enhance the
reliability and security of information acquisition [20–25]. Thus the application of attribute fusion
in sensor nodes as a routing decision-making method is very few. In the DS-EERA proposed in this
paper, based on DS evidence theory, we consider multiple factors affecting energy efficiency and
reliability, and then integrate the credibility and fuzzy information of nodes attributes to achieve
optimal routing decisions.

3. Network Model and Evidence Theory

3.1. Network Model

The wireless sensor network studied in this paper is mainly used for event discovery and
information collection. Due to the limited communication distance between sensor nodes, the nodes
usually transmit data to the base station through multi-hops. How to find the path with the least
energy consumption from a source node to a sink node is a priority for routing algorithms.

The topology of WSN is shown in Figure 1. The information collection terminals are regarded
as common nodes, which transmit the collected data to a sink node through multi-hop forwarding.
Suppose in the sensor network with an area of L × L, there are a number of common nodes and a single
sink node located in the center, and all nodes are no longer moved after deployment. The location
between nodes is determined in [26]. All sensor nodes are isomorphic, with routing, sending and
receiving functions, any two nodes can communicate in single-hop or multi-hop, and the initial state is
the same. The initial load of the nodes is 0, and the initial energy is E0.

The information exchange method between nodes is as [27]. That is, each node has a unique
identifier (ID), which maintains a buffer to store information such as residual energy, packet ID,
next-hop ID, sender IDs etc. This information is updated in real-time as the forward neighbor changes.
It is noted that the traffic queue length of the nodes is limited, and the data packet is processed in
first-in first-out (FIFO) mode.
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To more clearly describe the algorithm, this paper makes the related definitions as follows:

Definition 1. Network lifetime: network lifetime is defined as the round number when the first dead node
appears due to the energy exhaustion.

Definition 2. Forward neighbor node set: In order to avoid data backhaul, it is necessary to ensure that data
is forwarded in the direction of the sink node. The forward neighbor node set includes the neighbor nodes in
the forward semicircle region of node i within maximum communication radius R. Based on the nodes spatial
relationship in Figure 1 and forward transmission model in [12], the forward neighbor node set is defined
as follows:

FN(i) = {a|dia ≤ R, das < dis}. (1)

where node a is any forward neighbor node of node i, dia is the distance from node i to node a, das and dis are the
distances from node i and node a to the sink node respectively, R is the maximum communication radius of node i.

Definition 3. Forward energy consumption: for any node a ∈ FN(i), the energy consumption during the
communication between node a and sink node is the forward energy consumption which denoted as eas.

Definition 4. Candidate node set: for any node i, the candidate node set CNnext(i) is the nodes inFN(i) that
satisfy the criterion in Algorithm 1, which will be detailed in Section 4.

In the WSN routing decision, the selection of the next hop is affected by the environment and the
performance of a node (such as energy status and queue length). The optimal routings determined under
different attribute indexes are different and even conflict. As a classical multi-attribute decision-making
method, DS evidence theory can effectively deal with uncertain and incomplete information, which
can provide a theoretical basis and fusion rules for the comprehensive judgment of sensor node
performance. The following will introduce the fusion rules of DS evidence theory.

3.2. DS Evidence Theory

DS evidence theory was put forward by Dempster and Shafer in the 1970s, and it can be used in
information fusion and uncertainty inference. It establishes a one-to-one correspondence between the
proposition and set, which has been successfully applied in data fusion, intelligent optimization, fault
diagnosis, decision analysis etc. [28].

This paper mainly adopts the basic probability assignment (BPA) function and DS evidence fusion
rule, which is described below.
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(1) Basic probability assignment function
The frame of discernment Θ is defined as a set of all possible values of the proposition A, m(A) is

the basic probability assignment (BPA) function on the frame of discernment Θ, that is the degree of
support in proposition A. If A∂ ∈ Θ, m(A∂) > 0, then A∂ called focal element [29]. The BPA function
satisfies the following demands: 

m(Φ) = 0 , Φ is null
n∑
∂=1

m(A∂) = 1 (2)

(2) DS evidence fusion rules
Suppose m1 and m2 are two BPA functions over the same frame of discernment Θ, and the focal

elements are included in A = {A1, A2, . . . , Ak}. Then the orthogonal sum of these two evidences m1 and
m2 is:

m(A) = (m1 ⊕m2)(A) =


0 , A = Φ∑

A∂∩Aβ,Φ
m1(A∂)m2(Aβ)

(1−K) , A , Φ, A ⊂ Θ
(3)

where 1 ≤ ∂, β ≤ k, K =
∑

A∂∩Aβ=Φ
m1(A∂)m2(Aβ), A∂ ∩ Aβ = Φ denotes proposition A∂ and Aβ are

completely in conflict.
The above is an example of two evidences. When more than two evidences are needed as

decision-making indexes, we fuse the first two evidences according to Equations (2) and (3), and then
fuse the result as new evidence with the third evidence, so as to get the final fusion result by analogy.

4. DS-EERA

In this paper, the DS evidence theory is applied to WSN routing decision-making. For each
sensor node, the factors such as residual energy, the shortest path to the sink node, node traffic, energy
density of neighboring nodes and the forward distance are taken into account when selecting the next
hop. Thus, the above factors are abstracted into three indexes: “transmission energy efficiency ratio”,
“idleness degree” and “energy density factor”, which can be regarded as three evidences. Based on the
above three indexes and triangular membership function, we establish the basic probability assignment
(BPA) function, and the reliability of the node belonging to each membership function can be obtained.
Then, the entropy weight method is used to objectively weigh the relative importance of each index in
routing decision-making. Finally, the neighbor node with the best fusion result will be selected as the
next hop. This section introduces the DS-EERA in detail and focuses on the establishment of attribute
indexes, the weight distribution of each index and the routing selection.

4.1. Attribute Indexes

(1) Transmission energy efficiency ratio
This paper considers the spatial positional relationship between the current node i, the forward

neighbor node a and the sink node, as well as the energy status of each node to establish a data
transmission path that reduces energy consumption and delay. The closer the forward neighbor node
of node i is to the sink node, and the closer the straight-line distance dis is, the fewer hops it forwards
along the path, the faster the data can be transmitted to the sink node. As can be seen from Figure 1,
node a is closer to the sink than node b and closer to a straight line dis than node c, so node i under
this index will prefer node a as the next hop node. At the same time, from the perspective of residual
energy, when residual energy Ei is small, it is hoped that the smaller the energy consumption eia is, the
forward distance das is as large as possible, and node a can bear more forward energy consumption eas.
On the contrary, when the residual energy Ei is relatively abundant, and the residual energy Ea of the
forward neighbor node a is generally small, it is hoped that node i can share more transmission energy
consumption as large as possible. Based on the above two aspects, the transmission energy efficiency
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ratio is established to reflect the ability of nodes to balance energy utilization in data transmission.
Its expression is as follows:

p(a) =
dis

dia + das
·(

eas

Ei
+

eia
Ea

) (4)

Normalize p(a) for unified dimension:

P(a) =
p(a)

max
{
p(a)

} (5)

where P(a) is a benefit index, the larger P(a) is, the more efficient it is to utilize energy so that the data
is forwarded along the shortest path as much as possible.

(2) Idleness degree
Considering the transmission energy efficiency ratio, the data can be forwarded along the path

with the highest energy efficiency ratio. However, due to the uneven distribution of nodes in the
wireless sensor network and bursts of data streams, some nodes in the forwarding path, especially those
near the sink node, are prone to packet loss due to the excessive data forwarding tasks. The amount
of data exceeds the size of the cache area, seriously affecting the Quality of Service (QoS). Therefore,
from the perspective of balanced traffic, the idleness degree is defined as follows:

Cidle(a) = 1−
Qa

c + Qa
in −Qa

out

Qmax
(6)

where Qa
c is the current data traffic of the node a, Qa

in is the data traffic of the inflow node a, Qa
out is the

data traffic of the outflow node a and Qmax is the maximum length of the buffer. Cidle(a) can reflect the
ability of the node to accommodate the amount of data, it is a benefit index. Thus, the larger Cidle(a),
the more data the node a is able to receive.

(3) Energy density factor
In the next hop selection process, in order to balance the network energy, the data should be

transmitted to the forward neighbor nodes with more residual energy as much as possible. At the
same time, the energy state around the next hop node should be considered to avoid transmitting to
the energy empty area. For this purpose, the index of energy density factor of node a is established,
and the expression is as follows:

J(a) =
Ea

Eo
·

1
0.5πl2

 ∑
a∈FN(i),t∈FN(a)

Et

 (7)

where l is the max distance between node i and the nodes of FN(i). The energy density factor J(a) is
benefit index, that is, the larger J(a) is, and the higher residual energy and energy density node will be
preferred when choosing the next hop.

4.2. Weight Assignment

The entropy weight method is used to determine the index weight by the amount of information
provided by the entropy value of each index [30]. The size of the entropy weight is directly related
to the evaluated object. From the perspective of information, entropy weight indicates how much
information the index contributes to the problem, i.e., the greater the difference within the index
value, the greater the corresponding index information, the more important the index is. In this paper,
the entropy weight method is used to determine the weight of each index, which is divided into the
following steps:
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(1) Standardized decision matrix
For any node i, suppose its forward neighbor node to be the evaluation object set

M = (M1, M2, . . . , Mm), the set of three indexes in this paper is D = (D1, D2, D3), and the value
of the evaluation object Ma in index Db is denoted as xab(a = 1, 2, . . . , m ; b = 1, 2, 3), then the decision
matrix X is established as follows:

X =


x11 x12 x13

x21 x22 x23
...

...
...

xm1 xm2 xm3

 (8)

In order to eliminate the different dimensions of each index, the standardized decision matrix
V = [vab]m×3 is obtained. According to the index property [31], the indexes that we established are
all benefit indexes, i.e., the larger the index value is, the better the performance is. It is normalized
as follows:

vab =
xab −minxb

maxxb −minxb
(9)

(2) Characteristic weight of evaluation object a under index b
In this paper, sensor nodes are used as an evaluation object. The smaller the entropy value is,

the greater the weight is, i.e., the larger the information content of the corresponding evaluation index
is, the more important the index is. According to the definition of relative entropy [32], the increase
of information means the decrease of entropy value, so entropy can be used to measure the size of
this information.

The characteristic weight of node a under index b is:

θab =
vab

m∑
a=1

vab

, 0 < a ≤ m , 0 < b ≤ 3 (10)

Thus, obtain the entropy value ENb of index b:

ENb = −
1

ln m

m∑
a=1

θab lnθab (11)

(3) The entropy weight of each index
It can be known from Equations (10) and (11) that for a certain index, the greater the difference

of vab, the smaller ENb is i.e., the larger the amount of information reflected by this index, the more
weight should be given, thus the entropy weight of index b is defined as follows:

wb =
1

1− ENb
3∑

b=1
(1−ENb)

(12)

4.3. BPA Function Based on Triangular Membership Function

In this paper, the frame of discernment Θ includes “next hop”, “non-next hop” and “fuzzy”,
which is described as A = {A1, A2, A3} under the three indexes. The three attribute indexes represent
three kinds of evidence respectively, i.e., m1 (transmission energy efficiency ratio), m2 (idleness degree)
and m3 (energy density factor).

Because all three attribute indexes are benefit type, the BPA function can be established based on
the same triangular membership function (shown in Figure 2). In Figure 2, G1 is the membership of
the forward neighbor node belonging to “next hop”, G2 is the membership belonging to “non-next
hop”, and G3 is the membership belonging to “fuzzy”. Once obtain the index value of node a under
any three indexes P(a), Cidle(a), J(a), the membership degree of the next hop, non-next hop and fuzzy
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can be obtained according to G1, G2, G3 respectively. The three membership functions are established
as follows:

G1(g(a)) =


0 0 < g(a) ≤ gmin

g(a)−gmin
gmax−gmin

gmin < g(a) ≤ gmax

1 gmax < g(a) ≤ 1

(13)

G2(g(a)) =


1 0 < g(a) ≤ gmin

g(a)−gmax
gmin−gmax

gmin < g(a) ≤ gmax

0 gmax < g(a) ≤ 1

(14)

G3(g(a)) =

 1−
|g(a)−

gmin+gmax
2 |

gmax−gmin
2

, |g(a) − (gmin+gmax)
2 | ≤

gmax−gmin
2

0 , |g(a) − (gmin+gmax)
2 | ≥

gmax−gmin
2

(15)

where g(a) can represent any three attribute indexes P(a), Cidle(a), J(a).gmin and gmax are the minimum
and maximum values of each index.
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As can be seen from Figure 2, when g(a) < gmin, the membership degree of the node a selected as
the next hop is 0, i.e., under this index, the probability that the node a is selected as the next hop is 0.
When g(a) > gmax, the probability that node a is selected as the next hop under this index is 1.

After the membership function of each index is obtained in the above, the value of the membership
function determines the possibility that the node belongs to the corresponding category. Then the
membership function is normalized as the BPA function, and BPA values of next hop, non-next hop
and fuzzy can be obtained. Furthermore, the weight of the index in Equation (12) is combined with the
corresponding BPA value. The larger the weight of an index, the more important the index is when
selecting the next hop. Thus, the BPA function of the forward neighbor node a of any node i under
attribute b shown as follows:

mb(Aa
t ) =

wb ·Gt(g(a))
3∑

t=1
wb ·Gt(g(a))

b = 1, 2, 3; t = 1, 2, 3 (16)
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4.4. Fusion of Attribute Indexes and Routing Decision

Based on the data fusion rule of DS evidence theory [24,33], firstly, the BPA value of transmission
energy efficiency ratio (m1(Aa

∂
)) and idleness degree (m2(Aa

β)) of the node a are fused based on
Equation (16) as follows:

m(Aa) = (m1 ⊕m2)(Aa) =


0 , A = Φ∑

A∂∩Aβ,Φ

{
m1(Aa

∂
)m2(Aa

β)
}

1−K , A , Φ, A ⊂ Θ
(17)

where K =
∑

Φ=A∂∩Aβ
m1(Aa

∂
)m2(Aa

β), ∂ = 1, 2, 3, β = 1, 2, 3, Θ = {A1, A2, A3}, A1 is “next hop”, A2 is

“non-next hop”, and A3 is “fuzzy”.
In our paper, it should be noted that m(Aa

1) and m(Aa
2) are calculated by the Equation (17),

but m(Aa
3) is calculated as follows:

m(Aa
3) = 1−m(Aa

1) −m(Aa
2) (18)

At this point, the BPA value corresponding to each focal element of the first fusion result can be
obtained. After obtaining the fusion result m(Aa) of the first two BPA value of m1(Aa

∂
) and m2(Aa

β),
m(Aa) is equivalent to a BPA function of new evidence, which will be fused with the remaining
BPA function m3(Aa) (energy density factor) by the same DS fusion rule. The value of fusion results
m(Aa

1) f inal, m(Aa
2) f inal and m(Aa

3) f inal can also be obtained by the above fusion rules.
To more clearly describe the routing process of node i to its forward neighbor nodes, the routing

Algorithm 1 is described as follows:

Algorithm 1 The Next Hop Selection

Input: Node i, index weight wb, transmission energy efficiency ratio P(a), idleness degree Cidle(a), energy
density factor J(a), the triangle membership function model G.
Output: The next hop j
1: for a = 1 : m //m is the number of forward neighbor nodes of node i
2: j = 1, CNnext(i)← Φ
3: According to G, traverse m:
4: g(a)← P(a), g(a)← Cidle(a), g(a)← J(a) ,
5: find gmax ← max

{
g(a)

}
, gmin ← min

{
g(a)

}
,

6: Establish triangular membership function Gt(g(a))
7: Combine Gt(g(a)) and corresponding weight to establish BPA function:
8: mb(Aa

t )← G(g(a)), wb
9: Fuse the three indexes by Equations (17) and (18):
10: m(Aa

t )←m1(Aa
t ),m2(Aa

t ); m(Aa
t ) f inal ←m3(Aa

t ),m(Aa
t )

11: if m(Aa
1) > m(Aa

2)&m(Aa
1) > m(Aa

3) //criterion
12: CNnext(i)← CNnext(i) + a
13: end if
14: end for
15: j← max(m(Aa

1) f inal), a ∈ (CNnext(i))
16: Return j

The following is a fused example of any two forward neighbor nodes a1 and a2 of node i according
to Algorithm 1. In Table 1, node a1 is obviously judged as “non-next hop” under the indexes of
transmission energy efficiency ratio and energy density factor, and is judged as “fuzzy” under idleness
degree. According to DS evidence fusion rule, the fusion result is m(Aa1

2 ) f inal > m(Aa1
1 ) f inal > m(Aa1

3 ) f inal,

where m(Aa1
2 ) f inal is the largest, and thus node a1 is judged as “non-next hop”, not included in candidate
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neighbor set CNnext(i). For node a2, the fusion result satisfies the criterion and thus belongs to the
CNnext(i). By analogy, the fusion results of all forward neighbor nodes of node i can be calculated,
and then the fusion results in CNnext(i) will be sorted. The node with largest m(Aa

1) f inal in CNnext(i)
will be selected as the next hop of node i. At this point, the next hop of each node and routing path in
this round will be determined. The network performs DS-EERA as described above until the network
lifetime is reached.

Table 1. The routing decision result.

FN(i) Indexes Next Hop
t = 1

Non-Next Hop
t = 2

Fuzzy
t = 3

m1
(
Aa1

t

)
0.0025 0.9900 0.0075

a1 m2
(
Aa1

t

)
0.3775 0.2055 0.4170

m3
(
Aa1

t

)
0.0099 0.9900 0.0001

Fusion results m
(
Aa1

t

)
f inal 0.00999625 0.9900 0.00000375

m1
(
Aa2

t

)
0.9666 0.0110 0.0224

a2 m2
(
Aa2

t

)
0.8125 0.0624 0.1251

m3
(
Aa2

t

)
0.2307 0.3077 0.4616

Fusion results m
(
Aa2

t

)
f inal 0.9924 0.0055 0.0021

5. Simulation Results and Analysis

In this section, the proposed algorithm is verified by a large number of simulation experiments in
MATLAB, and compared with two multi-attribute algorithms: TOPSIS based MCRP algorithm and
fuzzy theory based FLEOR algorithm. In order to avoid the contingency of the experimental results,
all sensor nodes of different network size (i.e., number of sensor nodes) randomly distributed in the
monitoring area, and take the average of the experimental results. The specific simulation parameters
are shown in Table 2.

Table 2. Simulation parameters.

Definition Value

Simulation area (L × L) 100 × 100 m2

Network size (N) 100~300

Sink (50, 50)

Maximum communication radius (R) 30 m

Packets size 1024 bits

Buffer size 20 packets

Initial energy (E0) 0.5 J

Data generation rate 1024 bits/round

Energy consumed in electronics (Eelec) 50 nJ/bit

Amplifier energy dissipation in free space (Efs) 10 pJ/bit/m2

Amplifier energy dissipation in multipath (Emp) 0.0013 pJ/bit/m4

Energy consumed in data aggregation (EDA) 5 nJ/bit/signal

Distance threshold (dth) 87 m
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In this model, both the multipath fading and free space channel models are taken into
account [34,35]. All the simulation parameters are not constant. We can change some parameters
according to different scenarios.

5.1. Average Packet Loss Rate

The packet loss rate (PLR) can reflect the advantages and disadvantages of the network in
congestion avoidance. Figure 3 shows the comparison of the packet loss rate with the change of
network size under different algorithms. It can be seen that compared with the other two algorithms,
the packet loss rate of DS-EERA in this paper is always stable at a lower value with the change of
network size. This is because both the MCRP and the FLEOR do not consider the queue length of the
nodes when routing, and a large amount of data is concentrated in some “hot spots” areas at the same
time, resulting in the nodes exceeding their own load capacity due to too much received data. Thus a
large amount of data is discarded. Our algorithm adopts “idleness degree” as one of the attribute
indexes of decision making, and uses the entropy weight method to periodically adjust the importance
of each index according to the network operation, ensuring that the node selects the forward neighbor
node with large idleness to become the next hop. It is more likely to be able to effectively alleviate
congestion and make network traffic more balanced.
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5.2. Energy Efficiency

In WSN with limited energy, one of the key tasks is to improve energy utilization, i.e., to maximize
the network lifetime with limited energy. Energy variance (EV) can reflect the difference of residual
energy of each node. The smaller the value and the smaller the curve fluctuation, the more balanced the
energy of the network. The residual energy reflects the energy distribution of all nodes in the network
when the first node dies. The more balanced the residual energy, the greater the energy efficiency of
the network and the longer the network lifetime.

From Figure 4, we note that the volatility of the EV curve of DS-EERA is smaller than that of
the other two algorithms, and the energy distribution between nodes is more balanced. Obviously,
the network lifetime of the DS-EERA is 1027 rounds, which are 311% and 170% of the FLEOR and
MCRP respectively. This is because DS-EERA considers the “energy density factor” of the forward
neighbor nodes when routing, and avoids the data being transmitted to the energy hole region, so
that the energy of each node is evenly distributed. Meanwhile, the three EV curves increase with the
number of network rounds. When the first node dies (i.e., network lifetime), EV reaches the maximum
and then decreases to 0 with the death of the nodes in the network. At the same time, it can be seen
that from the comparison of Figure 5a–c, when the first node dies in the network, the most nodes of
energy in DS-EERA algorithm is less than 25%, and the energy of most nodes in MRCP and FLEOR
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algorithm is between 75% and 100%, indicating that the DS-EERA algorithm in this paper can make
full use of energy and has a high energy efficiency.
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Figure 5. The residual energy distribution of three algorithms when the first node dies are: (a) Residual
energy distribution of DS-EERA; (b) residual energy distribution of MCRP; (c) residual energy
distribution of FLEOR. Among them, the red nodes indicate that the residual energy percentage
is [0, 25%], the yellow nodes indicate that the residual energy is [25%, 50%], the blue nodes indicate that
the residual energy is [50%, 75%] and the green nodes indicate that the residual energy is [75%, 100%].
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In addition, from the number of death rounds in the first node of the network, the network lifetime
of the DS-EERA is 170% and 310% longer than the MCRP and FLEOR respectively, which means
that the network can maintain a longer effective working time. At the same time, when the nodes of
MCRP and FLEOR all die, DS-EERA has not yet seen the death of the first node, showing the good
performance of our algorithm.

5.3. Average Number of Hops and Average Energy Consumption

(1) Average number of hops
To some extent, the average number of hops (ANH) can qualitatively reflect the data transmission

delay in the network, that is, the smaller the average hops is, the faster the data can be transmitted to
the sink node. Figure 6 is a comparison of the average hops of the three algorithms. It can be seen that,
with the increase of the network size, the ANH curve has an upward trend, but DS-EERA remains the
lowest, this is because the “energy transmission ratio” of the algorithm in this paper considers the
shortest path as much as possible, so as to reduce the number of hops. At the same time, the “idleness
degree” index considers the time of packet queuing and processing, and the combination of the two
can effectively reduce the delay.
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(2) Average energy consumption
The average energy consumption (AEC) represents the average energy consumption of all nodes

in each data transmission round, which is used to measure the energy consumption rate of the network.
Figure 7 is a comparison of average energy consumption using different algorithms, as can be seen
from that, the DS-EERA in this paper has the lowest average energy consumption and can effectively
balance the energy utilization, so its network lifetime is also the highest (Figure 4). The AEC and EV of
MCRP and FLEOR algorithms are large, so the energy utilization is insufficient, resulting in lower
network lifetime.
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6. Conclusions

In order to improve the energy efficiency and the reliability of the whole network, this paper
innovatively applies the data fusion rules of DS evidence theory to WSN routing decision-making
and proposes an energy-efficient and reliable-routing algorithm based on weighted DS evidence
theory. For each node in the network, three attribute indexes are established: transmission energy
efficiency ratio, idleness degree and energy density factor, and the entropy weight method is adopted
to dynamically determine the weight of each index, and the combination of the above two can get the
BPA function. Then the DS evidence fusion rule is used to fuse the reliability value of the index in turn,
which can objectively make the optimal routing decision. The simulation results show that, compared
with MCRP and FLEOR algorithm, DS-EERA can effectively reduce network energy consumption,
prolong the network lifetime and also improve packets loss rate, showing a good performance in
transmission reliability.

In future work, we will focus on combining mobile charging technology and routing optimization
strategies to enhance the performance of wireless sensor networks.
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