VEWS: A Wikipedia Vandal Early Warning System

Srijan Kumar, Francesca Spezzano, V.S. Subrahmanian
University of Maryland, College Park
Wikipedia

The largest encyclopedia
• 35M articles over 290 languages
• 73K+ active editors
Vandals on Wikipedia

Charlie Sheen
From Wikipedia, the free encyclopedia

Charlie Sheen (born September 3, 1965) is half man, half cocaine.

Contents [hide]
1 Early life
2 Career
3 Political views and activities
 3.1 Charitable activities
 3.2 September 11 attacks
4 Personal life
5 Awards and honors
6 Filmography
 6.1 Films
 6.2 Short films
 6.3 Television
7 References
8 External links

Sheen in March 2009
Born
Carlos Irwin Estevez
September 3, 1965 (age 45)
New York City, New York, U.S.
Occupation
Actor
Current Tools: Detect Vandalism

- **ClueBot NG**
 Bot to detect vandalism edits

- **STiki**
 Tool available to trusted users for reverting vandalism
Current Tools: Detect Vandalism

Charlie Sheen
From Wikipedia, the free encyclopedia

Charlie Sheen (born September 3, 1965) is half man, half cocaine.

Contents [hide]
1 Early life
2 Career
3 Political views and activities
 3.1 Charitable activities
 3.2 September 11 attacks
4 Personal life
5 Awards and honors
6 Filmography
 6.1 Films
 6.2 Short films
 6.3 Television
7 References
8 External links

Charlie Sheen
Sheen in March 2009

Born
Carlos Irwin Estevez
September 3, 1965 (age 45)
New York City, New York, U.S.

Occupation
Actor
DETECT VANDALS BEFORE THEY ARE DETECTED BY OTHER WIKIPEDIA USERS/BOTS
Our Goal

DETECT VANDALS BEFORE THEY ARE DETECTED BY OTHER WIKIPEDIA USERS/BOTS

VEWS
USES EDITING BEHAVIOR DIFFERENCE TO CATCH VANDALS
Outline

- UMDWikipedia Dataset
- User Editing Behavior: Similarities and Differences
- VEWS: Vandal Early Warning System
- Efficiency of VEWS
- Comparison with State of the Art Tools
UMDWikipedia Dataset

- **1 M users** who registered between Jan 2013 – July 2014:
 - 17k vandals - All users blocked by administrators for vandalism
 - 17k benign users

- **770k edits**: 160k vandals, 610k benign users
 edit(ID, user, page, timestamp, reverted)

- Information about each page:
 page(ID, title, article/meta, categories)
 page_distance(p1, p2)

- STiki and ClueBot NG data

The dataset is available at http://cs.umd.edu/~vs/vews/
Outline

- UMDWikipedia Dataset
- User Editing Behavior: Similarities and Differences
- VEWS: Vandal Early Warning System
- Efficiency of VEWS
- Comparison with State of the Art Tools
Editing Behavior: Similarities

- Wikipedia users are more likely to re-edit a page than edit a new page.
- Wikipedia users re-edit the same page quickly.

- Both vandals and benign users exhibit similar navigation patterns:
 - Link-wise: Close but low semantic similarity
 - Category-wise: High semantic similarity, but not close
Editing Behavior: Differences

- Benign users edit far more meta-pages than vandals (even in the first edit)
- Vandals make faster edits than benign users
- Vandals spend less time editing a new page
Outline

• UMDWikipedia Dataset
• User Editing Behavior: Similarities and Differences
• VEWS: Vandal Early Warning System
• Efficiency of VEWS
• Comparison with State of the Art Tools
VEWS Features

VEWS

Behavioral Features
Features inspired from the editing behavior analysis

State Transition Features
Patterns in sequence of edits made by users
Behavioral Features

Use consecutive edits made by user

Requirement:
- Unified representation for consecutive edits

User U
Behavioral Features

Reduces any pair of edits \((U, P_1, P_2)\) into a feature vector:

- Is \(P_2\) an article page?
- Time difference: very fast/fast/slow
- Is \(P_2\) U's First edit?
- \(P_1 = P_2\)?
- First time edit on \(P_2\)?
- Hops from \(P_1\) to \(P_2\):
 \(<= 3, > 3\) or null
- Number of common categories

User U: \(f(U, P_1, P_2)\)
Behavioral Features

User U: \(f(U, P_1, P_2) \) \(f(U, P_2, P_1) \) \(f(U, P_1, P_3) \)
Behavioral Features

User U: \(f(U, P_1, P_2) \) \(f(U, P_2, P_1) \) \(f(U, P_1, P_3) \)

Frequent Pattern Mining on vandal and benign users
11 features with large difference
Behavioral Features

- **fm**: If the first edit is on a meta page, then user is more likely to be benign.
- **ntus**: Benign users are likely to take longer to edit a new page than a vandal.
State Transition Features

User U: $f(U, P1, P2)$ $f(U, P2, P1)$ $f(U, P1, P3)$

Use the entire sequence of edits of the user
- But each user can have variable number of edits!
State Transition Features

User U: $f(U, P_1, P_2)$ $f(U, P_2, P_1)$ $f(U, P_1, P_3)$

60 x 60
State Transition Features

User U: \(f(U, P_1, P_2) \) \(f(U, P_2, P_1) \) \(f(U, P_1, P_3) \)

Autoencoder 400 x 1 vector

\(60 \times 60 \)
Outline

- UMDWikipedia Dataset
- User Editing Behavior: Similarities and Differences
- VEWS: Vandal Early Warning System
- Efficiency of VEWS
- Comparison with State of the Art Tools
Efficiency of VEWS

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>TPR</th>
<th>TNR</th>
<th>FPR</th>
<th>FNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral</td>
<td>86.5%</td>
<td>0.85</td>
<td>0.89</td>
<td>0.11</td>
<td>0.15</td>
</tr>
<tr>
<td>State Transition</td>
<td>87.39%</td>
<td>0.88</td>
<td>0.90</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>VEWS</td>
<td>87.82%</td>
<td>0.87</td>
<td>0.92</td>
<td>0.08</td>
<td>0.13</td>
</tr>
</tbody>
</table>

- 10 fold cross validation using **Support Vector Machine**
- **VEWS** has the highest accuracy.
Temporal Advantage

Using recent data improves accuracy!

Training using previous 3 months of data
Temporal Advantage

More temporal data, more accuracy!

Variation of accuracy with number of months of data

Average accuracy

n: number of previous months of data used for training

VEWS
Behavioral
State Transition

Previous n months of data for training and testing on July 2014
Early warning system

- Only first few edits needed to accurately identify the vandal
- With only the first edit, VEWS has 78% accuracy
- In 43.68% cases, vandal is identified before its first reversion.
Outline

- UMDWikipedia Dataset
- User Editing Behavior: Similarities and Differences
- VEWS: Vandal Early Warning System
- Efficiency of VEWS
- Comparison with State of the Art Tools
State of the Art tools

ClueBot NG

STiki

Detect vandalism, not vandals!
Comparison with ClueBot NG

- ClueBot NG has accuracy of 70%
- When both VEWS and ClueBot NG detect the vandal, VEWS does it 2.39 edits earlier.

Rule:
If \(v \) edits of a user's first \(k \) edits are caught by ClueBot NG, then the user is a vandal.
Comparison with STiki

- STiki has an accuracy of 60%
- VEWS consistently finds vandals much more effectively than STiki’s user reputation score and vandalism probability score.

Rule:
If the STiki user reputation score after the k^{th} edit is above the threshold, then the user is a vandal.
State of the Art tools

ClueBot NG and STiki: Revert edit based on content

- **ClueBot NG**
- **STiki**
 - Natural Language Processing features

- **VEWS**
 - Editing Behavior features
Combination is the best!

- Adding features from ClueBot NG and STiki improves VEWS!
- VEWS + ClueBot NG: A fully automated system with 88.6% accuracy.
VEWS:
- Is a fully automated vandal early warning system
- Detects vandals by exploiting editing behavior differences
- Detects vandals within a few edits with high accuracy
- Improves by combining with state-of-the-art tools
Related Work

• Vandalism detection algorithms and PAN-WVC-2010 dataset:
 [Potthast et al. 2008], [Mola-Velasco 2010], [West et al. 2010], [Adler et al. 2010], [Adler et al. 2011], [Sumbana et al. 2012], [Ferschke et al. 2013]

• Automated/Semi-automated tools for vandalism detection:
 ClueBot NG, Stiki [West et al. 2010], WikiTrust (now defunct) [Adler et al. 2010]

• User navigation behavior:
 [Catledge et al. 1995], [Cockburn et al. 2001], [Adar et al. 2008], [West et al. 2012]
Thank you!

UMDWiki dataset is available at
http://cs.umd.edu/~vs/vews

Please drop by our poster!

Questions?