Transmit Power Optimization for Multiantenna Decode-and-Forward Relays with Loopback Self-Interference from Full-Duplex Operation

Taneli Riihonen, Stefan Werner, and Risto Wichman
Aalto University School of Electrical Engineering

Session TP1a “Resource Allocation in Multi-Antenna Systems,” Nov. 8, 2011
45th Asilomar Conference on Signals, Systems and Computers
The information theory of full-duplex MIMO relaying has been investigated extensively (2005–2007)

- Implementation aspects are out of the scope of those studies
 - The limitations of transceiver electronics?
 - How to isolate the two hops?
 - Relay with a single antenna array?
- In this work: A step to more practical direction

First prototypes of full-duplex MIMO repeaters (2009–2010)
- But the background theory still needs further development
The existence of self-interference was recognized only recently
 - Ahead of their time: Bliss, Parker, and Margetts (Aug. 2007)
 - The relay must be equipped with separated Rx and Tx arrays

Interference mitigation schemes for full-duplex MIMO relays
 - Our contributions: [ACSSC’09], [ACSSC’10], [CISS’11], [IEEE TSP 12/2011]

Achievable transmission rates of full-duplex amplify-and-forward MIMO relay links with self-interference
 - In this work: Decode-and-forward relaying
Our earlier studies on full-duplex SISO relays
 ▶ Transmit power adaptation (i.e., gain control in AF relaying) taking into account the self-interference
 - See [IEEE TWC 6/2009], [SPAWC’09], [PIMRC’10], [IEEE TWC 9/2011]
 ▶ Comparison of full-duplex and half-duplex relaying in the presence of (residual) self-interference
 - See [WCNC’09], [SPAWC’09], [PIMRC’10], [IEEE TWC 9/2011]

In this work: The above aspects generalized for the MIMO case
Two-hop transmission through a full-duplex MIMO relay

- The source (S) and the relay (R) transmit simultaneously

\[x_S \in \mathbb{C}^{N_S \times 1} \quad \text{and} \quad x_R \in \mathbb{C}^{N_{tx} \times 1} \]

- and the relay and the destination (D) receive

\[y_R = H_{SR} x_S + H_{RR} x_R + n_R \in \mathbb{C}^{N_{tx} \times 1} \]
\[y_D = H_{RD} x_R + H_{SD} x_S + n_D \in \mathbb{C}^{N_D \times 1} \]

- \(H_{RR} \) represents the residual channel if mitigation is used
- The direct link is assumed to be blocked, i.e., \(H_{SD} \approx 0 \)
The Reference System: Half-Duplex Relay Link

- Two-hop transmission through a half-duplex MIMO relay
 - 1st time slot (duration τ_S): The source transmits $x_S \in \mathbb{C}^{N_S \times 1}$ and the relay receives
 \[y_R = H_{SR} x_S + n_R \in \mathbb{C}^{N_{rx} \times 1} \]
 - 2nd time slot (duration τ_R): The relay transmits $x_R \in \mathbb{C}^{N_{tx} \times 1}$ and the destination receives
 \[y_D = H_{RD} x_R + n_D \in \mathbb{C}^{N_D \times 1} \]
- No self-interference ($H_{RR} = 0$) at the cost of using two time slots
Regenerative (DF) MIMO Relaying Protocol

- Pre-whitening: \(W = (H_{RR}R_xR_x^H + I)^{-\frac{1}{2}} \) and \(\tilde{H}_{SR} = WH_{SR} \)
- Spatial-division multiplexing transforms the signal model to
 \[\tilde{y}_R = \tilde{\Sigma}_{SR}\tilde{x}_S + \tilde{n}_R \]
 \[\tilde{y}_D = \Sigma_{RD}\tilde{x}_R + \tilde{n}_D \]

 ▶ SVDs: \(\tilde{H}_{SR} = \tilde{U}_{SR}\tilde{\Sigma}_{SR}\tilde{V}_{SR}^H \) and \(H_{RD} = U_{RD}\Sigma_{RD}V_{RD}^H \)

- The half-duplex link operates in the same way but with \(H_{RR} = 0 \)
Spatial-division multiplexing diagonalizes \tilde{H}_{SR} and H_{RD}, but not the self-interference channel: $\tilde{H}_{RR} = \tilde{U}^H_{SR} WH_{RR} V_{RD}$

- Transmission of independent spatial streams with
 \[
 P_S = \mathcal{E}\{\tilde{x}_S\tilde{x}^H_S\} = \text{diag} \{p_S[1], \ldots, p_S[N_S]\} \\
 P_R = \mathcal{E}\{\tilde{x}_R\tilde{x}^H_R\} = \text{diag} \{p_R[1], \ldots, p_R[N_{tx}]\}
 \]

- DF: The relay decodes \tilde{y}_R and re-encodes the data into \tilde{x}_R

- Separate transmit power constraints:
 \[
 p_S = \text{tr}\{P_S\} = \sum_{n=1}^{N_S} p_S[n] \leq 1, \quad p_R = \text{tr}\{P_R\} = \sum_{n=1}^{N_{tx}} p_R[n] \leq 1
 \]
Transmission Rates
The rates of the two hops are given by

\[R_{SR} = \log_2 \det \{ \mathbf{I} + \tilde{\Sigma}_{SR} \mathbf{P}_S \tilde{\Sigma}_{SR}^H \} = \min\{N_S, N_{rx}\} \sum_{n=1}^{\min\{N_S, N_{rx}\}} \log_2 \left(1 + p_S[n] \tilde{\sigma}_{SR}^2[n] \right) \]

\[R_{RD} = \log_2 \det \{ \mathbf{I} + \Sigma_{RD} \mathbf{P}_R \Sigma_{RD}^H \} = \min\{N_{tx}, N_D\} \sum_{n=1}^{\min\{N_{tx}, N_D\}} \log_2 \left(1 + p_R[n] \sigma_{RD}^2[n] \right) \]

The end-to-end rate is given by

\[R_{FD} = \min\{R_{SR}, R_{RD}\} \]

since data should not accumulate in the relay
• By setting $H_{RR} = 0$, the rates of the two hops are given by R_{SR} and R_{RD} as shown in the previous slide.

• The end-to-end rate is given by

$$R_{HD} = \min\{\tau_S R_{SR}, \tau_R R_{RD}\}$$

- The typical reference case is $\tau_S = \tau_R = \frac{1}{2}$
- Optimal time shares are $\tau_S = R_{RD}/(R_{SR} + R_{RD})$, $\tau_R = 1 - \tau_S$:

$$R_{HD} = \max_{\tau_S + \tau_R \leq 1} \min\{\tau_S R_{SR}, \tau_R R_{RD}\} = \frac{R_{SR} R_{RD}}{R_{SR} + R_{RD}}$$
Separately Optimal Transmit Powers

- The reference case: Two-step approach for power allocation
 1. Maximize the second-hop rate:

\[
C_{RD} = \max_{P_R} R_{RD} = \min\{N_{tx}, N_D\} \sum_{n=1} \max\left\{0, \log_2 \left(\mu_R \sigma^2_{RD}[n] \right) \right\}
\]

2. And then, given \(P_R \), maximize the first-hop rate:

\[
C_{SR} = \max_{P_S} R_{SR} = \min\{N_S, N_{rx}\} \sum_{n=1} \max\left\{0, \log_2 \left(\mu_S \tilde{\sigma}^2_{SR}[n] \right) \right\}
\]

Water-filling: \(p_S[n] = \max\{0, \mu_S - \frac{1}{\sigma^2_{SR}[n]}\} \), \(p_R[n] = \max\{0, \mu_R - \frac{1}{\sigma^2_{RD}[n]}\} \)

- This approach is optimal for half-duplex relaying:

\[
R_{HD} = \frac{1}{2} \min\{C_{SR}, C_{RD}\}, \quad C_{HD} = \frac{C_{SR}C_{RD}}{C_{SR} + C_{RD}}
\]
Jointly Optimal Transmit Powers

- Separate power adaptation is suboptimal for full duplex relaying, because the hops are coupled:
 \[R_{FD} = \min\{C_{SR}, C_{RD}\} \]

- Single-step approach for jointly optimal power allocation:
 \[C_{FD} = \max_{P_S, P_R} \min\{R_{SR}, R_{RD}\} = \max_{P_R} \min\{C_{SR}, R_{RD}\} \]
 - Only numerical solution available except for the SISO case
 - The solution lies in the subspace for which \(C_{SR} = R_{RD} \)

- Two-fold benefit from jointly optimal power allocation
 1. Interference is directed to the least harmful spatial dimensions
 2. End-to-end rate improvement by decreasing relay’s Tx power
Example System Setup

- Let us illustrate next power allocation in the simplest MIMO case, i.e., $N_S = N_{rx} = N_{tx} = N_D = 2$
- and choose randomized example channels as

$$
H_{SR} = \sqrt{\gamma_{SR}} \left(\begin{bmatrix} 0.5036 & 0.4348 \\ -0.5794 & 0.8751 \end{bmatrix} + j \begin{bmatrix} 0.7546 & 0.8125 \\ 1.1061 & 0.0528 \end{bmatrix} \right)
$$

$$
H_{RR} = \sqrt{\gamma_{RR}} \left(\begin{bmatrix} 0.5387 & 0.3153 \\ 0.7987 & -0.7633 \end{bmatrix} + j \begin{bmatrix} -1.3410 & 0.2403 \\ -0.6481 & 0.3370 \end{bmatrix} \right)
$$

$$
H_{RD} = \sqrt{\gamma_{RD}} \left(\begin{bmatrix} 0.0281 & 0.7647 \\ -0.2892 & -0.5713 \end{bmatrix} + j \begin{bmatrix} 0.4119 & -0.1978 \\ -1.2992 & 1.0524 \end{bmatrix} \right)
$$

where γ_{SR}, γ_{RR}, and γ_{RD} represent the channel SNRs

- Next slides: $\gamma_{SR} = 15$dB, $\gamma_{RR} = 5$dB, and $\gamma_{RD} = 20$dB
Effect of Self-Interference at First Hop

(a) R_{SR} when $p_{R}[1] = p_{R}[2] = 0$

(b) R_{SR} when $p_{R}[1] = p_{R}[2] = \frac{1}{2}$

- The rate of the first hop drops significantly when the relay transmits.
- The source should use maximum transmit power: $\sum_{n=1}^{N_S} p_S[n] = 1$
First Hop with Self-Interference vs. Second Hop

- Increasing relay transmit power benefits the second hop but harms the first hop. Equilibrium is optimal: $C_{SR} = R_{RD}$
Benefit of Transmit Power Optimization

(a) Full-duplex relay: R_{FD}

(b) Half-duplex relay

- Equal time shares:
 $R_{HD} = 4.8$ bit/s/Hz

- Optimal time shares:
 $C_{HD} = 5.0$ bit/s/Hz

- Full transmit power is used:
 $p_{R[1]} + p_{R[2]} = 1$

- Transmit power adaptation increases the transmission rate by 25% while decreasing the total relay transmit power by 56%
Transmission Rates vs. Self-Interference Level

- On the right: Varying γ_{RR} when
 $\gamma_{SR} = 15\,\text{dB}$
 $\gamma_{RD} = 20\,\text{dB}$

- Next slides: Varying γ_{SR} and γ_{RD} when
 $\gamma_{RR} = 10\,\text{dB}$

- Spatial-division duplexing (SDD) vs. time-division duplexing (TDD)
 ▶ If transmit power adaptation is used, full-duplex relay can achieve non-zero rate with any level of self-interference
Power Optimization vs. Time Optimization

(a) C_{FD}/R_{FD}

- FD: Up to *five* times larger rate using optimal transmit powers

(b) C_{HD}/R_{HD}

- HD: Up to *two* times larger rate using optimal time shares
Full-Duplex Relaying vs. Half-Duplex Relaying (1)

- Prefer FD when $\gamma_{SR} \gg \gamma_{RD}$
- Prefer HD when $\gamma_{SR} \ll \gamma_{RD}$

FD is better or equal to HD within the whole SNR range
Full-Duplex Relaying vs. Half-Duplex Relaying (2)

(a) R_{FD}/C_{HD}

- FD: Up to 60% higher rate
- HD: Up to 440% higher rate

(b) C_{FD}/C_{HD}

- Up to 60% (FD) or 40% (HD) higher rate with mode selection
Conclusion
Conclusion

- Full-duplex MIMO relaying can offer significantly improved spectral efficiency w.r.t. half-duplex MIMO relaying
- Main technical problem: self-interference in the relay
 - Separated Rx and Tx antenna arrays for natural isolation
 - Mitigation schemes for additional isolation
- Optimal transmit power allocation for alleviating the effect of potential residual interference
 - Spatial-division duplexing instead of time-division half-duplex
 - Interference is directed to the least harmful dimensions
 - Simultaneous power savings and rate improvement
- Full-duplex vs. half-duplex relaying in an example case
 - Fair comparison: Half-duplex time slots can be optimized

• T. Riihonen, S. Werner, and R. Wichman, “Hybrid full-duplex/half-duplex relaying with transmit power adaptation,” *IEEE Transactions on Wireless Communications*, vol. 10, no. 9, pp. 3074–3085, September 2011.
References (MIMO)
