The Ramsey numbers for stripes and complete graphs 1

P. J. Lorimer and W. Solomon

University of Auckland, Auckland, New Zealand

Received 12 December 1988
Revised 5 May 1989

Abstract

The Ramsey numbers \(r(mK_p, n_1P_2, \ldots, n_dP_2) \), \(p > 2 \), are calculated for \(d < p \) and \(n_j \geq m \) for each \(j \).

1. Introduction

This paper continues the programme of calculating the Ramsey numbers \(r(m_1K_{p_1}, \ldots, m_cK_{p_c}) \) outlined at the end of [3] by proving the following.

Theorem. If \(p > 2 \), \(d < p \) and \(n_j \geq m \) for \(j = 1, \ldots, d \) then

\[
r(mK_p, n_1P_2, \ldots, n_dP_2) = mp + \sum_{j=1}^{d} (2n_j - 1 - m).
\]

Here, if \(G_1, \ldots, G_c \) are graphs without loops or multiple edges, the Ramsey number \(r(G_1, \ldots, G_c) \) is the smallest integer such that if the edges of a complete graph \(K_n \), with \(n \geq r(G_1, \ldots, G_c) \), are painted arbitrarily with \(c \) colours the \(i \)th coloured subgraph contains \(G_i \) as a subgraph for at least one \(i \). Also, \(mK_p \) stands for \(m \) disjoint copies of the complete graph on \(p \) vertices and \(n_jP_2 \) stands for \(n_j \) disjoint copies of the path (or complete graph) with two vertices.

In previous papers [1-3] \(r(n_1P_2, \ldots, n_dP_2) \) and \(r(K_p, n_1P_2, \ldots, n_dP_2) \), \(p > 2 \), have been calculated and bounds have been established for \(r(m_1K_{p_1}, \ldots, m_cK_{p_c}) \) with \(p_j > 2 \) for each \(j = 1, \ldots, c \).
In Section 2 the number on the right in the theorem is established as a lower bound by constructing a counterexample of order one less. In Section 3 it is established as an upper bound.

Throughout we will be dealing with $1 + d$ colours. The one relevant to the mK_p will be called red and the others will be called colour 1 to colour d.

2. The lower bound

Suppose $d < p$ and $n_j \geq m$ for $j = 1, \ldots, d$. For each $j = 1, \ldots, d$ let A_j be a complete graph of order $2n_j - 1$ with all edges of colour j and let A_{d+1} be a complete graph of order $m(p - d) - 1$ with all edges coloured red. Form the disjoint union of A_1, \ldots, A_{d+1} and colour all edges between two of these graphs red. Then the new graph Σ has no red mK_p and no n_jP_2 of colour j for any j. As Σ has order

$$m(p - d) - 1 + \sum_{j=1}^{d} (2n_j - 1),$$

the number

$$m(p - d) + \sum_{j=1}^{d} (2n_j - 1),$$

which is equal to

$$mp + \sum_{j=1}^{d} (2n_j - 1 - m)$$

is a lower bound for $r(mK_p, n_1P_2, \ldots, n_dP_2)$.

3. The upper bound

The more substantial part of the theorem will now be proved: if $d < p$ and $n_j \geq m$ for each $j = 1, \ldots$, then

$$r(mK_p, n_1P_2, \ldots, n_dP_2) \leq mp + \sum_{j=1}^{d} (2n_j - 1 - m).$$

The proof is by induction on m and $\sum_{j=1}^{d} n_j$. The case $m = 1$ was proved in [3] so we take $m > 1$.

Suppose that Σ is a counterexample to the inequality for the minimum value of m possible and that, among the counterexamples for this value of m, Σ is a counterexample with the minimum value of $\sum_{j=1}^{d} n_j$. Then Σ has order

$$mp + \sum_{j=1}^{d} (2n_j - 1 - m),$$

has no red mK_p and has no n_jP_2 of colour j, $1 \leq j \leq d$.
Suppose that $n_i > m$ for some i. Put $m_i = n_i - 1$ and $m_j = n_j$ for $j \neq i$. Then the order of Σ is

$$2 + mp + \sum_{j=1}^{d} (2m_j - 1 - m).$$

As $\sum_{j=1}^{d} m_j < \sum_{j=1}^{d} n_j$ it follows from the minimal property of Σ that it has either a red mK_p or an m_iP_2 of colour j for some j: the only possibility is an m_iP_2 of colour i. As $m_i > m > 2$, Σ has at least one edge of colour i. Remove an edge e of this colour from Σ to get a new graph Σ_1 of order

$$mp + \sum_{j=1}^{d} (2m_j - 1 - m).$$

The argument just used now shows that Σ_1 has an m_iP_2 of colour i. With e this forms an n_iP_2 of colour i in Σ, contrary to assumption. Thus $n_i = m$ for each value of i. As the order of Σ is greater than $(m - 1)p + (m - 1)d$ and $m > 1$, the minimal property of Σ implies that it has at least one red K_p as a subgraph.

In summary, for a counterexample Σ with minimum value of m and then of $\sum_{j=1}^{d} n_j$, we have shown that:

(a) $n_i = m$ for each value of i,

(b) Σ has order $mp + (m - 1)d$ but has no red mK_p nor any mP_2 of another colour,

(c) Σ has at least one red K_p as a subgraph.

The proof continues by analyzing subgraphs of Σ which have order $p + d$ and contain a red K_p. A subgraph like this which has edges of the maximum number of colours possible among the subgraphs of Σ will be called a C-subgraph. A description of some of the properties of C-subgraphs is now given.

Lemma 1. Let Λ be a C-subgraph of Σ. Then

(a) the edges of Λ are coloured red and exactly $d - 1$ other colours, say $2, \ldots, d$;

(b) if A is a red K_p of Λ then

(i) just one edge of $\Lambda - A$ is not red, say colour 2, and all edges of Λ having colour 2 have a vertex in common with this edge;

(ii) for $i = 3, \ldots, d$, all the edges of Λ of colour i are incident with a single vertex of $\Lambda - A$;

(c) $\Sigma - \Lambda$ has a red $(m - 1)P_2$ of colour 1.

Proof. Let Λ be a C-subgraph of Σ and suppose that the edges of Λ are coloured by red and d other colours.

Removing Λ from Σ gives a graph $\Sigma - \Lambda$ of order $(m - 1)p + (m - 2)d$. By the minimal property of m, $\Sigma - \Lambda$ has either a red $(m - 1)K_p$ or an $(m - 1)P_2$ of some other colour. In the former case, adding the red K_p in Λ gives a red mK_p in Σ, which is not possible. Hence the latter case is true: by renumbering the colours if
necessary, it may be assumed that \(\Sigma - A \) has an \((m - 1)P_2\) of colour 1. Then \(A \) can have no edge of colour 1, so that \(d_1 < d_2 \).

Suppose, first, that \(d = 1 \). Then \(d_1 = 0 \) so that every subgraph of order \(p + 1 \) which contains a red \(K_p \) has only red edges. As \(\Sigma \) has order \(mp + (m - 1) \) and has no red \(mK_p \) it has at least one edge, say \(uv \), of colour 1. Let \(A \) be a red \(K_p \) in \(\Sigma \). As \(d_1 = 0 \), neither \(u \) nor \(v \) are vertices of \(A \) and, by the above, both \(A \cup \{u\} \) and \(A \cup \{v\} \) are red \(K_{p+1} \). Let \(a \) be a vertex of \(A \) and let \(\Lambda = (A \setminus \{a\}) \cup \{u, v\} \). Then \(\Lambda \) has order \(p + 1 \), has \((A \setminus \{a\}) \cup \{u\} \) as a red \(K_p \) and has an edge \(uv \) of colour 1. This contradicts the fact that \(d_1 = 0 \). Hence \(d > 1 \).

The argument in the next paragraph will be used again in this section.

Let \(u_1, v_1 \) be vertices of \(\Sigma - A \) for which the edge \(u_1v_1 \) is of colour 1 and let \(A \) be a red \(K_p \) in \(\Sigma \). Let \(u, v \) be any two vertices of \(\Lambda - A \). Let \(\Lambda_1 \) be the subgraph formed from \(\Lambda \) by replacing the vertices \(u, v \) by \(u_1, v_1 \):

\[
\Lambda_1 = (\Lambda \setminus \{u, v\}) \cup \{u_1, v_1\}.
\]

This subgraph has order \(p + d \), has \(A \) as a subgraph which is a red \(K_p \) and has an edge \(u_1v_1 \) of a colour that \(\Lambda \) does not have. As \(\Lambda \) is a \(C \)-subgraph, it must have edges of a colour that \(\Lambda_1 \) does not have, and they must all have \(u \) or \(v \) as a vertex. Hence, for all choices of \(u, v \) in \(\Lambda - A \), there is a colour which colours some edge of \(\Lambda \) and all edges of this colour in \(\Lambda \) are incident with either \(u \) or \(v \).

As \(\Lambda - A \) has \(d \) vertices and there are fewer than \(d \) colours available, it follows from the proposition in the appendix that one colour, say 2, has edges incident with only two vertices of \(\Lambda - A \) and that if \(3 \leq j \leq d \) then colour \(j \) is used in \(\Lambda \) and colours edges incident with just one vertex of \(\Lambda - A \).

An easy consequence of the preceding paragraph is that every edge of \(\Lambda - A \) except one is red.

This proves Lemma 1. \(\square \)

Lemma 1 describes properties of all \(C \)-subgraphs of \(\Lambda \). The next lemma concentrates on a property that at least one of them must have.

Lemma 2. \(\Sigma \) has a \(C \)-subgraph having one edge of \(d - 1 \) of the colours 1, \ldots, \(d \) and every other edge coloured red.

Proof. Begin with any \(C \)-subgraph \(\Lambda \) of \(\Sigma \) and suppose that its edges are red and colours 2, \ldots, \(d \). Following Lemma 1, suppose that \(\Lambda \) is a red \(K_p \) of \(\Lambda \), \(a_2b_2 \) is an edge of \(\Lambda - A \) of colour 2, and that, for each \(i = 3, \ldots, d \), the vertex \(a_i \) of \(\Lambda - A \) is incident with each edge of \(\Lambda \) having colour \(i \).

The proof of the Lemma is in two parts, depending on whether there is an edge of colour 1 joining \(A \) to \(\Sigma - A \).

(1) Suppose that \(e \) is an edge of colour 1 joining \(A \) to \(\Sigma - A \). By Lemma 1, \(\Sigma - A \) has an \((m - 1)P_2\) of colour 1. As \(\Sigma \) has no \(mP_2 \) of colour 1, \(e \) must have a vertex, \(u_1 \) say, incident with an edge \(u_1v_1 \) of colour 1 in \(\Sigma - A \). Consider the
subgraph
\[\Lambda_2 = (\Lambda - \{a_2, b_2\}) \cup \{u_1, v_1\}. \]

It has a subgraph as a red \(K_p \) and has edges of colours 1, 3, \ldots, \(d \). As it has order \(p + d \) it is a \(C \)-subgraph and, by Lemma 2, every edge of \(\Lambda_2 - A \) except \(u_1v_1 \) is red. Thus, the other end of \(e \) cannot be a vertex of \(\Lambda_2 - A \) and it must be \(a_2, b_2 \) or a vertex of \(A \). It will next be shown, in each of these cases, that \(A \) has exactly one edge of colour 2, namely \(a_2b_2 \).

Suppose \(e = u_i c \) where \(c \) is a vertex of \(A \). Let \(\Lambda_3 = (\Lambda - \{a_2\}) \cup \{u_i\} \). Then \(\Lambda_3 \) has order \(p + d \), has \(A \) as a red \(K_p \) and has edges coloured 1, 3, \ldots, \(d \). Thus, by Lemma 1, it has no edges of colour 2 and, in particular, no edge joining \(b_2 \) to \(\Lambda - \{a_2\} \) has colour 2. The same argument with \(b_2 \) in place of \(u_i \) shows that there is no edge of colour 2 joining \(a_2 \) to \(\Lambda - \{b_2\} \). Thus \(a_2b_2 \) is the only edge of colour 2 in \(\Lambda \).

Suppose \(e = u_1a_2 \) and let \(\Lambda_4 = (\Lambda - \{b_2\}) \cup \{u_1\} \). Then \(\Lambda_4 \) has order \(p + d \), has \(A \) as a red \(K_p \) and has edges coloured 1, 3, \ldots, \(d \). Thus it has no edges of colour 2, which implies that \(a_2 \) is not joined to \(A \) by an edge of colour 2. Suppose that \(b_2 \) is joined to a vertex \(c \) of \(A \) by an edge of colour 2. Put \(B = (\Lambda - \{c\}) \cup \{a_2\} \). Then \(B \) is a red \(K_p \) of \(\Lambda \) and \(\Lambda - B \) has two vertices \(b_2 \) and \(c \) incident with edges of colour 2 in \(\Lambda \). Moreover, the edge \(u_1a_2 \) joins \(\Sigma - \Lambda \) and \(\Lambda \) by an edge of colour 1 having the vertex \(a_2 \) in \(B \). Hence, by the result in the preceding paragraph, \(\Lambda \) has just one edge of colour 2, namely \(b_2c \). This contradicts the fact that some edge of colour 2 in \(\Lambda \) has \(a_2 \) as a vertex. Thus \(b_2 \) is joined to no vertex of \(A \) by an edge of colour 2 in \(\Lambda \) and \(a_2b_2 \) is the only edge of colour 2 in \(\Lambda \).

Hence \(a_2 \) and \(b_2 \) are joined to \(A \) only by red edges and both \(A \cup \{a_2\} \) and \(A \cup \{b_2\} \) are red \(K_{p+1} \).

Consider one of the other colours, 3, \ldots, \(d \), say \(i \). There is an edge \(a_ic \) of colour \(i \) with \(c \) in \(A \). Put \(B = (\Lambda - \{c\}) \cup \{a_2\} \). Then \(B \) is a red \(K_p \) and \(\Lambda - B \) has two vertices \(a_i \) and \(c \), incident with edges of colour \(i \). Hence all the above is true with \(B \) in place of \(\Lambda \) and \(i \) in place of 2. In particular, \(\Lambda \) has just one edge of colour \(i \).

It has now been established that if there is an edge of colour 1 joining \(\Lambda \) to \(\Sigma - \Lambda \) then \(\Lambda \) has exactly one edge of each colour 2, \ldots, \(d \).

(2) Suppose there is no edge of colour 1 joining \(\Lambda \) to \(\Sigma - \Lambda \) and that \(\Lambda \) has more than one edge of one of the colours 2, \ldots, \(d \).

Suppose that \(\Lambda \) has more than one edge of colour 2 and consider
\[\Lambda_5 = (\Lambda - \{a_i, b_i\}) \cup \{u_1, v_1\}. \]

This is a \(C \)-subgraph having \(A \) as a red \(K_p \), edges of colours 1, 3, \ldots, \(d \) and there is an edge of colour 2 joining \(\Lambda_5 \) to \(\Sigma - \Lambda_5 \). Thus, by (1) just proved, with \(\Lambda_5 \) in place of \(\Lambda \) and colour 2 in place of colour 1, \(\Lambda_5 \) has just one edge of each colour 1, 3, \ldots, \(d \). Thus \(\Lambda_5 \) satisfies the requirements of Lemma 2.
Alternatively, \(\Lambda \) has just one edge of colour 2, namely \(a,b_2 \), and has more than one edge of some colour \(i > 2 \). Suppose that \(a,c \) has colour \(i \) where \(c \) is in \(A \). Put \(B = (A - \{ c \}) \cup \{ a_2 \} \). Then \(B \) is a red \(K_p \) in \(\Lambda \) and \(\Lambda - B \) has an edge \(a,c \) of colour \(i \). The argument in the previous paragraph, with \(B \) in place of \(A \) and colour \(i \) in place of colour 2, now shows the existence of a \(C \)-subgraph \(\Lambda_0 \) satisfying the requirements of Lemma 2.

This proves Lemma 2. \(\square \)

The final contradiction will now be established. By Lemma 2, \(\Sigma \) has a \(C \)-subgraph which contains exactly one edge of \(d-1 \) of the colours 1, \ldots, \(d \).

After renaming, if necessary, call the subgraph \(\Lambda \) and the colours 2, \ldots, \(d \).

Moreover, \(\Lambda \) has a red subgraph \(A \) and the vertices of \(\Lambda - A \) can be labelled \(b_2, a_2, \ldots, a_d \) in such a way that \(a_2b_2 \) is the edge of colour 2, and for \(i = 3, \ldots, d \) the edge of colour \(i \) joins \(a_i \) to a vertex \(b_i \) of \(A \). (It has not been shown that \(b_3, \ldots, b_d \) are all different.) Let \(\Gamma \) be the subgraph of \(\Lambda \) having \(a_2, \ldots, a_d, b_2, \ldots, b_d \) as vertices. Then \(\Lambda - \Gamma \) is a complete red graph of order at least \(p + d - 2(d - 1) = p - d + 2 \), the vertices of which are joined to other vertices of \(\Lambda \) only by red edges. The vertices \(a_2, \ldots, a_d \) form a red \(K_{d-1} \). Join them to \(p - d + 2 \) of the vertices of \(\Lambda - \Gamma \) to form a red \(K_{p+1} \), call it \(D \).

Let \(E \) be a subgraph of order \(p \) of \(D \) having \(a_2, \ldots, a_d \) among its vertices. Then \(\Lambda \) is a \(C \)-subgraph of \(\Sigma \) having \(E \) as a red \(K_p \). Hence by Lemma 1, each vertex of \(\Lambda - E \) is incident with an edge of a colour not red. As this is not true of the vertex in \(D - E \), a contradiction is reached which establishes the upper bound for \(r(mK_p, n_1P_2, \ldots, n_dP_2) \).

Appendix

Proposition. Suppose a graph \(G \) of order \(d \geq 2 \) has some or all of its vertices labelled with one or more of the numbers 2, \ldots, \(d \) in such a way that removing any two vertices leaves a graph labelled with fewer numbers. Then every vertex is labelled with just one number, one number labels two vertices and each other number labels just one.

Proof. As the result is true for \(d = 2 \), suppose that \(d > 2 \) and the result is true for graphs of smaller order.

If a number labels more than two vertices it cannot be removed from \(G \) by removing two vertices. Thus it can be ignored in considering such reductions.

If a number labels just two vertices it can only be removed from \(G \) by removing just those two vertices. As there are \(\frac{d}{2}(d - 1) \) pairs of vertices, \(d - 1 \) numbers and \(d > 2 \), not all numbers can label two vertices. Hence at least one number, say \(d \), labels just one vertex.
Remove the vertex labelled by d from G to get a graph G_1 of order $d - 1$ labelled by $2, \ldots, d - 1$ which has the same property as G. Hence, by assumption, one of these numbers labels two vertices and each other labels one. The result will be proved if no number except d labels the vertex of $G - G_1$. Suppose a number $i < d$ also labels this vertex. If $i = 2$ removing the two vertices of G labelled by i does not reduce the number of numbers used as labels and if $i > 2$ removing the vertex labelled i and one of the vertices labelled 2 gives the same result. That proves the statement. \Box

References