








for the wild-type B1 antigen, the V-ATPase activity of cotrans-
fected cells was actually normal.

To further confirm this point, we kept the amount of wild-
type B1 constant and gradually increased the truncated mutant
and searched for the presence of interference. When trans-
fected mutant B1 expression was increased, the transfected
wild-type B1 expression appeared to be decreased (Fig. 4C).
However, a similar effect was seen in the converse experiment,
where increasing wild-type B1 expression decreased mutant
B1 expression (Fig. 4C). When both B1 subunits are driven to
extremely high levels by strong promoters in these transient
expression experiments, the two subunits may be competing
for the same limited translational machinery. We fathom that

this is in fact the more likely explanation than a dominant
negative effect of the mutant on translation of wild-type B1.

To further test this hypothesis, we examined whether trans-
fection of exogenous mutant B1 affects the expression of
native B1 and its ability to assemble. As shown in Fig. 5,
exogenous mutant B1 did not affect the level of native B1
expression, assembly, or function. This speaks strongly
against a dominant negative effect of mutant B1 on native
wild-type B1.

Examination for evidence of negative dominance in yeast.
To thoroughly refute the dominant negative hypothesis, we
used a second system to test for dominance. Yeast provides an
ideal system for studying transporters in general because of the

Fig. 3. Mammalian cell expression system. En-
dogenous B1 and B2 were knocked down in
human embryonic kidney (HEK)-293 cells, and
V-ATPase function was measured in isolated en-
dosomes. A: design of the small interfering (si)RNAs
targeting B1 and B2 and protection of the heter-
ologously transfected B1. B: original tracings of
the acridine orange assay. HEK-293 cells were
transfected with control siRNA (left), combined
B1 � B2 siRNA (middle), or B1 � B2 siRNA
along with FLAG-tagged WT human B1 with
synonomous mutations as shown in A (right).
Tracings show ATP-induced endosomal acidifica-
tion followed by the collapse of the pH gradient
by H� ionophore 1799 (*). C: experimental con-
ditions were similar to those in B. Cell lysates
were immunoblotted with anti-B1 or anti-FLAG
antibody.

Fig. 4. Heterologous expression of WT and truncation
mutant (TM) B1 in HEK-293 cells. A: V-ATPase function
in endosomes was measured as ATP-induced acidification
and expressed as a percentage of untransfected control
cells. Top, WT and TM B1 were transfected into HEK-293
cells with scrambled control siRNA. Bottom, WT and TM
B1 were transfected into HEK-293 cells where endogenous
B1 and B2 were knocked down with siRNA. Each bar
represents mean � SE from three independent transfec-
tions with triplicate plates per transfection. Statistically
significant differences were assessed by ANOVA. *P �
0.05. B: immunoblot of transfected FLAG epitope-tagged
WT and TM B1 in conditions identical to those in A,
bottom. C: titration of transfected WT (FLAG tagged) and
TM B1 [hemagglutinin (HA) tagged] where the amount of
cDNA of one was kept constant and the other varied. D:
HEK-293 cells were transfected with 4 �g FLAG-tagged
WT B1 (top) or 4 �g FLAG-tagged WT B1 with 8 �g
HA-tagged TM B1 (bottom) and stained with anti-FLAG
antibody. Left, fluorescent images only; right, results su-
perimposed on DIC images.
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ease in obtaining definitive genetic null cells and the ability to
use growth as a functional screen; thus, this host has been used
extensively for studying V-ATPase subunits (26, 48). There-
fore, an independent test of negative dominance by the mutant
B1 subunit is H� pumping function in yeast, which is critical
to confer the ability to grow in pH 7.5. As previously shown,
human B1 complements the yeast homolog well in a growth
assay (21). In null yeast, the presence of mutant B1 did not
affect the expression level of B1 or the ability of wild-type B1
to support growth in pH 7.5 (Fig. 6A). This provides additional

evidence showing that the truncated mutant protein exerts no
significant effects on wild-type B1. We further examined
whether there was any evidence of negative dominance in 12
other known human mutations to complete an exhaustive
search using the yeast model. None of these mutants affected
the ability of wild-type B1 to complement pump function in
null yeast, and none of these mutations affected the level of B1
expression (Fig. 6B).

DISCUSSION

Inactivating mutations of the V1 subunit B1 and the V0

subunit a4 are associated with congenital autosomal recessive
dRTA with sensorineural hearing loss (28, 56, 58, 60, 67). The
mechanism of dysregulated acidification from B1 mutations
was unclear until recently, when disrupted V-ATPase assembly
in vitro was described as one mechanism for seven known
ATP6V1B1 missense mutations (20, 73). The finding of abnor-
mal acidification in the heterozygous carriers in this kindred
was unexpected but unequivocal. The question is why these
subjects should be abnormal given that they have one normal
copy of B1 and, as far as we know, B1 expression is biallelic.

The current stoichiometric model of V1 (A3B3C1D1E3F1G3H1)
confers a 0.875 (1–0.53) probability of incorporating at least
one abnormal B1 subunit. A heterogeneous wild-type/mutant
B1 can conceivably affect ATP hydrolysis by A3B3 and impair
pump function. However, we cannot find evidence showing
that the truncated B1 is capable at all of incorporation into V1.
However, mutant B1 can theoretically affect the synthetic
pathway of wild-type B1 if both alleles are translated together.
Based on the observation that overexpressed mutant B1 sub-
units can lower Na�-independent cell pH recovery after acid
load in a rat IMCD cell line, Yang and coworkers (73)
proposed a dominant negative mechanism of transfected mu-
tant B1 subunits over native wild-type B1 subunits. However,
in the background of native B1, the effect of the transfected

Fig. 5. Effect of TM B1 on native B1 in HEK-293 cells. TM B1 was
transfected into HEK-293 cells, and its effects on native B1 expression and
assembly with other subunits were studied. After cell lysis, transfected heter-
ologous TM B1 was removed by immunodepletion with anti-HA antibody
beads, and native B1 was immunoprecipitated with anti-B1. The immunocom-
plex was resolved by SDS-PAGE and immunoblotted for the antigens stated.
A, top: immunoblot of transfected TM B in cell lysates with anti-HA. Middle,
immunoblot of lysates after capture of TM B by immunoprecipitation (IP) for
TM B HA, native B, A, and E subunits that are part of V1. Bottom, immunoblot
of the native B immunocomplex by anti-B. The complex was immunoblotted
for B, A, and E subunits, which are parts of V1. B: endosomal V-ATPase
activity in untransfected, vector-transfected, and TM B-transfected HEK-293
cells.

Fig. 6. Expression of WT and TM B1 in yeast. Expres-
sion plasmids p425TEF and p426TEF are described in
METHODS. P425 and p426 denote plasmid only. WT and
various human B1 mutations are shown. A, left: the
yeast growth assay is permissive at pH 5.5 and restric-
tive at pH 7.5. A total of 5 � 104 yeast cells were
plated with serial 10-fold dilutions from left to right,
and growth was assessed after 4 days. Right, expres-
sion of WT and TM COOH-terminally HA-tagged
human B1 constructs in yeast. Equal amounts of yeast
lysates of 10 optical density units were loaded. Immu-
noblot analysis was performed with a monoclonal anti-HA
antibody. B: 12 other documented naturally occurring
human B1 mutations were tested in a similar fashion in
null yeast as described above. Left, yeast growth assay.
Right, immunoblot.
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protein is not easy to assay and certainly difficult to interpret.
We reduced endogenous B1 to levels where we could see the
activity of the transfected protein, and the initial results hinted
at the possibility of negative dominance (Fig. 4A). However,
any reduction in wild-type B1 activity was in fact seen only in
the situation where both transfected proteins were driven to
very high levels. Mutant B1 did not exert any dominant effect
over wild-type B1 expression, assembly, or function (Figs. 5
and 6). To complete our search, we studied 12 naturally occurring
human B1 mutations in null yeast and failed to find any dominant
negative action for any of them. Although this was a single
sample, the heterozygous carrier exhibited an abnormal pattern of
staining of B1 in the renal medulla, which we interpret as unas-
sembled mutant B1. The higher than expected intracellular stain-
ing likely represents the failure of mutant B1 to incorporate into
V1, as we have observed in cell culture (20). At the moment, the
data in concert support the de facto conclusion that the clinical
burden of heterozygosity in this family is likely due to haploin-
sufficiency.

We are cognizant of the fact that not all families with dRTA
are linked to either ATP6V1B1 or ATP6V0A4 (56), suggesting
possible additional loci and mechanisms for congenital dRTA.
We cannot rule out the possibility that our clinical and meta-
bolic findings can be related to other putative loci that modify
urinary acidification. Nephrolithiasis or nephrocalcinosis are
common in subjects with dRTA (4, 8, 9, 66) due to the combi-
nation of alkaline urine and hypocitraturia and, to some extent,
hypercalciuria (8, 37, 39, 40), although abnormalities in stone
inhibitors, such as glycosaminoglycans and nephrocalcin, have
also been proposed (36). These urinary abnormalities promote
all calcium stones but, in particular, calcium phosphate stones,
which is compatible with human population data that show
increased prevalence of renal acidification defect in calcium
phosphate stone formers (22, 45, 46).

Although there is universal agreement that calcium stones
are common in dRTA, the consensus is that dRTA is a rare
cause of kidney stones. However, decades of patient data have
provided unequivocal evidence for impaired renal acidification
in the general stone-forming population without frank Mende-
lian dRTA. In 7 studies (12, 38, 41, 42, 59, 61, 70) amounting
to �1,000 stone formers, abnormalities in urinary acidification
have been found in an average of 17% (range: 6–26%) of
all-comers. Whereas the first stone suffer may have a �10%
chance of abnormal renal acidification (43), in recurrent stone
formers, the frequency has been estimated from 7% to 100% in
7 studies totaling �200 patients (1, 2, 10, 34, 44, 54, 63).
Abnormalities in acidification are also more common in bilat-
eral stones, ranging in prevalence from 36% to 64% in a total
of 228 patients (15, 44).

The clinical data suggest prevalent defective renal acidi-
fication even in the general stone-forming population and is
staggeringly high in specific subgroups. In a small number
of patients with the triple feature of bilateral recurrent
calcium phosphate stones, Konnak and coworkers (30)
found that all of them had defective renal acidification.
Although these individuals may have acquired incomplete
dRTA, they can also be heterozygous carriers of candidate
genes. However, no genotypic data were presented in any of
these studies mentioned above. In fact, based on the suppo-
sition, albeit unverified, that heterozygous carriers of the
dRTA candidate genes are completely normal individuals,

genetic causes for subtle defects in acidification in stone
formers were likely never examined. If heterozygous careers
of mutant candidate genes of dRTA harbor subclinical
defects that elude routine clinical chemistry and confer a
propensity for disease rather causing disease, then one will
not succeed in recognizing inheritance patterns at all. There
is a need for database of sequence variance in candidate
genes for dRTA in the general stone-forming population.
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