


of fat as an early sign would be in agreement with the phenotype
of a normal and healthy aging process in humans. Previous
studies suggest a mechanistic relationship between the lack of
fat tissue and deficient mitochondrial function that becomes
severe when the mtDNA levels in the liver drop below a thresh-

old and cause insufficient mitochondrial function in the liver
(14). No significant difference in mtDNA copy number was
observed in skeletal muscle of all ages, suggesting that the high
Dm-dNK expression in skeletal muscle was able to compensate
for mtDNA synthesis to a larger extent as compared with tis-
sues with low Dm-dNK expression, such as liver and adipose
tissues.

The activity of Dm-dNK enzyme was consistent at all time
points investigated during the 20 months of study. The expres-
sion level differed between different tissues because of the CMV
promoter (16), and although the Dm-dNK expression was
higher in skeletal muscle and kidney as compared with brain
and liver, these tissues developed normally due to the compen-
satory transgene. The dThd phosphorylating activity, mainly

FIGURE 5. Histopathology, immunohistochemistry, and electron microscopy. a, histopathology of various tissues from wt, Dm-dNK�/�, and Dm-dNK�/�

Tk2�/� mice (18 –20 months old). Each picture is representative of three independent mice of each group; skin histopathology sections are representative of
two mice from each group (skeletal muscle, liver, and kidney, original magnification �20 and scale bar, 25 �m; skin, original magnification �10 and scale bar,
50 �m). b, immunohistochemistry on kidney sections of 12-month-old mice. Arrows indicate regions of histidine-tagged Dm-dNK expression (original magni-
fication �20 and scale bar, 25 �m). c, electron microscopy of skeletal muscle and kidney (proximal and distal tubules) mitochondria from 18 –20-month-old
mice. Each picture is a representative image from one of three independent mice in each group. Bars represent 1 �m (skeletal muscle) and 2 �m (kidney).

TABLE 6
Mitochondrial density in 18 –20-month-old mice
Data represent mean � S.E. of mitochondrial density from three mice of each group.

Mouse
(genotype)

Relative volume (%)
Kidney

Skeletal
muscle Proximal Distal

WT 6.2 � 1.0 48 � 2 57 � 3
Dm-dNK�/� 4.3 � 1.2 48 � 3 57 � 2
Dm-dNK�/�Tk2�/� 5.3 � 0.1 46 � 4 53 � 3
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derived from Dm-dNK activity, in 12- and 18 –20-month-old
mice was similar to that observed in 1– 6-month-old mice
(�100-fold higher activity compared with wt) in support of a
stable expression of Dm-dNK. Although the Dm-dNK activity
in liver extracts of Dm-dNK�/�Tk2�/� mice was 	25 times
lower than in skeletal muscle or kidney, a direct comparison of
enzyme activity between different tissues is difficult because the
determinations were performed in crude tissue extracts, with a
large mixture of other enzymes present in the assay.

The high catalytic activity of Dm-dNK results in a very special
intracellular composition of the dNTP pools. Normally the
dNTP pool sizes are regulated by anabolic and catabolic path-
ways (Fig. 6). The 5
-nucleotidases (cytosolic and mitochon-
drial) are involved in dephosphorylation of deoxyribonucleo-
side monophosphates to deoxyribonucleosides that are further
catabolized by specific phosphorylases and deaminases such as
TYMP, uridine phosphorylase (UPP), PNP, and adenosine
deaminase (ADA) to their respective bases (17–19). Recently, a
triphosphohydrolase, sterile � motif HD-domain containing
protein 1 (SAMHD1) has been shown to catabolize the dNTPs
to their respective nucleosides (20, 21). Deficiencies of specific
enzymes in these pathways lead to accumulation of toxic
metabolites and cause severe diseases (22–25). In our mouse
model the regulation of the dNTP pools was altered due to the
expression of Dm-dNK, which resulted in a very large increase
of the dTTP pool. However, liver mitochondrial dNTP pools
remain unaltered in Dm-dNK�/� mice compared with wt mice,

showing a strict regulation of dNTP pool balance in the mito-
chondria. To our knowledge the Dm-dNK mouse model is the
first living model of a pronounced dNTP pool imbalance and
therefore our observation that the mice are quite unaffected by
the alteration throughout their life span, and also that DNA
synthesis is without increased mutations in both mitochondrial
and nuclear DNA, is remarkable. Our findings are in agreement
with previous studies demonstrating that a decrease, or
absence, of any of the deoxyribonucleotides has adverse effects
on the mtDNA levels and affect the fidelity of DNA synthesis
(26 –29), but do not have any lethal effects with increased dNTP
pools. However, presently observed alterations in nucleotide
catabolizing enzyme levels should be regarded as a tentative
response to the high levels of dNTPs in the Dm-dNK expressing
mice. The Tymp gene was up-regulated in the Dm-dNK�/� and
Dm-dNK�/�Tk2�/� mice in both skeletal muscle and liver,
indicating increased catabolism of dThd to thymine. An
increase in mRNA levels of some of the other catabolic enzymes
such as Pnp and Ada (in both liver and skeletal muscle) in
Dm-dNK�/� and Dm-dNK�/�Tk2�/� mice as compared with
wt mice could also be observed. This indicates a call for
increased breakdown of purine and pyrimidine nucleosides,
most likely due to increased dNTP pools. The histopathology of
kidney samples revealed mild protein casts and glomerular
membrane thickening in both Dm-dNK�/� and Dm-dNK�/�

Tk2�/� mice that may be caused by a response to break down
products of excess purines and/or pyrimidines that are similar

FIGURE 6. Schematic representation of purine and pyrimidine metabolism. The enzymes involved in nucleoside/deoxynucleosides anabolism and catab-
olism are in black and red italics, respectively. End products of purine and pyrimidine catabolism are marked with red boxes. Dotted arrows represent presence
of intermediates catalyzed by other enzymes: CDA, cytidine deaminase; RRM1, ribonucleoside diphosphate reductase subunit M1; RRM2, ribonucleoside
diphosphate reductase subunit M2; RRM2B, ribonucleoside diphosphate reductase subunit M2 (p53 inducible); SAMHD1, sterile � motif and HD-domain
containing protein 1; TK, thymidine kinase (TK1 and TK2); TYMP, thymidine phosphorylase; UPB1, ureidopropionase � 1; UPP, uridine phosphorylase (UPP1 and
UPP2); XDH, xanthine dehydrogenase; c, cytosolic; m, mitochondrial.
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to purine and pyrimidine catabolism disorders (30). In addition,
skeletal muscle showed increased degenerative/regenerative
changes in the fibers with increased nuclei and reduction in
thickness of fibers in Dm-dNK�/� and Dm-dNK�/�Tk2�/�

mice. We conclude that the alterations found in purine and
pyrimidine metabolism were caused by the expression of
Dm-dNK because it was observed in both Dm-dNK�/� and
Dm-dNK�/�Tk2�/� mice, but not in wt mice. There were no
changes in mitochondrial structure or density in kidney (prox-
imal and distal tubules) or skeletal muscle.

Based on our findings, we suggest Dm-dNK as a possible gene
for substitution of TK2 deficiency. There are several remaining
questions to address for a gene therapy approach such as the
level of expression sufficient to compensate the dTTP produc-
tion and if an intermittent local expression would be possible.
In earlier gene therapy studies using herpes simplex virus type
1-thymidine kinase 1 (HSV-TK1), bystander effects were com-
monly reported (31). The bystander effect was believed to be
caused by transport of the HSV-TK-phosphorylated com-
pound to cells without HSV-TK expression. Recent studies
have demonstrated adeno-associated virus vector-mediated
gene therapy to treat MNGIE in murine models (32). An
enzyme such as Dm-dNK that has high catalytic activity is
hence a possible candidate for therapy because even a short
term expression could increase the dTTP pools substantially to
rescue the mtDNA depletion. If Dm-dNK expression in a single
tissue can sustain mtDNA synthesis in other tissues will be
addressed as a next step in our investigation.

The present study contributes to the understanding of how
dNTP pool alterations affect living cells and organisms. It is well
established by previous studies and clinical observations that a
shortage of any dNTP is a severe condition and that a pro-
nounced shortage of any dNTP may not be compatible with life
(1, 3, 33–35). It is also well documented that deficiencies in
catabolic pathways of nucleotides can cause severe conditions.
Loss of function mutations in the TYMP gene are known to
cause mitochondrial neuro-gastrointestinal encephalomyopa-
thy (MNGIE) and dysfunction of this enzyme causes elevated
dTTP pools (22, 36, 37). However, a decrease in dCTP pools by
feedback regulation of TK2 catalyzed dCyt phosphorylation by
dTTP is suggested to be the reason for mtDNA depletion in
MNGIE (29). Mutations or deletions of PNP and ADA genes
also cause severe conditions characterized by progressive and
severe combined immunodeficiency affecting the development
of T-cells, B-cells, and NK-cells (23).

Our mouse model demonstrates that, with all compensatory
pathways functioning, the mice can handle increased dNTP
pools and that over-compensating a dNTP deficiency is not a
very severe condition. This is in great contrast to the severity of
a shortage of substrate for mtDNA synthesis. Another interest-
ing observation in our study is the possible early effects on fat
metabolism of a decline in mitochondrial function, most prob-
ably in liver or fat tissue. The alteration in fat metabolism was a
clear phenotypic difference of the Dm-dNK�/�Tk2�/� mice
and therefore should be linked to the genetic deficiency of Tk2
that was only present in these mice. Further studies are war-
ranted to elucidate the mechanisms of a decline of specific
mitochondrial functions, whereas keeping other life sustaining

mitochondrial functions, in the same organ. Our unique mouse
model is well suitable for such future studies related to dNTP
imbalance and particularly syndromes characterized or com-
plicated by altered dNTP turnover.
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