
Goal-Directed Methods for Fuzzy Logics
GEORGEMETCALFE AND NICOLA OLIVETTI

In this contribution we present uniform goal-directed rules for the implicational
fragments of the three main formalizations of fuzzy logic; namely, Łukasiewicz
logic Ł , Gödel logicG, and Product logicΠ. We begin with a historical overview
of the goal-directed methodology, focussing in particularon the pioneering work
of Dov Gabbay, then proceed by recalling the fundamental systems of fuzzy logic,
and developing corresponding goal-directed algorithms.

1 Historical Overview
1.1 N-Prolog

The main ideas underlying the goal-directed methodology were put forward in the
early 1980s by Gabbay and developed further by a number of researchers. Rec-
ognizing that the deductive mechanism of Prolog could be generalized to support
more sophisticated forms of reasoning, Gabbay (together with Reyle)[Gabbay and
Reyle, 1984; Gabbay, 1985] proposed an extension of the Horn clause language,
called N-Prolog, capable of performinghypothetical reasoning. In N-Prolog, im-
plicational goals of the formD → G are permitted that succeed from a program
P iff the goalG succeeds from the programP ∪ {D}, e.g. the goal

pass(john, course123) → can graduate(john)

with intuitive meaning “if John passes course123, can he graduate?” succeeds
from P iff we can conclude that John can graduate fromP expanded with the
fact that he has passed course123. Note that here the deduction theorem is used
to define themeaningof an implicational goal, and indeed that the evaluation of
such goals may involve a change of the program; in this case, asimple addition
of data to the program but in general, a possibly more sophisticatedupdateof the
program. Hypothetical goals may occur also in the body of a clause, as in for
example, Gabbay’s formalization of the law for British citizenship:

born in UK(X) ∧ father(X, Y)

∧ (alive(Y, T) → british citizen(Y, T)) → british citizen(X, T)

british citizen(X, T1) ∧ (T1 < T2) ∧ alive(Z, T1) → british citizen(Z, T2)

dead(X,T) ∧ alive(X, T) → ⊥

2 George Metcalfe and Nicola Olivetti

The first clause establishes the counterfactual claim thatX is a British citizen at
timeT if X was born in the UK and has a fatherY who if alive at timeT would
be a British citizen. The second clause claims that being a British citizen persists
over time, while the third expresses the incompatibility ofdead andalive.

The addition of hypothetical goals as described above is notsimply a proce-
dural trick, but rather has a well-understood logical basis; the goals that succeed
from a programP in N-Prolog being exactly the logical consequences ofP in
Intuitionistic logic. Related work includes Hudelmaier’s optimized version of N-
Prolog[Hudelmaier, 1990], a comparison of various Prolog extensions by Reed
and Loveland[Reed and Loveland, 1992], and a similar hypothetical extension
proposed by McCarty[McCarty, 1988] in the context of deductive databases (see
also[Bonner, 1990]). Also, further hypothetical extensions of logic programming
were proposed by Gabbay and others[Gabbayet al., 2000] in order to define a
conditional extension of logic programming incorporatinga revision mechanism.1

1.2 Algorithmic proofs

Some years later Gabbay[Gabbay, 1992] proposed a proceduralinterpretation
of logics. Whereas the traditional view of logics is extensional, i.e. a logic is a
set of theorems (valid formulas) in some language, Gabbay suggested identifying
a logical system with a pair (SetOfTheorems, Procedure), where Procedure is a
correct deduction method for SetOfTheorems, that is to say,it generates all and
only the members of SetOfTheorems. According to this perspective, (Classical-
Logic, TruthTables) is for instance a different logical system from (ClassicalLogic,
Tableaux) or (ClassicalLogic, Resolution).

This conceptual shift is motivated by a number of considerations:

1. A new geography of logical systems is created, providing an alternative per-
spective on the differences and similarities between logics (in the traditional
sense). For instance Classical logic with truth tables may be viewed as being
very close to finite many-valued logic with truth tables, andClassical logic
with sequent calculus as being very close to Intuitionisticlogic with sequent
calculus, whereas Intuitionistic logic and (finite) many-valued logic do not
seem to be closely related.

2. The identification of a logical system with a pair (SetOfTheorems, Proce-
dure) allows the possibility of discovering (or re-discovering) logics (in the
traditional sense) by changing the deduction procedure, e.g. by making it
stronger or weaker.

3. Other reasoning mechanisms may be defined on top of the deduction proce-
dure, prominent examples being negation by (finite) failureand abduction.

1A revision mechanism is needed to preserve the consistency of a database containing integrity
constraints since they may be violated by the (hypothetical) insertion of new data.

Goal-Directed Methods for Fuzzy Logics 3

Note, moreover, that while two deduction procedures for some logic may
coincide on derivable formulas, they may differ in finite-failure and/or lead
to the computation of different solutions for abduction.

1.3 The goal-directed methodology

Goal-directed methods fall under the procedural perspective mentioned above; be-
ing an extension of the standard computation mechanism of logic programming.
Denoting byΓ ⊢? A, the query “doesA follow from Γ?” whereΓ is a database
(collection) of formulas andA is a goal formula, a deduction method for queries
is goal-directedin the sense that each step in a proof is determined by the formof
the current goal. More precisely, a complex goal is decomposed until its atomic
constituents are reached, while an atomic goalq is matched (if possible) with the
“head” of a formulaG → q in the database, and its “body”G asked in turn. This
latter step may be viewed as a sort of resolution or backchaining step. We illustrate
this process here with a simple example of propositional N-Prolog for Intuitionis-
tic logic with only→ and∧; goal-formulas (G-formulas) and database formulas
(D-formulas) being defined as follows:

D = q | G→ q | D ∧D
G = q | D → G | G ∧G

A databaseΓ is a set of D-formulas{D1, . . . , Dn}, every formula in the frag-
ment being equivalent both to a database (interpreted as a conjunction) and to a
G-formula. The following goal-directed deduction procedure is sound and com-
plete for this fragment:

(success) Γ ⊢? q if q ∈ Γ

(implication) FromΓ ⊢? D → G step toΓ, D ⊢? G

(and) FromΓ ⊢? G1 ∧G2 step toΓ ⊢? G1 andΓ ⊢? G2

(reduction) FromΓ ⊢? q step toΓ ⊢? G if G→ q ∈ Γ

The goal-directed model of deduction may be refined in several ways in order to
capture (efficiently) a large variety of logical systems:

1. The database can be structured, e.g. as a multiset, a list,or some more
complicated structure, or constrained, e.g. by allowing only D-formulas
in a certain position to be matched with the current atomic goal in the
(reduction) step. More generally, databases may be structured according
to Gabbay’s theory ofLabelled Deductive Systems(LDS) [Gabbay, 1996;
Gabbay and Olivetti, 2002a], where a labelled goal is asked from a set of
labelled data and the goal-directed rules impose constraints on label propa-
gation and combination.

4 George Metcalfe and Nicola Olivetti

2. Goal-directed algorithms can be modified to ensure termination, either by
loop-checking or by “diminishing resources” i.e. removingformulas “used”
to match an atomic goal. Note that in the latter case, the deletion of used data
should usually be compensated for in some way to maintain completeness.

3. Goals (possibly also states of the database) previously occurring in a deduc-
tion may be stored in a history, and re-asked (or re-used in some way) using
restart rules.

For example, a (terminating) proof system for Classical logic is obtained by mod-
ifying the calculus above to allow the replacement of the current goal by any other
goal previously occurring in the same derivation branch. Tothis end, queries are
reformulated as structures of the formΓ ⊢? G;H whereH is a set of (atomic)
goals called thehistory. We revise the reduction rule as follows:

(reduction) FromΓ, G→ q ⊢? q;H step toΓ ⊢? G;H ∪ {q}

and add a rule allowing restarts from any goal in the history:

(restart) FromΓ ⊢? q;H step toΓ ⊢? p;H ∪ {q} if p ∈ H

For instance Peirce’s axiom (which is not valid in Intuitionistic logic) is derivable
as follows:

⊢? ((p→ q) → p) → p; ∅ (implication)

(p→ q) → p ⊢? p; ∅ (reduction)

⊢? p→ q; {p} (implication)

p ⊢? q; {p} (restart)

p ⊢? p; {p, q} (success)

Goal-directed presentations of a wide variety of logics have been developed in
Gabbay and Olivetti’s book[Gabbay and Olivetti, 2000], and also by several other
authors, e.g.[Giordanoet al., 1992; Bollen, 1991; Harland, 1997]. Moreover it
has been shown that goal-directed proof procedures are useful to obtain theoretical
results on logics such as interpolation[Gabbay and Olivetti, 2002b].

1.4 Uniform proofs

The goal-directed approach is closely related to the Uniform Proof paradigm pro-
posed by Miller and others at the beginning of 1990s, see e.g.[Miller et al., 1991;
Harland and Pym, 1991; Hodas and Miller, 1994], and used as the basis for logic
programming in various non-classical logics. The methodology and underlying
perspective is different, however. The starting point for developing a uniform

Goal-Directed Methods for Fuzzy Logics 5

proof calculus is an analysis of a sequent calculus for the relevant logic; a uni-
form proof of a sequentΓ ⊢ A being a sequent calculus proof where (reading
upwards) the goalA is decomposed first and the rules are applied to formulas in
Γ only whenA is atomic. In this respect the connectives occurring in the goalA
may be viewed as “instructions” for directing proof search.A uniform proof cal-
culus for a logic is then obtained from an analysis of thepermutabilityof the rules
of the calculus. This analysis allows the identification of fragments of the logic,
such that if a sequent expressed in this fragment has a proof,then it has a uniform
proof. The approach has been applied most successfully to logics (or fragments
of logics) having a single-conclusion sequent calculus, although the treatment of
multiple-conclusion calculi is also possible[Nadathur, 1998].

2 t-Norm Based Fuzzy Logics
Fuzzy logics are many-valued logics that form a suitable basis for reasoning under
vagueness, providing the core of systems formalising approximate reasoning in
(the field of) Fuzzy Logic. Such logics may be defined in a number of ways.
Here, we focus on the influential “t-norm based” approach of Hájek[Hájek, 1998],
which makes the following two basic assumptions or “design choices”:

1. The set of truth values for the logic is thereal unit interval[0, 1].

2. The logic istruth-functional, i.e. the truth value of a compound formula is a
function of the truth values of its subformulas.

Hájek also proposes restrictions on truth functions interpreting conjunction, thereby
arriving at the well-known class ofcontinuoust-norms: that is; continuous binary
functions∗ : [0, 1]2 → [0, 1] such that for allx, y, z ∈ [0, 1]:

1. x ∗ y = y ∗ x (Commutativity)

2. (x ∗ y) ∗ z = x ∗ (y ∗ z) (Associativity)

3. x ≤ y impliesx ∗ z ≤ y ∗ z (Monotonicity)

4. 1 ∗ x = x (Identity)

Suitable functions for interpretingimplication(satisfying e.g. a generalized modus
ponens property) are then theresiduaof continuous t-norms, defined as functions
⇒∗: [0, 1]2 → [0, 1] such that for allx, y ∈ [0, 1]:

x⇒∗ y =def max{z : x ∗ z ≤ y}

The most important examples of continuoust-norms and their residua are:

6 George Metcalfe and Nicola Olivetti

t-Norm Residuum
Łukasiewicz x∗Ły = max(0, x + y − 1) x⇒Ły = min(1, 1 − x + y)

Gödel x ∗G y = min(x, y) x ⇒G y =

(

1 if x ≤ y

y otherwise

Product x ∗Π y = x · y x ⇒Π y =

(

1 if x ≤ y
y

x
otherwise

Apart from the historical and practical importance of the Łukasiewicz and Gödel
t-norms and their associated logics, there is a further reason to consider the above
t-norms fundamental: namely, that any continuoust-norm is an ordinal sum con-
struction of these three, see e.g.[Hájek, 1998] for details.

Following Hájek, it can now be seen that each continuoust-norm determines a
propositional fuzzy logicL∗ based on a language with binary connectives⊙ and
→, and a constant⊥; valuationsfor L∗ being functionsv assigning to each propo-
sitional variable a truth value from the real unit interval[0, 1], uniquely extended
to formulas by:

v(A ⊙B) = v(A) ∗ v(B)
v(A→ B) = v(A) ⇒∗ v(B)

v(⊥) = 0

A is valid for L∗, written |=L∗
A, if v(A) = 1 for all valuationsv for L∗.

Note that for any continuoust-norm∗, themin andmax functions expressing
the lattice properties of[0, 1] can be defined using just∗ and⇒∗, i.e. for all
x, y ∈ [0, 1]:

1. min(x, y) = x ∗ (x⇒∗ y).

2. max(x, y) = min((x⇒∗ y) ⇒∗ y, (y ⇒∗ x) ⇒∗ x).

Moreover, the functionx⇒∗ 0 gives suitable properties for interpretingnegation,
being e.g. anti-monotonic with0 ⇒∗ 0 = 1 and1 ⇒∗ 0 = 0. Accordingly, the
following connectives are also defined:

• A ∧B =def A⊙ (A→ B).

• A ∨B =def ((A→ B) → B) ∧ ((B → A) → A).

• ¬A =def A→ ⊥.

In [Hájek, 1998] Hájek gives the following axiomatization for aBasic fuzzy logic
BL that he conjectures (proved in[Cignoli et al., 2000]) axiomatizes the formulas

Goal-Directed Methods for Fuzzy Logics 7

valid in all logics based on continuoust-norms:

(A1) (A→ B) → ((B → C) → (A→ C))
(A2) (A⊙B) → A
(A3) (A⊙B) → (B ⊙A)
(A4) (A⊙ (A→ B)) → (B ⊙ (B → A))

(A5a) (A→ (B → C)) → ((A⊙B) → C)
(A5b) ((A⊙B) → C) → (A→ (B → C))
(A6) ((A→ B) → C) → (((B → A) → C) → C)
(A7) ⊥ → A

A A→ B
B

(mp)

Axiomatizations for the three fundamental logics are obtained as follows:

• Łukasiewicz logicŁ is BL plus(INV) ¬¬A→ A.

• Gödel logicG is BL plus(ID) A→ (A⊙A).

• Product logicΠ is BL plus(Π) ¬¬A → ((A → (A⊙ B)) → B) and(S)
¬(A ∧ ¬A).

For Ł , we remark that an alternative axiomatization can be given based on a lan-
guage with connectives→ and⊥, i.e. (mp) with:

(Ł1) A→ (B → A)
(Ł2) (A→ B) → ((B → C) → (A→ C))
(Ł3) ((A→ B) → B) → ((B → A) → A)
(Ł4) ((A→ ⊥) → (B → ⊥)) → (B → A)

Thet-norm approach described above has been generalized in a number of direc-
tions. In particular, since a sufficient and necessary condition for at-norm to have
a residuum, is that it beleft-continuous, a logic calledMonoidalt-norm logichas
been introduced in[Esteva and Godo, 2001] that captures exactly the tautologies
of all left-continuoust-norm logics[Jenei and Montagna, 2002].

3 Uniform Goal-Directed Methods for Fuzzy Logics
A variety of proof methods have been defined for fuzzy logics.In particular, calculi
for many of the most importantt-norm based logics have been presented in the
framework ofhypersequents, a generalization of sequents to multisets of sequents,
introduced independently by Avron[Avron, 1987] and Pottinger[Pottinger, 1983].
The first calculus of this type was defined forG by Avron in [Avron, 1991] and
consists of the same “standard” rules for connectives as fore.g. Intuitionistic logic,

8 George Metcalfe and Nicola Olivetti

together with further structural rules characterizing thelinearity of truth values for
the logic. More recently, hypersequent calculi with “non-standard” rules, have
been defined by the current authors and Gabbay forŁ [Metcalfeet al., 2005b] and
Π [Metcalfeet al., 2004a]. Moreover, taking such calculi as a starting point, goal-
directed methods forG [Metcalfeet al., 2003] andŁ [Metcalfeet al., 2004b] have
been defined that have a number of appealing properties, including the subformula
property, termination, and optimal complexity, and provide a suitable basis for
fuzzy logic programming[Metcalfeet al., 2005a].

One unsatisfactory feature of the mentioned calculi, however, is the lack of
uniformity in the rules. Essentially a new calculus has to bedefined (and indeed
implemented) for each logic. This contrasts for example with the situation for sub-
structural logics where differences between logics consist solely in the presence or
absence of structural rules in the calculus. This issue has been tackled recently for
Ł , G, andΠ by Ciabattoni et al. in[Ciabattoniet al., 2005] where calculi with uni-
form rules are defined in a framework ofrelational hypersequents: roughly speak-
ing, a further generalization of hypersequents that allowstwo types of sequent to
occur. In this section, we make use both of previous work on goal-directed calculi
for G andŁ , and the new insights provided by the relational hypersequent ap-
proach, to give uniform goal-directed rules for all three fundamental fuzzy logics.
Focussing for simplicity of presentation on the implicational fragments, we define
uniform rules that are sound and invertible forŁ , G, andΠ, then show how these
can be used either as the basis for Co-NP decision procedures, or extended to give
fully goal-directed algorithms.

3.1 Uniform implication rules

We begin with the notion of a goal-directed query for fuzzy logics, generalizing
both the structures for Intuitionistic and Classical logicgiven above, and the defini-
tions of previous work. Such queries consists of a database together with amultiset
of goals (rather than just one), and a history of previousstatesof the database with
goals (rather than just goals). As above, we also allow the possibility of restarts,
limited however to at most one for each multiset of goals. More precisely, and
noting that henceforth we assume all set notation to refer tomultisets:

DEFINITION 1 (Goal-Directed Query). Agoal-directed query(query for short)
is a structure of the form:

Γ1 ⊢? ∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢? ∆n;Rn)} where

• Γ1, . . . ,Γn are multisets of formulas calleddatabases.

• ∆1, . . . ,∆n are multisets of formulas calledgoals.

• R1, . . . , Rn are multisets of at most one atomic formula calledrestarts.

Goal-Directed Methods for Fuzzy Logics 9

Intuitively, the meaning of a query is that for each valuation for the logic, there
should be a state of the database where the associated goals “follow from” that
database (possibly using restart), where “follow from” is particular to the logic.

DEFINITION 2 (Validity of Queries). LetQ be a query:

Γ1 ⊢? ∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢? ∆n;Rn)}

Q is satisfiedfor S by a valuationv if for somei, 1 ≤ i ≤ n:

either #v
S
Γi ≤ #v

S
∆i or #v

S
(Γi ∪Ri) < #v

S
∆i

where#v
S
∅ = 1 for S ∈ {Ł ,G,Π} and:

• #v
Ł (Γ) = 1 +

∑

A∈Γ
{v(A) − 1}

• #v
G

(Γ) = minA∈Γ{v(A)}

• #v
Π

(Γ) =
∏

A∈Γ
{v(A)}

Q is valid for S, written |=S Q, iff Q is satisfied by all valuationsv for S.

Observe that forG andΠ, the valuation#v
S

of a multiset of formulas is defined
using the relevantt-norm,min and·, respectively. ForŁ , on the other hand, the
valuation#v

Ł is defined using the “unbounded” part of thet-norm, i.e. instead of
min(1, x + y − 1), we use simplyx + y − 1. Note moreover, that the restart
formula gives a choice for each state: either the restart is absent from the database
and the relation is “less than or equal to”, or the restart is present, and the rela-
tion is “strictly less than”. However we emphasize that despite the complicated
interpretation, the crucial point is that a single formulaA is valid for any of the
three logicsS ∈ {Ł ,G,Π} iff the query⊢? A; ∅; ∅ is valid forS. Hence checking
validity for queries includes checking validity for formulas as a special case.

We now define uniform rules for handling implication in theselogics, writing
{A1, . . . , An} → B as shorthand forA1 → (A2 → . . . (An → B) . . .):

DEFINITION 3 (Implication Rules).

(implication) FromΓ ⊢? Π → q,∆;R;H step to

Γ ⊢? ∆;R;H andΓ,Π ⊢? q,∆;R;H

(l-reduction) FromΓ,Π → q ⊢? q,∆;R;H step to

Γ, q ⊢? Π, q,∆;R;H ∪ {(Γ ⊢? q,∆;R)} and

⊢? Π; {q};H ∪ {(Γ ⊢? q,∆;R)}

(r-reduction) FromΓ ⊢? q,∆;R1;H ∪ {(Γ′,Π → q ⊢? ∆′;R2)} step to

Γ′, q ⊢? Π,∆′;R2;H ∪ {(Γ′ ⊢? ∆′;R2), (Γ ⊢? q,∆;R1)} and

⊢? Π; {q};H ∪ {(Γ′ ⊢? ∆′;R2), (Γ ⊢? q,∆;R1)}

10 George Metcalfe and Nicola Olivetti

The implication rule(implication) treats a query with an implicational goalΠ →
q, and steps totwo further queries: one where this goal is removed, and one where
Π is added to the database andq replacesΠ → q as a goal. However, note that if
Π → q is theonlygoal, then a rule with one premise is sufficient, i.e.:

(1-implication) FromΓ ⊢? Π → q;R;H step toΓ,Π ⊢? q;R;H

The presence of an implicational formula in one of the statesof the database is
treated by two rules.Local reduction(l-reduction) andremote reduction(r-reduction)
treat the cases where a goal matches the head of a formula in the current database,
and in a database of a state in the history, respectively.

EXAMPLE 4. We illustrate these rules with a simple example:

⊢? {p, p→ q} → q; ∅; ∅ (1-implication)

p, p→ q ⊢? q; ∅; ∅ (l-reduction)

/ \

p, q ⊢? p, q; ∅; {(p ⊢? q; ∅)} ⊢? p; {q}; {(p ⊢? q; ∅)}

We now check that the implication rules are sound (i.e. if thepremises are valid,
then the conclusion is valid) and invertible (i.e. if the conclusion is valid, then the
premises are valid) for each logic.

LEMMA 5. The implication rules are sound and invertible forŁ , G, andΠ.

Proof. Note first that we may assume the common partH of the histories of
the premises and rules to be empty, since ifH is satisfied for a valuation then
clearly both the premises and conclusion are satisfied. Letv be a valuation for
S ∈ {Ł ,G,Π}. We treat each rule in turn:

• (implication). The cases ofŁ andΠ follow almost immediately by ele-
mentary arithmetic, so we just check the case ofG. As a first subcase, if
#v

G
Π ≤ v(q), thenv(Π → q) = 1, and clearly the first premise is satisfied

iff the conclusion is satisfied. Moreover, if the conclusionis satisfied, then
either#v

G
Γ ≤ #v

G
∆ ormin(#v

G
Γ, v(p)) < #v

G
∆ whereR = {p}. If the

former, then clearlymin(#v
G

Γ,#v
G

Π) ≤ min(#v
G

∆, v(q)). If the latter
and#v

G
Π < v(q), thenmin(#v

G
Γ, v(p),#v

G
Π) < min(v(q),#v

G
∆); oth-

erwise#v
G

Π = v(q) andmin(#v
G

Γ,#v
G
Pi) ≤ min(v(q),#v

G
∆). Now

for the second subcase, suppose that#v
G

Π > v(q) and hencev(Π → q) =
v(q). Clearly if the conclusion is satisfied, then both premises are satis-
fied. Also, if the first premise is satisfied, then it follows from the fact that
min(#v

G
Π, v(q)) = v(q) that the conclusion is also satisfied.

Goal-Directed Methods for Fuzzy Logics 11

• (l-reduction). First, assume that#v
S
Π ≤ v(q), and hence thatv(Π →

q) = 1. Clearly, both premises are satisfied if the conclusion is satisfied.
Moreover, the conclusion is satisfied, for#v

S
Π = 1 if the first premise is

satisfied, and for#v
S
Π < 1, if the second premise is satisfied. Now assume

that#v
S
Π > v(q). Clearly, the second premise is satisfied. ForŁ andΠ,

it follows by simple arithmetic that the conclusion is satisfied iff the first
premise is satisfied. ForG, v(Π → q) = v(q), and it follows that the first
premise is satisfied iff the conclusion is satisfied.

• (r-reduction). Very similar to the previous case. �

However, to use these rules as a calculus for establishing the validity of formulas,
we require a further rule allowing “switching” between the current database and
states of the history.

DEFINITION 6 (Switch Rule).

(switch) FromΓ1 ⊢? ∆1;R1;H ∪ {(Γ2 ⊢? ∆2;R2)} step to

Γ2 ⊢? ∆2;R2;H ∪ {(Γ1 ⊢? ∆1;R1)}

Observe that each implication rule reduces a formula occurring in the query into
subformulas. Hence, assuming that a loop checking mechanism is used for(switch)
to stop it repeating ad infinitum, these rules terminate withqueries where all goals
are atomic and fail to match the head of any non-atomic database formula. We call
such queriesirreducible.

DEFINITION 7 (Irreducible Queries). LetQ be a query:

Γ1 ⊢? ∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢? ∆n;Rn)}

Q is irreducibleiff:

1. ∆i is atomic fori = 1, . . . , n.

2. Γi = Πi ∪ Σi for i = 1, . . . , n whereΣi is atomic.

3. Head(Π1 ∪ . . . ∪ Πn) ∩ (∆1 ∪ . . . ∪ ∆n) = ∅.

whereHead(Π → q) = q andHead(Γ) = {Head(A) : A ∈ Γ}.

PROPOSITION 8.Applying the implication rules with(switch) to queries (using
loop-checking for applications of(switch)) terminates with irreducible queries.

Proof. We define the following measures and well-orderings:

• c(q) = 1 for q atomic.

12 George Metcalfe and Nicola Olivetti

• c(A→ B) = c(A) + c(B) + 1 for formulasA, B.

• mc(Γ) = {c(A) : A ∈ Γ} for a multiset of formulasΓ.

For a queryQ = Γ1 ⊢? ∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢? ∆n;Rn)}:

• mmc(Q) = {mc(Γi) ∪mc(∆i) : 1 ≤ i ≤ n}.

For multisetsα, β of integers:

1. α <m β if α ⊂ β.

2. α <m β if α <m γ whereγ = (β − {j}) ∪ {i, . . . , i} andi < j.

For multisetsφ, ψ of multisets of integers:

1. φ <mm ψ if φ ⊂ ψ.

2. φ <mm ψ if φ <mm χ whereχ = (ψ − {α}) ∪ {β, . . . , β} andβ <m α.

For each implication rule with premisesQ1, . . . , Qn and conclusionQ, we have
mmc(Qi) <mm mmc(Q) for i = 1, . . . , n. Hence we arrive (using(switch)
to move to states in the history) at queries which, since(implication) cannot
be applied, must have atomic goals, and, since(l-reduction) and(r-reduction)
cannot be applied, do not have a database formula whose head matches a goal.�

Moreover, if an irreducible query is valid, then by removingnon-atomic database
formulas we obtain an atomic query that is also valid.

LEMMA 9. For S ∈ {Ł ,G,Π}, if the following conditions hold:

1. |=S Γ1,Π1 ⊢? ∆1;R1; {(Γ2,Π2 ⊢? ∆2;R2), . . . , (Γn,Πn ⊢? ∆n;Rn)}.

2. Γi and∆i are atomic fori = 1, . . . , n.

3. Head(Π1 ∪ . . . ∪ Πn) ∩ (∆1 ∪ . . . ∪ ∆n) = ∅.

Then: |=S Γ1 ⊢? ∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢? ∆n;Rn)}

Proof. Assume6|=S Γ1 ⊢? ∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢? ∆n;Rn)}. This
means that there is a valuationv for S such that#v

S
Γi > #v

S
∆i and#v

S
(Γi∪Ri) ≥

#v
S
∆i for i = 1, . . . , n. We define a new valuationw for S as follows:

w(q) =

{

1 if q ∈ Head(Π1 ∪ . . . ∪ Πn)
v(q) otherwise

SinceHead(Π1∪. . .∪Πn)∩(∆1∪. . .∪∆n) = ∅ we have that#w
S
∆i = #v

S
∆i for

i = 1, . . . , n. We also get that#w
S
Πi = 1, #w

S
Γi ≥ #v

S
Γi, and#w

S
Ri ≥ #v

S
Ri

for i = 1, . . . , n. Hence#w
S
(Πi∪Γi) > #w

S
∆i and#w

S
(Πi∪Γi∪Ri) ≥ #w

S
∆i for

i = 1, . . . , n, i.e. 6|=S Γ1,Π1 ⊢? ∆1;R1; {(Γ2,Π2 ⊢? ∆2;R2), . . . , (Γn,Πn ⊢?

∆n;Rn)}, a contradiction as required. �

Goal-Directed Methods for Fuzzy Logics 13

3.2 Co-NP Decision Procedures

Since the implication rules are both sound and invertible for Ł , G, andΠ, and
terminating (modulo loop-checking for(switch)), we are able to reduce checking
the validity of a query in these logics to checking the validity of irreducible queries,
which reduces in turn (by Lemma 9) to checking the validity ofatomicqueries.
This is really only a useful step if we then have that checkingthe validity of atomic
queries is less complex than the original validity problem for each logic. In fact,
while the validity problem for all these logics is Co-NP complete (see e.g.,[Hájek,
1998] for proofs and references), it can be shown (following[Ciabattoniet al.,
2005]) that checking validity for atomic queries, and hence for irreducible queries,
is in each casepolynomial.

LEMMA 10. For an atomic queryQ:

Γ1 ⊢? ∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢? ∆n;Rn)}

|=S Q iff CQ
S

is inconsistent over[0, 1] for:

CQ
S

= {◦SΓi > ◦S∆i, ◦S(Γi ∪Ri) ≥ ◦S∆i : 1 ≤ i ≤ n}

where◦S∅ = 1 for S ∈ {Ł ,G,Π}, and:

• ◦Ł(Γ) = 1 +
∑

q∈Γ
{xq − 1}

• ◦G(Γ) = minq∈Γ{xq}

• ◦Π(Γ) =
∏

q∈Γ
{xq}

wherexq is a real-valued variable for any propositional variableq.

Proof. Immediate from Definition 2. �

THEOREM 11. Checking the validity of atomic queries forŁ , G, andΠ is poly-
nomial.

Proof. By Lemma 10, the result follows if we can show for each atomic queryQ
that checking the inconsistency ofCQ

S
over[0, 1] is polynomial forS ∈ {Ł ,G,Π}.

ForŁ this follows from the fact that linear programming is polynomial; for G this
follows from a theorem on relations over a finite domain; while forΠ we require a
rather subtle argument involving linear programming. Details of these proofs may
be found in[Ciabattoniet al., 2005]. �

Co-NP decision procedures are obtained by modifying the reduction rules in order
to prevent an exponential growth in the size of queries. To this end we introduce

14 George Metcalfe and Nicola Olivetti

new propositional variablesduring the reduction process, that may be thought of
as marking different options for the database.

DEFINITION 12 (New Reduction Rules).

(l-reduction) FromΓ,Π → q ⊢? q,∆;R;H step to

Γ, q ⊢? q,∆;R;H and ⊢? p,Π; {q};H ∪ {(Γ, p ⊢? q,∆;R)}

wherep is a new propositional variable

(r-reduction) FromΓ ⊢? q,∆;R1;H ∪ {(Γ′,Π → q ⊢? ∆′;R2)} step to

Γ ⊢? q,∆;R1;H ∪ {(Γ′, q ⊢? ∆′;R2)} and

⊢? Π, p; {q};H ∪ {(Γ ⊢? q,∆;R1), (Γ
′, p ⊢? ∆′;R2)}

wherep is a new propositional variable

LEMMA 13. The new reduction rules are sound and invertible forŁ , G, andΠ.

Proof. We just consider(l-reduction) (as before disregarding common parts of
the history), the case of(r-reduction) being very similar. For soundness, we treat
several cases. Assume#v

S
Π ≤ v(q). If #v

S
Π = 1, then we are done by the first

premise. If#v
S
Π < 1, then extendv with v(p) = 1 and the result follows from the

second premise. If#v
S
Π > v(q), then we takev(p) = v(Π → q), and we are done

by the second premise. For invertibility, note that if the conclusion is satisfied by
a valuationv, then clearly the first premise is satisfied. For the second premise, if
v(q) ≥ #v

S
(Π ∪ {p}), then it follows for each logic thatv(p) ≤ v(Π → q) and

hence from the conclusion that#v
S
(Γ ∪ {p}) ≤ #v

S
(∆ ∪ {q}). �

THEOREM 14. The new reduction rules,(implication), and(switch) provide
Co-NP decision procedures for the validity problems forŁ , G, andΠ.

Proof. As in Proposition 8, for the premisesQ1, . . . , Qn and conclusionQ of
the new reduction rules,mmc(Qi) < mmc(Q) for i = 1, . . . , n. Moreover each
application of these rules and(implication) gives only a constant increase in the
size (number of symbols) in the query. Hence, to show that a formula is not valid in
Ł , G, orΠ, we can apply the new reduction rules (sound and invertible by Lemma
13) and(implication) exhaustively (using(switch) to move between different
databases) until we reach irreducible queries, making a non-deterministic choice
of two branches where necessary. The result then follows from Theorem 11. �

3.3 Rules for deciding irreducible queries

As an alternative to polynomial decision procedures, we provide goal-directed
rules below that check validitydirectly for each logic, thereby obtaining an al-
gorithmic interpretation ofŁ , G, andΠ. We begin by defining a “standard” stock

Goal-Directed Methods for Fuzzy Logics 15

of rules for calculi, including a new “mingle” rule that allows the combination of
databases and goals.

DEFINITION 15 (Standard Rules). Thestandard rulesconsist of the implication
rules,(switch), and:

(mingle) FromΓ1 ⊢? q,∆1;R1;H ∪ {(Γ2, q ⊢? ∆2;R2)} step to

Γ1,Γ2 ⊢? ∆1,∆2; ∅;H ∪ {(Γ1 ⊢? q,∆1;R1), (Γ2, q ⊢? ∆2;R2)}

We now define calculi forŁ , G, andΠ by extending the standard rules with dif-
ferent restart and success rules, noting that we write⊆m and⊆s for themultiset
andsetsubset relations respectively.

DEFINITION 16 (GDŁ). GDŁ consists of the standard rules plus:

(successŁ) Γ ⊢? ∆;R;H if ∆ ⊆m Γ

(restartŁ) FromΓ1 ⊢? q,∆1;R1;H ∪ {(Γ2 ⊢? ∆2;R2)}

whereR1 ∪R2 = R ∪ {q}, step to

Γ1,Γ2 ⊢? ∆1,∆2;R;H ∪ {(Γ1 ⊢? q,∆1;R1), (Γ2 ⊢? ∆2;R2)}

THEOREM 17. Q succeeds inGDŁ iff |=Ł Q.

Proof. The left-to-right direction requires proving the soundness of (mingle),
(successŁ), and (restartŁ) for Ł , which we leave as exercises in elementary
arithmetic. For the right-to-left direction we proceed as follows. LetQ = Γ1 ⊢?

∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢? ∆n;Rn)} be a query. If|=Ł Q, then the
setCQ

Ł is inconsistent over[0, 1]. Hence by linear programming methods there
existλ1, µ1, . . . , λn, µn ∈ N such thatλi > 0 for some1 ≤ i ≤ n and:

n
⋃

i=1

(λi + µi)∆i ⊆m

n
⋃

i=1

((λi + µi)Γi ∪ µiRi)

We show thatQ succeeds inGDŁ by induction onγ =
∑n

i=1
(λi + µi). If γ = 1

then we have∆i ⊆m Γi for some1 ≤ i ≤ n, and hence thatQ succeeds by an
application of(switch) if necessary and(successŁ). For γ > 1 we consideri
such thatλi > 0. If ∆i ⊆m Γi, then we are done by(switch) if necessary and
(successŁ). Otherwise, we haveq ∈ ∆i where one of the following cases occurs:

1. q ∈ Γj for somej 6= i with λj > 0. Since we can always apply(switch),
we can assume without loss of generality thati = 1 andj = 2. Now by
applying(mingle) toQ we obtain a queryQ′:

Γ1,Γ2 − {q} ⊢? ∆1 − {q},∆2; ∅; {(Γ1 ⊢? ∆1;R1), . . . , (Γn ⊢? ∆n;Rn)}

16 George Metcalfe and Nicola Olivetti

If λ1 ≥ λ2, then:

(λ1−λ2)∆1∪λ2(∆1−{q}∪∆2)∪∆′ ⊆m (λ1−λ2)Γ1∪λ2(Γ1∪Γ2−{q})∪Γ′

for ∆′ =
⋃n

i=3
λi∆i ∪

⋃n

i=1
µi∆i andΓ′ =

⋃n

i=3
λiΓi ∪

⋃n

i=1
µi(Γi ∪Ri).

Since(λ1−λ2)+λ2+
∑n

i=3
λi+

∑n
i=1

µi < λ, by the induction hypothesis,
Q′ succeeds inGDŁ and we are done. The case whereλ2 ≥ λ1 is very
similar.

2. q ∈ Rj for somej with µj > 0. If i 6= j, then without loss of generality
we assume thati = 1 andj = 2. Otherwisei = j, and observe that either
∆i ⊆m Γi and we can apply(successŁ), or there must existk 6= i such that
eitherλk > 0 orµk > 0. If the latter, then assume without loss of generality
thati = 1 andk = 2. Now, in both cases, by applying(restartŁ) we obtain:

Q′ = Γ1,Γ2 ⊢? ∆1−{q},∆2;R1; {(Γ1 ⊢? ∆1;R1), . . . , (Γn ⊢? ∆n;Rn)}

We then proceed similarly to above, separating the possibilities thatλ1 ≤ µ2

andµ2 ≤ λ1. �

DEFINITION 18 (GDG). GDG consists of the standard rules plus:

(successG) Γ ⊢? ∆;R;H if ∆ ⊆s Γ

(restartG) FromΓ1 ⊢? q,∆1;R;H ∪ {(Γ2 ⊢? ∆2; {q})} step to

Γ1,Γ2 ⊢? ∆1,∆2; ∅;H ∪ {(Γ1 ⊢? q,∆1;R), (Γ2 ⊢? ∆2; {q})}

To show the completeness ofGDG it will be helpful to have the following lemma,
which establishes (roughly speaking) that we can restrict our attention to queries
with only one goal per database.

LEMMA 19. For queriesQ = Γ ⊢? ∆1,∆2, R;H , Q1 = Γ ⊢? ∆1, R;H and
Q2 = Γ ⊢? ∆2, R;H :

1. If |=G Q, then|=G Q1 and|=G Q2.

2. IfQ1 andQ2 succeed inGDG, thenQ suceeds inGDG.

Proof. The first part follows from the definition of validity forG, the second is
proved by induction on the joint lengths of derivations ofQ1 andQ2 in GDG. �

THEOREM 20. Q succeeds inGDG iff |=G Q.

Goal-Directed Methods for Fuzzy Logics 17

Proof. The left-to-right direction requires checking the soundness of(mingle),
(successG), and(restartG) for GDG (an easy exercise). For the right-to-left
direction, letQ = Γ1 ⊢? ∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢? ∆n;Rn)} be a
query, assuming by Lemma 19 that|∆i| = 1 for i = 1, . . . , n. If |=G Q then
the setCQ

G
is inconsistent over[0, 1]. By a result on linear orders (see e.g.[Baaz

et al., 2001] for details), this holds iff there arep1, . . . , pm, and distinctji for
i = 1, . . . ,m such that:

(a) pi ∈ ∆ji
andpi+1 ∈ Γji

∪Rji
for i = 1, . . . ,m− 1.

(b) pm ∈ ∆jm
andp1 ∈ Γjm

.

We show that such queries are derivable inGDG by induction onm. If m = 1,
then using(switch) if necessary, we succeed since{p1} = ∆jm

⊆s Γjm
. For

m > 1, assuming without loss of generality thatjm = 1 andjm−1 = 2, we have
pm ∈ ∆1 andp1 ∈ Γ1, andpm−1 ∈ ∆2 andpm ∈ Γ2 ∪R2. If pm ∈ Γ2, then we
apply(mingle) to obtain the queryQ′:

Γ1,Γ2 − {pm} ⊢? ∆2; ∅; {(Γ1 ⊢? ∆1;R1), . . . , (Γn ⊢? ∆n;Rn)}

But now, since∆2 = {pm−1}, we havep1, . . . , pm−1 meeting requirements(a)
and(b) above, and hence by the induction hypothesisQ′ succeeds inGDG. For
the case wherepm ∈ R2, we apply(restartG) to obtainQ′′:

Γ1,Γ2 ⊢? ∆2; ∅; {(Γ1 ⊢? ∆1;R1), . . . , (Γn ⊢? ∆n;Rn)}

Again, since∆2 = {pm−1}, we havep1, . . . , pm−1 meeting requirements(a) and
(b) above, and hence by the induction hypothesisQ′′ succeeds inGDG. �

To obtain a calculus forΠ, we adapt the(restartŁ) rule of GDŁ to check that
the restart formula used is “zero-ok”, i.e. that the query issatisfied whenever this
formula takes value0.

DEFINITION 21 (GDΠ). GDΠ is exactly the same as forGDŁ except that for
(restartΠ) we add the condition:

• If q ∈ R1, thenq is zero-ok for the conclusion of the rule.

whereq is zero-okfor a queryQ = Γ1 ⊢? ∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢?

∆n;Rn)} if one of the following two conditions holds:

1. q ∈ Γi for somei, 1 ≤ i ≤ n.

2. Ri = {q} for somei, 1 ≤ i ≤ n, andp is zero-ok for allp ∈ ∆i.

LEMMA 22. LetQ = Γ ⊢? ∆; {q};H be a query, and letQ′ = Γ ⊢? ∆; ∅;H :

18 George Metcalfe and Nicola Olivetti

1. If |=Π Q andq is not zero-ok, then|=Π Q′.

2. IfQ′ succeeds inGDΠ, thenQ succeeds inGDΠ.

Proof. The first part follows from the definition of validity forΠ, the second via
an induction on the height of a proof ofQ′ in GDΠ. �

THEOREM 23. Q succeeds inGDΠ iff |=Π Q.

Proof. The left-to-right direction follows by checking the soundness of(mingle),
(successΠ), and(restartΠ) for GDΠ (a straightforward exercise). For the right-
to-left direction, letQ = Γ1 ⊢? ∆1;R1; {(Γ2 ⊢? ∆2;R2), . . . , (Γn ⊢? ∆n;Rn)}
be a query. We can assume by Lemma 22 that all restarts occurring in Q are
zero-ok. If |=Π Q, thenCQ

Π
is inconsistent over[0, 1] and therefore also(0, 1].

Hence, by linear programming methods there existλ1, µ1, . . . , λn, µn ∈ N such
thatλi > 0 for somei, 1 ≤ i ≤ n, and:

n
⋃

i=1

(λi + µi)∆i ⊆m

n
⋃

i=1

((λi + µi)Γi ∪ µiRi)

We now proceed as forGDŁ with a proof by induction onγ =
∑n

i=1
(λi +

µi) thatQ succeeds inGDΠ, the only difference being that every application of
(restartΠ) requires (which holds by assumption) that the restart formula is zero-
ok. �

EXAMPLE 24. Consider the following atomic query:

p ⊢? q; {q}; {(q ⊢? p, p; ∅)}

In the case ofG we apply(mingle) and obtain:

p, q ⊢? q, p, p; ∅; {(p ⊢? q; {q}), (q ⊢? p, p; ∅)}

which succeeds by(successG) for GDG since{q, p, p} ⊆s {p, q}. ForŁ on the
other hand, we apply the(restartŁ) rule ofGDŁ , giving:

p, q ⊢? p, p; ∅; {(p ⊢? q; {q}), (q ⊢? p, p; ∅)}

We now apply(mingle) to get:

p, q, p ⊢? p, p, q; ∅; {(p ⊢? q; {q}), (q ⊢? p, p; ∅), (p, q ⊢? p, p; ∅)}

which succeeds by(successŁ) in GDŁ since{p, p, q} ⊆m {p, q, p}. Moreover,
since in the application of(restart) we have thatq occurs in one of the databases
and is hence zero-ok, we also obtain a proof inGDΠ.

Goal-Directed Methods for Fuzzy Logics 19

4 Concluding Remarks
Uniform goal-directed rules have been defined for the implicational fragments of
the three fundamental fuzzy logicsŁ , G, andΠ, that can be extended to both
co-NP decision procedures and fully goal-directed calculi. There remain, how-
ever, a number of issues requiring further attention. In particular, we began this
chapter by recalling logic-programming as a source and underlying motivation for
the goal-directed paradigm. In order to develop logic programming languages for
fuzzy logics, however, various extensions of the proof methods presented here are
required. First of all, a richer propositional language should be defined using suit-
able notions of database and goal formulas. Note, however, that the importance
of extending the language may differ depending on the particular logic; for ex-
ample,Ł may be based on a language with just→ and⊥, while for G andΠ

more connectives are necessary. These issues have been considered forŁ andG

in [Metcalfeet al., 2003] and[Metcalfeet al., 2004b] respectively; for example,
the following rules are suitable for treating conjunctive and disjunctive goals in all
three logics:

(and) FromΓ ⊢? A ∧B,∆;R;H step to

Γ ⊢? A,∆;R;H andΓ ⊢? B,∆;R;H

(or) FromΓ ⊢? A ∨B,∆;R;H step to

Γ ⊢? A,∆;R;H ∪ {(Γ ⊢? B,∆;R)}

For logic programming applications, the language should also be extended to
the first-order setting, a natural compromise being the fragment containing all
universally-quantified formulas. In this case, the reduction rules should incor-
porate a suitableunification mechanism. Also,logical consequenceis crucial,
being the basis for fuzzy logic programming methods found inthe literature[Kla-
wonn and Kruse, 1994; Vojtás, 2001; Smutná-Hlinená and Vojtás, 2004]. That is,
queries should be permitted that express that a goalG is a logical consequence of
a databaseΓ, rather than the internal consequence thatΓ∗ → G is valid, whereΓ∗

is a t-norm combination of the formulas ofΓ. In the case ofŁ andΠ these two no-
tions of consequence are different, although they may be related via the deduction
theorem for the logics, see[Metcalfeet al., 2004b] for details.

From a more theoretical perspective, observe that althoughwe have defined
uniform goal-directed methods forŁ , G, andΠ, these results also extend to a
number of other logics. In particular, the uniform rules are(obviously) sound and
invertible, and provide the basis for decision procedures for intersectionsof the
three main fuzzy logics discussed and axiomatized in[Cignoli et al., 2000]. The
rules are also sound and invertible forfinite-valuedŁukasiewicz and Gödel logics,
and a number of related fuzzy logics such as Cancellative hoop logic [Estevaet

20 George Metcalfe and Nicola Olivetti

al., 2003]. Hence the question remains as to exactly which logics can becaptured
using these rules. In particular, it would be interesting toshow that the rules are
uniform for all t-norm logics, including Hájek’s logicBL which still lacks a rea-
sonable calculus. Finally, observe that the goal-directedcalculi for Ł , G, andΠ,
are really very closely related, the only differences lyingin the underlying data
structure, sets or multisets, and slight alterations in therestart rules. Moreover,
note that a goal-directed calculus forClassical logicis obtained simply by chang-
ing the(mingle) rule inGDG to allow the combination of databases without the
corresponding combination of goals. These observations give further evidence of
the uniformity of the goal-directed methodology, and more generally of the algo-
rithmic proof perspective pioneered by Gabbay.

BIBLIOGRAPHY
[Avron, 1987] A. Avron. A constructive analysis of RM.Journal of Symbolic Logic, 52(4):939–951,

1987.
[Avron, 1991] A. Avron. Hypersequents, logical consequence and intermediate logics for concur-

rency.Annals of Mathematics and Artificial Intelligence, 4(3–4):225–248, 1991.
[Baazet al., 2001] M. Baaz, A. Ciabattoni, and C. Fermüller. Cut-eliminationin a sequents-of-

relations calculus for Gödel logic. InInternational Symposium on Multiple Valued Logic (IS-
MVL’2001), pages 181–186. IEEE, 2001.

[Bollen, 1991] A. W. Bollen. Relevant logic programming.Journal of Automated Reasoning, pages
563–585, 1991.

[Bonner, 1990] A. J. Bonner. Hypothetical datalog: Complexity and expressibility. Theoretical Com-
puter Science, pages 3–51, 1990.

[Ciabattoniet al., 2005] A. Ciabattoni, C. G. Fermüller, and G. Metcalfe. Uniform Rules and Di-
alogue Games for Fuzzy Logics. InProceedings of LPAR 2004, volume 3452 ofLNAI, pages
496–510. Springer, 2005.

[Cignoli et al., 2000] R. Cignoli, F. Esteva, L. Godo, and A. Torrens. Basic fuzzy logic is the logic of
continuous t-norms and their residua.Soft Computing, 4(2):106–112, 2000.

[Esteva and Godo, 2001] F. Esteva and L. Godo. Monoidal t-norm based logic: towards alogic for
left-continuous t-norms.Fuzzy Sets and Systems, 124:271–288, 2001.

[Estevaet al., 2003] F. Esteva, L. Godo, P. Hájek, and F. Montagna. Hoops and fuzzy logic. Journal
of Logic and Computation, 13(4):532–555, 2003.

[Gabbay and Olivetti, 2000] D. Gabbay and N. Olivetti.Goal-directed Proof Theory. Kluwer Aca-
demic Publishers, 2000.

[Gabbay and Olivetti, 2002a] D. Gabbay and N. Olivetti. Goal oriented deductions. In D. Gabbay
and F. Guenthner, editors,Handbook of Philosophical Logic, volume 9, pages 199–285. Kluwer
Academic Publishers, second edition, 2002.

[Gabbay and Olivetti, 2002b] D. Gabbay and Nicola Olivetti. Interpolation in goal-directed proof
systems 1. InLogic Colloquium 2001. A K Peters Ltd, 2002.

[Gabbay and Reyle, 1984] D. Gabbay and Uwe Reyle. N-Prolog: An extension of Prolog with hypo-
thetical implication.Journal of Logic Programming, 4:319–355, 1984.

[Gabbayet al., 2000] D. Gabbay, L. Giordano, A. Martelli, N. Olivetti, and M. L. Sapino. Conditional
reasoning in logic programming.Journal of Logic Programming, 44(1–3):37–74, 2000.

[Gabbay, 1985] D. Gabbay. N-Prolog part 2.Journal of Logic Programming, pages 251–283, 1985.
[Gabbay, 1992] D. Gabbay. Elements of algorithmic proof. In S. Abramsky et al., editors,Handbook

of Logic in Theoretical Computer Science, volume 2, pages 311–413. Oxford University Press,
1992.

[Gabbay, 1996] D. Gabbay.Labelled Deductive Systems, volume 1—Foundations. Oxford University
Press, 1996.

Goal-Directed Methods for Fuzzy Logics 21

[Giordanoet al., 1992] L. Giordano, A. Martelli, and G. F. Rossi. Extending Horn clause logic with
implication goals.Theoretical Computer Science, 95:43–74, 1992.

[Hájek, 1998] P. Hájek.Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
[Harland and Pym, 1991] J. Harland and D. Pym. The uniform proof-theoretic foundation of linear

logic programming. InProc. of the 1991 International Logic Programming Symposium, pages
304–318, 1991.

[Harland, 1997] J. Harland. On goal-directed provability in classical logic. Computer Languages,
23(2–4):161–178, 1997.

[Hodas and Miller, 1994] J. Hodas and D. Miller. Logic programming in a fragment of intuitionistic
linear logic. Information and Computation, 110:327–365, 1994.

[Hudelmaier, 1990] J. Hudelmaier. Decision procedure for propositionaln-prolog. In P. Schroeder-
Heister, editor,Extensions of Logic Programming, pages 245–251. Springer-Verlag, 1990.

[Jenei and Montagna, 2002] S. Jenei and F. Montagna. A proof of standard completeness for Esteva
and Godo’s MTL logic.Studia Logica, 70(2):183–192, 2002.

[Klawonn and Kruse, 1994] F. Klawonn and R. Kruse. A Łukasiewicz logic based Prolog.Mathware
& Soft Computing, 1(1):5–29, 1994.

[McCarty, 1988] L. T. McCarty. Clausal intuitionistic logic. II. Tableau proof procedures.Journal of
Logic Programming, 5(2):93–132, 1988.

[Metcalfeet al., 2003] G. Metcalfe, N. Olivetti, and D. Gabbay. Goal-directed calculi for Gödel-
Dummett logics. In M. Baaz and J. A. Makowsky, editors,Proceedings of CSL 2003, volume 2803
of LNCS, pages 413–426. Springer, 2003.

[Metcalfeet al., 2004a] G. Metcalfe, N. Olivetti, and D. Gabbay. Analytic proof calculi for product
logics. Archive for Mathematical Logic, 43(7):859–889, 2004.

[Metcalfeet al., 2004b] G. Metcalfe, N. Olivetti, and D. Gabbay. Goal-directed methods for
Łukasiewicz logics. In J. Marcinkowski and A. Tarlecki, editors,Proceedings of CSL 2004, volume
3210 ofLNCS, pages 85–99. Springer, 2004.

[Metcalfeet al., 2005a] G. Metcalfe, N. Olivetti, and D. Gabbay. Łukasiewicz logic:From proof
systems to logic programming. To appear in Logic Journal of the IGPL, 2005.

[Metcalfeet al., 2005b] G. Metcalfe, N. Olivetti, and D. Gabbay. Sequent and hypersequent calculi
for abelian and Łukasiewicz logics.ACM Transactions on Computational Logic, 6(3):578–613,
2005.

[Miller et al., 1991] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniformproofs as a foun-
dation for logic programming.Annals of Pure and Applied Logic, 51:125–157, 1991.

[Nadathur, 1998] G. Nadathur. Uniform provability in classical logic.Journal of Logic and Compu-
tation, 8:209–229, 1998.

[Pottinger, 1983] G. Pottinger. Uniform, cut-free formulations of T, S4 and S5(abstract).Journal of
Symbolic Logic, 48(3):900, 1983.

[Reed and Loveland, 1992] D. W. Reed and D. W. Loveland. A comparison of three Prolog exten-
sions.Journal of Logic Programming, 12(1):25–50, 1992.

[Smutná-Hlinená and Vojtás, 2004] D. Smutná-Hlinená and P. Vojtás. Graded many-valued resolution
with aggregation.Fuzzy Sets and Systems, 143(1):157–168, 2004.

[Vojtás, 2001] P. Vojtás. Fuzzy logic programming.Fuzzy Sets and Systems, 124:361–370, 2001.

