Goal-Directed Methods for Fuzzy Logics

GEORGEMETCALFE AND NICOLA OLIVETTI

In this contribution we present uniform goal-directed sufer the implicational
fragments of the three main formalizations of fuzzy logienrely, tukasiewicz
logict., Godel logicG, and Product logi&I. We begin with a historical overview
of the goal-directed methodology, focussing in particalarthe pioneering work
of Dov Gabbay, then proceed by recalling the fundament&bsys of fuzzy logic,
and developing corresponding goal-directed algorithms.

1 Historical Overview
1.1 N-Prolog

The main ideas underlying the goal-directed methodologgwwet forward in the
early 1980s by Gabbay and developed further by a number earelsers. Rec-
ognizing that the deductive mechanism of Prolog could beegdized to support
more sophisticated forms of reasoning, Gabbay (togetharRéyle)Gabbay and
Reyle, 1984; Gabbay, 198Broposed an extension of the Horn clause language,
called N-Prolog, capable of performimgypothetical reasoningin N-Prolog, im-
plicational goals of the fornD — G are permitted that succeed from a program
P iff the goal G succeeds from the programuU { D}, e.g. the goal

pass(john, coursel23) — can_graduate(john)

with intuitive meaning “if John passes coursel23, can héwp®?” succeeds
from P iff we can conclude that John can graduate fréhvexpanded with the
fact that he has passed coursel123. Note that here the dedtiatiorem is used
to define themeaningof an implicational goal, and indeed that the evaluation of
such goals may involve a change of the program; in this casenjple addition

of data to the program but in general, a possibly more sapatstiupdateof the
program. Hypothetical goals may occur also in the body ofaas#, as in for
example, Gabbay’s formalization of the law for British zé&nship:

born_in UK (X) A father(X,Y)
A (alive(Y,T) — british_citizen(Y,T)) — british_citizen(X,T)
british_citizen(X, T1) A (Th < T2) A alive(Z,Th) —  british_citizen(Z, Tz)
dead(X,T) N alive(X,T) — L
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The first clause establishes the counterfactual claimXh&t a British citizen at
time T if X was born in the UK and has a fathgrwho if alive at timeT" would
be a British citizen. The second clause claims that beingt&Bicitizen persists
over time, while the third expresses the incompatibilityledd andalive.

The addition of hypothetical goals as described above isimaply a proce-
dural trick, but rather has a well-understood logical batsie goals that succeed
from a programP in N-Prolog being exactly the logical consequencesoin
Intuitionistic logic. Related work includes Hudelmaier’s optimized version ef N
Prolog[Hudelmaier, 1991 a comparison of various Prolog extensions by Reed
and LovelandReed and Loveland, 1992and a similar hypothetical extension
proposed by McCartjMcCarty, 1988 in the context of deductive databases (see
also[Bonner, 1991). Also, further hypothetical extensions of logic prograimg
were proposed by Gabbay and othB&abbayet al, 2004 in order to define a
conditional extension of logic programming incorporatinggvision mechanisrh.

1.2 Algorithmic proofs

Some years later Gabbd@abbay, 199Pproposed a proceduraiterpretation
of logics. Whereas the traditional view of logics is extemsil, i.e. a logic is a
set of theorems (valid formulas) in some language, Gabbggesied identifying
a logical system with a pair (SetOfTheorems, ProceduregreviProcedure is a
correct deduction method for SetOfTheorems, that is to is@gnerates all and
only the members of SetOfTheorems. According to this petspe (Classical-
Logic, TruthTables) is for instance a different logicaltgys from (ClassicalLogic,
Tableaux) or (ClassicalLogic, Resolution).
This conceptual shift is motivated by a number of considenat

1. A new geography of logical systems is created, providmglternative per-
spective on the differences and similarities between b(icthe traditional
sense). For instance Classical logic with truth tables neayiéwed as being
very close to finite many-valued logic with truth tables, &@ldssical logic
with sequent calculus as being very close to Intuitionistic with sequent
calculus, whereas Intuitionistic logic and (finite) margltied logic do not
seem to be closely related.

2. The identification of a logical system with a pair (SetOfdrems, Proce-
dure) allows the possibility of discovering (or re-discaig) logics (in the
traditional sense) by changing the deduction proceduge, ley making it
stronger or weaker.

3. Other reasoning mechanisms may be defined on top of theti@dproce-
dure, prominent examples being negation by (finite) failmd abduction.

1A revision mechanism is needed to preserve the consistehaydatabase containing integrity
constraints since they may be violated by the (hypothétinakrtion of new data.
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Note, moreover, that while two deduction procedures foresdomgic may
coincide on derivable formulas, they may differ in finitekiee and/or lead
to the computation of different solutions for abduction.

1.3 The goal-directed methodology

Goal-directed methods fall under the procedural persgententioned above; be-
ing an extension of the standard computation mechanismgié firogramming.
Denoting byI' -7 A, the query “doesA follow from I'?” wherel is a database
(collection) of formulas andi is a goal formula, a deduction method for queries
is goal-directedn the sense that each step in a proof is determined by thedbrm
the current goal. More precisely, a complex goal is decomgpaestil its atomic
constituents are reached, while an atomic goal matched (if possible) with the
“head” of a formulaG — ¢ in the database, and its “bod¢ asked in turn. This
latter step may be viewed as a sort of resolution or backaigstep. We illustrate
this process here with a simple example of propositionardleg for Intuitionis-

tic logic with only — and A; goal-formulas (G-formulas) and database formulas
(D-formulas) being defined as follows:

D=q|G—q|DAD
G=q|D—-G|GANG

A databasd’ is a set of D-formulag Dy, ..., D, }, every formula in the frag-
ment being equivalent both to a database (interpreted agjammion) and to a
G-formula. The following goal-directed deduction proceglis sound and com-
plete for this fragment:

(success) TF qifqel

)
(implication) FromT'F’ D — Gsteptol', D G
)

(and) FromI'F* G A Gq steptal’ F¥ Gy andl F G

(reduction) FromI'’ gsteptol F* Gif G —qeT

The goal-directed model of deduction may be refined in séveags in order to
capture (efficiently) a large variety of logical systems:

1. The database can be structured, e.g. as a multiset, arishme more
complicated structure, or constrained, e.g. by allowinty dformulas
in a certain position to be matched with the current atomial go the
(reduction) step. More generally, databases may be structured acgordin
to Gabbay’s theory ofabelled Deductive SystenisDS) [Gabbay, 1996;
Gabbay and Olivetti, 2002awhere a labelled goal is asked from a set of
labelled data and the goal-directed rules impose constramlabel propa-
gation and combination.
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2. Goal-directed algorithms can be modified to ensure tatitin, either by
loop-checking or by “diminishing resources” i.e. removfogmulas “used”
to match an atomic goal. Note that in the latter case, thdidelef used data
should usually be compensated for in some way to maintairpteteness.

3. Goals (possibly also states of the database) previoaslyrong in a deduc-
tion may be stored in a history, and re-asked (or re-usednreseay) using
restart rules

For example, a (terminating) proof system for Classicalddgjobtained by mod-

ifying the calculus above to allow the replacement of theenirgoal by any other
goal previously occurring in the same derivation branchthis end, queries are
reformulated as structures of the foim-’ G; H where H is a set of (atomic)

goals called thistory. We revise the reduction rule as follows:

(reduction) FromI',G — q+’ ¢; H step tol' F* G; H U {q}
and add a rule allowing restarts from any goal in the history:
(restart) FromI' - ¢; H steptol' H* p; HU {q}if pe H

For instance Peirce’s axiom (which is not valid in Intuitistic logic) is derivable
as follows:

' ((p—q) = p) = ;0 (implication)
p—q) —p F p0 (reduction)
' p— g {p} (implication)
p g {p} (restart)
p ' opi{pg (success)

Goal-directed presentations of a wide variety of logicsehlbg@en developed in
Gabbay and Olivetti’s bookGabbay and Olivetti, 2040and also by several other
authors, e.g[Giordanoet al, 1992; Bollen, 1991; Harland, 19R7Moreover it
has been shown that goal-directed proof procedures arel tigs@btain theoretical
results on logics such as interpolati@@abbay and Olivetti, 2002b

1.4 Uniform proofs

The goal-directed approach is closely related to the UmifBroof paradigm pro-
posed by Miller and others at the beginning of 1990s, sedditler et al, 1991;
Harland and Pym, 1991; Hodas and Miller, 19%ind used as the basis for logic
programming in various non-classical logics. The methoggland underlying
perspective is different, however. The starting point feveloping a uniform
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proof calculus is an analysis of a sequent calculus for thevaet logic; a uni-
form proof of a sequent’ - A being a sequent calculus proof where (reading
upwards) the goall is decomposed first and the rules are applied to formulas in
I" only whenA is atomic. In this respect the connectives occurring in thal ¢
may be viewed as “instructions” for directing proof searéhuniform proof cal-
culus for a logic is then obtained from an analysis ofpgeemutabilityof the rules

of the calculus. This analysis allows the identification rafgiments of the logic,
such that if a sequent expressed in this fragment has a pheofjt has a uniform
proof. The approach has been applied most successfullygtosigor fragments
of logics) having a single-conclusion sequent calculusoaigh the treatment of
multiple-conclusion calculi is also possidiadathur, 199B

2 t-Norm Based Fuzzy Logics

Fuzzy logics are many-valued logics that form a suitabléstfas reasoning under
vaguenessproviding the core of systems formalising approximatesoging in
(the field of) Fuzzy Logic. Such logics may be defined in a numdfevays.
Here, we focus on the influential-horm based” approach of HajgHajek, 1998,
which makes the following two basic assumptions or “desigmices”:

1. The set of truth values for the logic is theal unit interval[0, 1].

2. The logic istruth-functional i.e. the truth value of a compound formulais a
function of the truth values of its subformulas.

Hajek also proposes restrictions on truth functions piieting conjunction, thereby
arriving at the well-known class @ontinuoug-norms that is; continuous binary
functionsx : [0,1]% — [0, 1] such that for allz, y, z € [0, 1]

1. z x y = y *x x (Commutativity)

2. (zxy)* 2z =z * (y* 2) (Associativity)

3. z < yimpliesz x z < y x z (Monotonicity)
4. 1xx = x (Identity)

Suitable functions for interpretirigiplication(satisfying e.g. a generalized modus
ponens property) are then thesiduaof continuous t-norms, defined as functions
=,:[0,1]? — [0,1] such that for alk;, y € [0, 1]:

T =y Y =def max{z : vxz <y}

The most important examples of continugusorms and their residua are:
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t-Norm Residuum
tukasiewicz zxy = mazx(0,x +y — 1) =y = min(l,1 —x +y)
.. 1 ifa<y
Godel = min(zx, = = =
z*ey =min(z,y) r=ely y otherwise
1 ifz<y
Product =z- Sy = S
Y=y Ty ¥ otherwise

Apart from the historical and practical importance of the&éasiewicz and Godel
t-norms and their associated logics, there is a further reesoonsider the above
t-norms fundamental: namely, that any continuca®rm is an ordinal sum con-
struction of these three, see elgajek, 1998 for details.

Following Hajek, it can now be seen that each continuengrm determines a
propositional fuzzy logid... based on a language with binary connectigeand
—, and a constant ; valuationsfor L, being functions assigning to each propo-
sitional variable a truth value from the real unit inter{@l1], uniquely extended
to formulas by:

v(A®B) = v(A)xv(B)
v(A— B) = v(A4) =, v(B)
v(l) = 0

Aisvalid for L., written =1, A, if v(A) = 1 for all valuationsv for L.

Note that for any continuousnorms, themin andmax functions expressing
the lattice properties o0, 1] can be defined using justand =, i.e. for all
x,y € [0,1]:

1. min(z,y) =z * (x = y).
2. max(z,y) = min((x =+ y) = y, (y = ) = ).

Moreover, the function =, 0 gives suitable properties for interpretinggation
being e.g. anti-monotonic with =, 0 = 1 and1l =, 0 = 0. Accordingly, the
following connectives are also defined:

] A/\BzdefA@(AHB).
¢ AVB =45 ((A—B)—B)AN((B—A)— A).
L4 —‘AzdefA—>J_.

In [Hajek, 1998 Hajek gives the following axiomatization forBasic fuzzy logic
BL that he conjectures (proved[i@ignoli et al,, 200q) axiomatizes the formulas
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valid in all logics based on continuo#shorms:

(Al) (A—-B)—((B—C)—(A—=0))

(A2) (AeB)— A

(A3) (A®B)— (B0 A)

(A (A(A—B))— (B (B —A4)

(A53) (A— (B —C))— (A© B) — )
(A5b) (AGB)—C)— (A—(B—0))

(A8) (A—-B)—-C)—=(((B—A) —-C)—C)
(A7) L—A
A A-B

5 (mp)
Axiomatizations for the three fundamental logics are atsdias follows:
e tukasiewicz logi¢. is BL plus(INV) =—A4 — A.
e GodellogicG isBL plus(ID) A — (A® A).

e Product logicII is BL plus(II) - —A — ((A — (A ® B)) — B) and(S)
—(A A —A).

Fort, we remark that an alternative axiomatization can be giaset on a lan-
guage with connectives> and_L, i.e. (mp) with:

(k1) A— (B— A

t2) A—-B) - (B—=0C)—(A—=0))
t3) (A—-B)—B)— ((B—A) — A)
t4) (A-L)—(B—1)—(B—A

Thet-norm approach described above has been generalized inlzenaidirec-
tions. In particular, since a sufficient and necessary d¢mmdior at-norm to have

a residuum, is that it bkeft-continuousa logic calledMlonoidalt-norm logichas
been introduced ifEsteva and Godo, 20D1hat captures exactly the tautologies
of all left-continuoug-norm logics[Jenei and Montagna, 20p2

3 Uniform Goal-Directed Methods for Fuzzy Logics

A variety of proof methods have been defined for fuzzy logiiegarticular, calculi

for many of the most importaritnorm based logics have been presented in the
framework ofhypersequents generalization of sequents to multisets of sequents,
introduced independently by AvrdAvron, 1987 and PottingefPottinger, 198B

The first calculus of this type was defined f@r by Avron in[Avron, 1991 and
consists of the same “standard” rules for connectives as.fprintuitionistic logic,
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together with further structural rules characterizinglthearity of truth values for
the logic. More recently, hypersequent calculi with “ndarglard” rules, have
been defined by the current authors and Gabbaly {dfetcalfeet al., 20054 and

IT [Metcalfeet al, 20043. Moreover, taking such calculi as a starting point, goal-
directed methods fa@& [Metcalfeet al., 2003 andt. [Metcalfeet al., 2004 have
been defined that have a number of appealing propertiegding the subformula
property, termination, and optimal complexity, and previl suitable basis for
fuzzy logic programmingMetcalfeet al., 20053.

One unsatisfactory feature of the mentioned calculi, h@reis the lack of
uniformity in the rules. Essentially a new calculus has talbfined (and indeed
implemented) for each logic. This contrasts for examplé Wit situation for sub-
structural logics where differences between logics cossigly in the presence or
absence of structural rules in the calculus. This issue das tackled recently for
t, G, andII by Ciabattoni et al. ifiCiabattoniet al., 2009 where calculi with uni-
form rules are defined in a frameworkmelational hypersequertsoughly speak-
ing, a further generalization of hypersequents that allwestypes of sequent to
occur. In this section, we make use both of previous work ai-goected calculi
for G andt, and the new insights provided by the relational hypersegap-
proach, to give uniform goal-directed rules for all threadamental fuzzy logics.
Focussing for simplicity of presentation on the implicaabfragments, we define
uniform rules that are sound and invertible farG, andII, then show how these
can be used either as the basis for Co-NP decision procedumgended to give
fully goal-directed algorithms.

3.1 Uniform implication rules

We begin with the notion of a goal-directed query for fuzzgits, generalizing
both the structures for Intuitionistic and Classical logiien above, and the defini-
tions of previous work. Such queries consists of a dataloasstier with anultiset
of goals (rather than just one), and a history of previtatesof the database with
goals (rather than just goals). As above, we also allow ttssipdity of restarts
limited however to at most one for each multiset of goals. &precisely, and
noting that henceforth we assume all set notation to refenthisets:

DEFINITION 1 (Goal-Directed Query). Ayoal-directed queryquery for short)
is a structure of the form:

I'y l—? Al; Ry {(Fg l—? Ag; Rg), ey (Pn l—? An; Rn)} where
e I'y,..., T, are multisets of formulas callaethtabases
e Ay, ..., A, are multisets of formulas callegbals

e R4,..., R, are multisets of at most one atomic formula callestarts
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Intuitively, the meaning of a query is that for each valuatior the logic, there
should be a state of the database where the associated fulde ‘from” that
database (possibly using restart), where “follow from”astjular to the logic.

DEFINITION 2 (Validity of Queries). Lety be a query:
Ty E A Ry {(To H Ags Ro), oy (T B A R}
Q is satisfiedfor S by a valuatiorv if for somei, 1 < ¢ < n:
either #4T; < #gA; or #3(T; UR;) < #g4A;

where#g0 = 1for S € {t, G, II} and:

o # (L) =143 ser{v(4) -1}

o #&(I) = minacr{v(A)}

o #54(I) = HAeF{U(A)}
Q isvalid for S, written =g @, iff Q is satisfied by all valuationsfor S.

Observe that foG andIl, the valuation#g of a multiset of formulas is defined
using the relevart-norm,min and-, respectively. Fot, on the other hand, the
valuation#; is defined using the “unbounded” part of theorm, i.e. instead of
min(l,z + y — 1), we use simplyr + y — 1. Note moreover, that the restart
formula gives a choice for each state: either the restaliser from the database
and the relation is “less than or equal to”, or the restartrésent, and the rela-
tion is “strictly less than”. However we emphasize that dtesfhe complicated
interpretation, the crucial point is that a single formulas valid for any of the
three logicsS € {t, G, I1} iff the query-" A;); () is valid forS. Hence checking
validity for queries includes checking validity for fornad as a special case.

We now define uniform rules for handling implication in thdsgics, writing
{4,,...,A,} — Basshorthand fod; — (42 — ... (A, — B)...):

DEFINITION 3 (Implication Rules).

(implication) FromI' -’11 — ¢, A; R; H step to
I'F"A;R;Handl,II+’ ¢, A;R; H

(I-reduction) FromI',I1 — q F* q,A; R; H step to
DgF ¢, A; R HU{(TF ¢,A; R)} and
FIL{gh HU{(TF ¢, A R)}

(r-reduction) FromT F* ¢, A;Ry; HU {(TV,1T1 — qF* A’; R,)} step to
IV, qF IIL,A; Ry; HU{(I" P A", Ry), (' =7 ¢, A; Ry)} and
I {gh HU{(I' F A Ro), (T g, Ay Ry)}
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The implication rulgimplication) treats a query with an implicational gdal—

q, and steps towo further queries: one where this goal is removed, and oneavher
II is added to the database apteplacedI — ¢ as a goal. However, note that if
II — ¢ is theonlygoal, then a rule with one premise is sufficient, i.e.:

(1-implication) FromD F* 11 — ¢; R; H step tol, 11 +* ¢; R; H

The presence of an implicational formula in one of the stafethe database is
treated by two ruled.ocal reductionl-reduction) andremote reductiolfr-reduction)
treat the cases where a goal matches the head of a formuka¢utient database,
and in a database of a state in the history, respectively.

EXAMPLE 4. We illustrate these rules with a simple example:

Fo{p.p—q} — ¢ 0;0  (1-implication)
pr—q 00 (I-reduction)

/ \

p.a Fopg0:{(p+" ¢;0)} = i {(pH ¢ 0)}

We now check that the implication rules are sound (i.e. ifghemises are valid,
then the conclusion is valid) and invertible (i.e. if the ctusion is valid, then the
premises are valid) for each logic.

LEMMA 5. The implication rules are sound and invertible toy G, andII.

Proof. Note first that we may assume the common rof the histories of

the premises and rules to be empty, sincéfifis satisfied for a valuation then
clearly both the premises and conclusion are satisfied.v s a valuation for

S € {t,G,II}. We treat each rule in turn:

e (implication). The cases of andII follow almost immediately by ele-
mentary arithmetic, so we just check the cas&of As a first subcase, if
#&II < v(q), thenu(I — ¢) = 1, and clearly the first premise is satisfied
iff the conclusion is satisfied. Moreover, if the conclusisrsatisfied, then
either# LT < #LA ormin(#4,v(p)) < #4A whereR = {p}. If the
former, then clearlynin(#&T, #&11) < min(#4A,v(qg)). If the latter
and# LI < v(q), thenmin(#&T, v(p), #&I) < min(v(q), #&A); oth-
erwise#LII = v(q) andmin(#&T, #&Pt) < min(v(q), #&A). Now
for the second subcase, suppose #atl > v(¢) and hence(II — ¢) =
v(q). Clearly if the conclusion is satisfied, then both premises satis-
fied. Also, if the first premise is satisfied, then it followsiin the fact that
min(#&I1,v(q)) = v(q) that the conclusion is also satisfied.
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o (I-reduction). First, assume tha#gIl < v(g), and hence that(II —
q) = 1. Clearly, both premises are satisfied if the conclusion fisfsd.
Moreover, the conclusion is satisfied, f#SI1 = 1 if the first premise is
satisfied, and foftg1I1 < 1, if the second premise is satisfied. Now assume
that #41I1 > v(g). Clearly, the second premise is satisfied. EcandII,
it follows by simple arithmetic that the conclusion is stdid iff the first
premise is satisfied. Fd&, v(II — ¢) = v(q), and it follows that the first
premise is satisfied iff the conclusion is satisfied.

e (r-reduction). Very similar to the previous case. |

However, to use these rules as a calculus for establishengalidity of formulas,
we require a further rule allowing “switching” between therent database and
states of the history.

DEFINITION 6 (Switch Rule).

(switch) FromDy =" Ay Ry HU{(T2 F7 Ag; Ry)} step to
FQ l_? AQ;RQ;HU {(Fl l_? Al,Rl)}
Observe that each implication rule reduces a formula otwyin the query into
subformulas. Hence, assuming that a loop checking meahasissed fo( switch)
to stop it repeating ad infinitum, these rules terminate witkries where all goals

are atomic and fail to match the head of any non-atomic datafmemula. We call
such queriesrreducible

DEFINITION 7 (Irreducible Queries). Lep be a query:
Ty AR {(Te F Ag Ry), .o, (D FM A Ry}
Q is irreducibleiff:
1. Ajisatomicfori =1,...,n.
2.1, =1;uX; fori =1,...,n whereX; is atomic.
3. Head(Il; U...UIL,)N (AL U...UA,) = 0.

whereHead(Il — q) = gandHead(T") = {Head(A) : A€T}.

PROPOSITION 8.Applying the implication rules wittswitch) to queries (using
loop-checking for applications @kwitch)) terminates with irreducible queries.

Proof. We define the following measures and well-orderings:

e ¢(q) = 1for g atomic.
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o ¢(A — B) =c(A) + ¢(B) + 1 for formulasA, B.
e mc(T") ={c(A) : A eT} foramultiset of formulag".
ForaqueryQ =Ty H' A Ry {(T2 H' Ag; Ra), ..., (T H! Aps Ry}
o mme(Q) = {me(l;) Ume(4;) : 1 <i<n}.
For multisetsy, 8 of integers:
1L a<,pBifacpg.
2. a <y fif a <, ywherey = (68— {j})U{i,...,i} andi < j.
For multisetsp, ) of multisets of integers:
1 ¢ <mm ¥ if ¢ C .
2. ¢ <um U if ¢ <pm x Wherey = (v — {a}) U{5,..., 5} and8 <, a.

For each implication rule with premiség,, . .., @, and conclusior@), we have
mme(Q;) <mm mme(Q) fori = 1,...,n. Hence we arrive (usingswitch)
to move to states in the history) at queries which, sifigeplication) cannot
be applied, must have atomic goals, and, sifieeeduction) and(r-reduction)
cannot be applied, do not have a database formula whose hatatas a goalll

Moreover, if an irreducible query is valid, then by removimgn-atomic database
formulas we obtain an atomic query that is also valid.

LEMMA9. ForS € {t, G,II}, if the following conditions hold:
1. =g Ty, 10 F2 A Ry {(T2, I ' Ao Ro), ..., (D, I, FY Ay Ry}
2. I'; andA; are atomic fori = 1,...,n.
3. Head(Il; U...UIL,)N (A1 U...UA,) = 0.

Then: =g Ty FF AL Ry {(To FF Ao R), ..., (T, FP Ay Ry}

Proof. Assumelts I'y 7 Ay Ry {(Te F7 Ag; Ro), ..., (T, Y An; Ry)}. This
means that there is a valuatioffior S such that#4T"; > #gA; and#g(IUR;) >

#gA; fori=1,...,n. We define a new valuation for S as follows:
_ 1 if g € Head(II; U ... UIL,)
wia) = { v(q) otherwise

SinceHead(I; U. . .UIL,)N(AU...UA,) = O we have tha##g A; = #5A, for
i=1,...,n. We also get that 11, = 1, #5T; > #3I, and#E R; > #%R;
fori =1,...,n. Hence#y (IL;UL;) > #& A, and#Y (ILUT;UR;) > #E A, for
= 1, Lo, n, i.e. l?és Fl,Hl F? Al; Rl; {(FQ, 11, F? AQ; RQ), ceey (Fn, 1L, F?
A,; Ry,)}, a contradiction as required. [ |
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3.2 Co-NP Decision Procedures

Since the implication rules are both sound and invertibtetfpG, andII, and
terminating (modulo loop-checking f@switch)), we are able to reduce checking
the validity of a query in these logics to checking the vaidif irreducible queries,
which reduces in turn (by Lemma 9) to checking the validityatdmic queries.
This is really only a useful step if we then have that checkiiregvalidity of atomic
queries is less complex than the original validity problemdach logic. In fact,
while the validity problem for all these logics is Co-NP cdetp (see e.g[Hajek,
1999 for proofs and references), it can be shown (followi@abattoniet al,,
2004) that checking validity for atomic queries, and hence farducible queries,
is in each caspolynomial

LEMMA 10. For an atomic queryy:
I H ARG {(To ' AgsRa), .., (T Ay Ry)}
Es Qiff Cé? is inconsistent ovelp, 1] for:
Cg = {osI; > ogA;,05(I; UR;) > 0sA; : 1< i <n}

whereog() = 1 for S € {t, G, II}, and:

o ou(l) =1+ Y epfe, — 1}

o og(l') = minger{zq}

o on(T") = [Tyer{zq}
wherez, is a real-valued variable for any propositional varialje
Proof. Immediate from Definition 2. |

THEOREM 11. Checking the validity of atomic queries for G, andII is poly-
nomial.

Proof. By Lemma 10, the result follows if we can show for each atomierg
that checking the inconsistency@é2 over[0, 1] is polynomialforS € {t, G, IT}.
Fort this follows from the fact that linear programming is polymial; for G this
follows from a theorem on relations over a finite domain; wlidr IT we require a
rather subtle argument involving linear programming. idetf these proofs may
be found in[Ciabattoniet al., 2004. [ ]

Co-NP decision procedures are obtained by modifying theatioh rules in order
to prevent an exponential growth in the size of queries. ®dhd we introduce
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new propositional variableduring the reduction process, that may be thought of
as marking different options for the database.

DEFINITION 12 (New Reduction Rules).
(I-reduction) FromID,II — q F* ¢, A; R; H step to
LogF ¢, ARy Hand H p, 1L {g}; HU{(T,p " ¢, A3 R)}
wherep is a new propositional variable
(r-reduction) FromI -’ ¢, A; Ry; HU{(I",11 — q " A’; Ry)} step to
' q,ARi; HU{(IV,q " A’; Ry)} and
L pi{al HU{(DF ¢, Ay Ry), (T, p " A's Ry)}

wherep is a new propositional variable

LEMMA 13. The new reduction rules are sound and invertibletgiG, andII.

Proof. We just considefi-reduction) (as before disregarding common parts of
the history), the case ¢f-reduction) being very similar. For soundness, we treat
several cases. AsSUrg&Il < v(q). If #&II = 1, then we are done by the first
premise. If#411 < 1, then extend with v(p) = 1 and the result follows from the
second premise. H-ZII > v(q), then we take/(p) = v(II — ¢), and we are done
by the second premise. For invertibility, note that if theclosion is satisfied by
a valuationw, then clearly the first premise is satisfied. For the secoathge, if
v(g) > #5(II U {p}), then it follows for each logic thai(p) < v(II — ¢) and
hence from the conclusion th&t} (I' U {p}) < #5(A U {¢}). ]

THEOREM 14. The new reduction rulegimplication), and (switch) provide
Co-NP decision procedures for the validity problemstoiG, andII.

Proof. As in Proposition 8, for the premis&g,, ..., Q, and conclusior® of
the new reduction rulespmc(Q;) < mme(Q) fori =1,...,n. Moreover each
application of these rules arfdmnplication) gives only a constant increase in the
size (number of symbols) in the query. Hence, to show thatradta is not valid in
L, G, orII, we can apply the new reduction rules (sound and invertiplegmma
13) and(implication) exhaustively (usindswitch) to move between different
databases) until we reach irreducible queries, making aded@rministic choice
of two branches where necessary. The result then follows frbeorem 11. W

3.3 Rules for deciding irreducible queries

As an alternative to polynomial decision procedures, werigm goal-directed
rules below that check validitdirectly for each logic, thereby obtaining an al-
gorithmic interpretation of , G, andIl. We begin by defining a “standard” stock
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of rules for calculi, including a new “mingle” rule that als the combination of
databases and goals.

DEFINITION 15 (Standard Rules). Treandard rulesonsist of the implication
rules,(switch), and:

(mingle) FromT'y 7 ¢, Ay; Ry; HU{(T'9,q F' Ag; Ry)} step to
[, To Ay, Ag; 0 HU{(T1 HF g, Av; Ry), (T2, q F Ags Ro)}

We now define calculi fot., G, andII by extending the standard rules with dif-
ferent restart and success rules, noting that we wrjieand C; for the multiset
andsetsubset relations respectively.

DEFINITION 16 (GDLt). GDt consists of the standard rules plus:

(successy) TH AR;HifAC,, T
(restarty) FromTy F* g, Ay; Ry HU{(To FF Ag; Ro)}
whereR; U Ry = RU {q}, step to
[, Ty F AL Ay Ry HU{(Ty F g, A Ry), (T F7 Ag; Ry}

THEOREM 17. @ succeeds iGDL iff = Q.

Proof. The left-to-right direction requires proving the soundnes$ (mingle),
(successy ), and (restarty ) for £, which we leave as exercises in elementary
arithmetic. For the right-to-left direction we proceed aidws. LetQ = I'; F’
ARy {(Da F? AgiRy), ..., (Tn F' Ap;R,)) be aquery. Ifi=, Q, then the
setO,_Q is inconsistent ovej0, 1]. Hence by linear programming methods there
existA1, 41, ..., An, un € N such that\; > 0 for somel < i < n and:

Ui + ) A S [ J(N + p)T3 U i Ry)
i=1 i=1

1

We show that) succeeds iIGDL by inductionony = >0 (X + ;). If v =1
then we have\; C,,, T'; for somel < i < n, and hence thap succeeds by an
application of(switch) if necessary an@successy ). Fory > 1 we consider
such that\;, > 0. If A, C,, I';, then we are done bfswitch) if necessary and
(successy ). Otherwise, we have € A; where one of the following cases occurs:

1. ¢ € T'; for somej # i with \; > 0. Since we can always applywitch),
we can assume without loss of generality that 1 andj = 2. Now by
applying(mingle) to @ we obtain a querg®)’:

Ty,To — {g} FT Ay — {q}, Ag; 0; {(T1 F* A1; Ry), ..., (T T Ay Ry}
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If A1 > Ao, then:
(A1=A2) A1UA (A1 —{q}UA)UA" Cppy (A1 —A2)T1UA (T Ul —{g})UI”

for A’ = U?:B /\1A1 U U?:l ,ul-Ai andl’ = UZL:3 )\11“1 U UZL:l i (Fl URl)
Since(A1 —X2)+ Ao+ > 1 s A+ i, i < A, by the induction hypothesis,
(' succeeds ilGDL and we are done. The case wheke> ), is very
similar.

2. ¢ € R; for somej with p; > 0. If ¢ # j, then without loss of generality
we assume that= 1 andj = 2. Otherwisei = j, and observe that either
A; C,, I'; and we can applysuccessy ), or there must exist # ¢ such that
eitherA, > 0 or uy, > 0. If the latter, then assume without loss of generality
thati = 1 andk = 2. Now, in both cases, by applyifigestart, ) we obtain:

Q =T, ToF Ar—{g}, Ag; Ri; {(T1 F A Ry), ..., (T ' Ans Ry}

We then proceed similarly to above, separating the poggibithat\; < ps
andug < A1. |

DEFINITION 18 (GDG). GDG consists of the standard rules plus:

(successg) TH A;R;Hif AC,T
(restartg) FromI'y 7 ¢, Ay; R HU{(Ta F* Ag; {q})} step to
[y, Do 7 AL Ag; 0 HU{(Ty H g, A R), (To 7 Ag; {q})}

To show the completeness@D G it will be helpful to have the following lemma,
which establishes (roughly speaking) that we can restrictattention to queries
with only one goal per database.

LEMMA 19. For queriesQ =T' F" Ay,As,R;H,Q, =T " Ay, R; H and
ngl—"—? AQ,R;H:

1. If Eq Q, thenEg Q1 and=g Q.
2. If Q1 and@- succeed ilGDG, then@ suceeds irGDG.

Proof. The first part follows from the definition of validity fo&, the second is
proved by induction on the joint lengths of derivationghfand@. in GDG. R

THEOREM 20. @ succeeds iGDG iff =¢ Q.
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Proof. The left-to-right direction requires checking the sourstnef (mingle),
(successa), and(restartg) for GDG (an easy exercise). For the right-to-left
direction, letQ = Ty 7 Ay; Ry; {(Ta F* Ag; Ry), ..., (Tn H A3 R,)) be a
query, assuming by Lemma 19 th&t;| = 1 fori = 1,...,n. If Eg @ then
the setcg is inconsistent ovej0, 1]. By a result on linear orders (see e[§aaz
et al, 2001 for details), this holds iff there arg,, ..., p.n, and distinctj; for

1 =1,...,msuch that:

(@) pi € Aji andp;11 € T';, URy, fori=1,....,m—1.
(b) pm € A, andp; €T,

We show that such queries are derivabl€&Ib G by induction onm. If m = 1,

then using(switch) if necessary, we succeed singe } = A; C, I';,. For
m > 1, assuming without loss of generality that = 1 andj,,,_1 = 2, we have
pm € A1 andp; € T'y, andp,,,_1 € Ay andp,, € I's U Ry. If p,,, € 'y, then we
apply (mingle) to obtain the query)’:

I‘17F2 - {pm} |_? AZ;(Z);{(FI l_? Al;-Rl)v-' 7(Fn l_? AruRn)}

But now, sinceAs = {p,,—1}, we havep, ..., p,_1 meeting requirements:)
and(b) above, and hence by the induction hypothégisucceeds iGDG. For
the case wherg,,, € Ra, we apply(restartg) to obtain@":

L, To A0 {(Ty F AL Ry, .., (D FT AL RY)Y

Again, sinceAy = {p,,—1}, we havepy, ..., p,,—1 meeting requirements) and
(b) above, and hence by the induction hypothégissucceeds iGDG. [ |

To obtain a calculus foFI, we adapt thérestart, ) rule of GDE to check that
the restart formula used is “zero-ok”, i.e. that the quersassfied whenever this
formula takes valué.

DEFINITION 21 (GDII). GDII is exactly the same as f@& D+t except that for
(restartrr) we add the condition:

e If ¢ € Ry, theng is zero-ok for the conclusion of the rule.

whereq is zero-okfor a queryQ = I'y F7 Ay; Ry; {(Ta F* Ag; Ry), ..., (T,
A,; R,)} if one of the following two conditions holds:

1. geI';forsomei, 1 <i<n.

2. R; = {q} forsomei, 1 < i < n, andp is zero-ok for allp € A,.

LEMMA 22. LetQ =T+’ A;{q}; H beaquery,andle®’ =T F* A;(); H:
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1. If = @ andgq is not zero-ok, thek=11 Q’.
2. If Q' succeeds iGDII, then( succeeds ilGDII.

Proof. The first part follows from the definition of validity fdf, the second via
an induction on the height of a proof f in GDII. |

THEOREM 23. @ succeeds iGDII iff En Q.

Proof. The left-to-right direction follows by checking the soumds of(mingle),
(successm), and(restartr ) for GDII (a straightforward exercise). For the right-
to-left direction, letQ = T'y > Ay; Ri; {(To F¥ Ag; Ry), ..., (Tn FX Ans Ry}
be a query. We can assume by Lemma 22 that all restarts augumri) are
zero-ok. Ifl=rr Q, thenC§ is inconsistent ovef0, 1] and therefore als, 1].
Hence, by linear programming methods there eXistui, ..., An, un € N such
that\; > 0 for somei, 1 < i < n, and:

n

Ui + ) Ai S [ J((N + )T3 U i Ry)
i=1 i=1

We now proceed as foDt with a proof by induction ony = > (A +
ui) that@ succeeds ilGDII, the only difference being that every application of
(restartyr) requires (which holds by assumption) that the restart féaria.zero-
ok. |

EXAMPLE 24. Consider the following atomic query:
pF g {a}: (gt p.p;0)}
In the case of> we apply(mingle) and obtain:

g a0 {0 F @ {a}), (aF" p,p;0)}

which succeeds bfsuccessg) for GDG since{q, p,p} Cs {p, ¢}. Fort onthe
other hand, we apply the-estart, ) rule of GDL, giving:

poa o0 {(pH ¢ {a}), (¢ " p,p;0)}
We now apply(mingle) to get:
papt o0 {(pF ¢ {a}), (a+ p,p:0), (p,a - p.p;0)}

which succeeds bfsuccess, ) in GDE since{p, p,q} C.. {p,q,p}. Moreover,
since in the application dfrestart) we have thay occurs in one of the databases
and is hence zero-ok, we also obtain a prooDII.
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4 Concluding Remarks

Uniform goal-directed rules have been defined for the ingpiial fragments of
the three fundamental fuzzy logiés G, andIl, that can be extended to both
co-NP decision procedures and fully goal-directed calctlitiere remain, how-
ever, a number of issues requiring further attention. Iriipalar, we began this
chapter by recalling logic-programming as a source andlyidg motivation for
the goal-directed paradigm. In order to develop logic paogmning languages for
fuzzy logics, however, various extensions of the proof md#presented here are
required. First of all, a richer propositional languagetdtdoe defined using suit-
able notions of database and goal formulas. Note, howdvat tihe importance
of extending the language may differ depending on the pdatidogic; for ex-
ample,t may be based on a language with justand L, while for G andIT
more connectives are necessary. These issues have beaecetfort andG

in [Metcalfeet al, 2003 and[Metcalfeet al., 20044 respectively; for example,
the following rules are suitable for treating conjunctivealisjunctive goals in all
three logics:

(and) FromI' " AA B, A; R; H step to
I'" A A;R;Handl' H* B,A;R; H

(or)  From['* AV B,A;R; H step to
=" A ARHU{(T" B,A;R)}

For logic programming applications, the language shoutd d&le extended to
the first-order setting, a natural compromise being thenfiert containing all
universally-quantified formulas. In this case, the redurctiules should incor-
porate a suitablenification mechanism. Alsological consequence crucial,
being the basis for fuzzy logic programming methods fountth@literatureg Kla-
wonn and Kruse, 1994; Vojtas, 2001; Smutna-Hlinena amjth¥, 2004 That is,
gueries should be permitted that express that a @dala logical consequence of
a databasg, rather than the internal consequence fifat> G is valid, wherel™

is a t-norm combination of the formulas Bf In the case of andIl these two no-
tions of consequence are different, although they may lag¢a@Via the deduction
theorem for the logics, sd#etcalfeet al, 20044 for details.

From a more theoretical perspective, observe that althougythave defined
uniform goal-directed methods fdr, G, andIl, these results also extend to a
number of other logics. In particular, the uniform rules @viously) sound and
invertible, and provide the basis for decision proceduecesritersectionsof the
three main fuzzy logics discussed and axiomatizelCignoli et al, 200d. The
rules are also sound and invertible fnite-valuedtukasiewicz and Godel logics,
and a number of related fuzzy logics such as Cancellative hagic [Estevaet
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al., 200d. Hence the question remains as to exactly which logics carapwired
using these rules. In particular, it would be interestingliow that the rules are
uniform for all t-norm logics, including Hajek’s logiBL which still lacks a rea-
sonable calculus. Finally, observe that the goal-directdculi fort., G, andII,
are really very closely related, the only differences lyinghe underlying data
structure, sets or multisets, and slight alterations inréstart rules. Moreover,
note that a goal-directed calculus folassical logicis obtained simply by chang-
ing the(mingle) rule in GDG to allow the combination of databases without the
corresponding combination of goals. These observatioresfgrther evidence of
the uniformity of the goal-directed methodology, and moeeerally of the algo-
rithmic proof perspective pioneered by Gabbay.
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