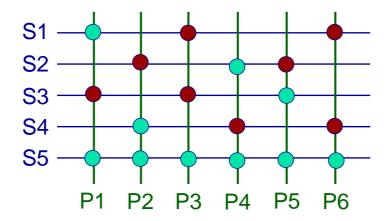
Introduction to Electronic Design Automation (EDA)

張耀文 原著
Yao-Wen Chang
ywchang@cc.ee.ntu.edu.tw
http://cc.ee.ntu.edu.tw/~ywchang
Graduate Institute of Electronics Engineering
Department of Electrical Engineering
National Taiwan University
Taipei 106, Taiwan

Unit 1


1

Administrative Matters

- Time/Location: Tuesday 2:20-5:20pm; EE-II 104
- Instructor: Yao-Wen Chang, Chung-Yang Huang, Chien-Mo Li
- E-mail: {ywchang, ric, cmli}@cc.ee.ntu.edu.tw
- URL: http://cc.ee.ntu.edu.tw/~eda/Course/IntroEDA06
- Office: BL-428; EE-II 444; EE-II 339
- Office Hours: Contact Instructors
- Teaching Assistants
 - _ TBD
- Prerequisites: Computer Programming & logic design.
- Required Text: S. H. Gerez, Algorithms for VLSI Design Automation, John Wiley & Sons, 1999.
- **References:** Cormen, Leiserson, and Rivest, *Introduction to Algorithms*, 2nd Ed., McGraw Hill/MIT Press, 2001.
 - Other supplementary reading materials will be provided.

Course Objectives

- Study techniques for electronic design automation (EDA), a.k.a. computer-aided design (CAD).
- Study IC technology evolution and their impacts on the development of EDA tools
- Study problem-solving (-finding) techniques!!!

Unit 1 NTUEE / Intro. EDA 3

Course Contents

- Introduction to VLSI design flow/styles/automation, technology roadmap, and CMOS Technology
- Algorithmic graph theory
- Computational Complexity and Optimization
- Physical design: partitioning, floorplanning, placement, routing, compaction, deep submicron effects
- Logic synthesis and verification
- (High Level Synthesis)
- Simulation
- Testing

Grading Policy

Grading Policy:

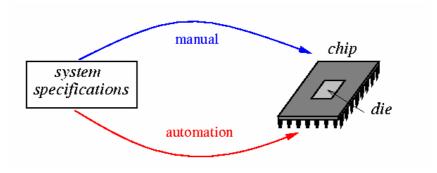
– Homework assignments: 25%

Midterm Exam :20%

Programming assignment: 25%

Final Exam: 30%

Homework: 50% per day late penalty


Due dates on web

• Academic Honesty: Avoiding cheating at all cost.

Unit 1 NTUEE / Intro. EDA 5

Unit 1: Introduction

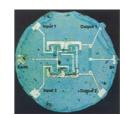
- Course contents:
 - Introduction to VLSI design flow/methodologies/styles
 - Introduction to VLSI design automation tools
 - Semiconductor technology roadmap
 - CMOS technology
- Readings
 - _ Chapters 1-2
 - Appendix A

Milestones for IC Industry

- 1947: Bardeen, Brattain & Shockly invented the transistor, foundation of the IC industry.
- 1952: SONY introduced the first transistor-based radio.
- 1958: Kilby invented integrated circuits (ICs).
- 1965: Moore's law.
- 1968: Noyce and Moore founded Intel.
- 1970: Intel introduced 1 K DRAM.

Vacuum tube

Unit 1



In 1956 John Bardeen, William Shockley and Walter Brattain shared the Nobel Prize in Physics for their discovery of the transistor. Bardeen, Shockly,

Brattain

First transistor

First IC by Noyce

First IC by Kilby

NTUEE / Intro. EDA

.

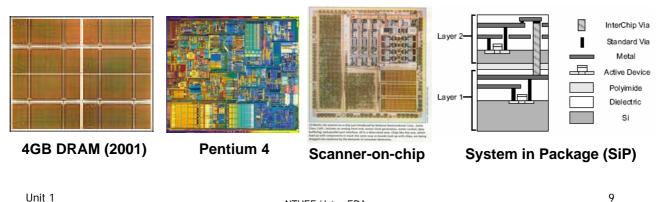
Milestones for IC Industry

- 1971: Intel announced 4-bit 4004 microprocessors (2250 transistors).
- 1976/81: Apple II/IBM PC (technology driver).
- 1984: Xilinx invented FPGA's.
- 1985: Intel began focusing on microprocessor products.
- 1987: TSMC was founded (fabless IC design).
- 1991: ARM introduced its first embeddable RISC IP core (chipless IC design).

Intel founders

4004

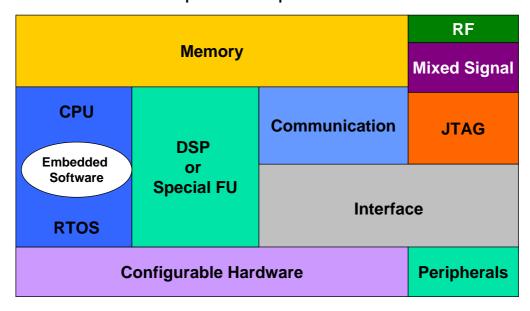
IBM PC

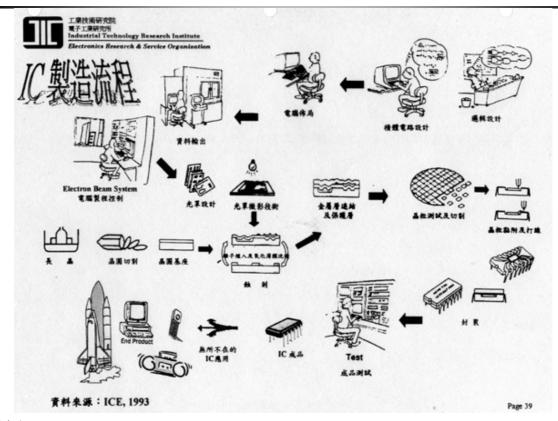


8

Unit 1 NTUEE / Intro. EDA

Milestones for IC Industry (Cont'd)


- 1996: Samsung introduced IG DRAM.
- 1998: IBM announces1GHz experimental microprocessor.
- 1999/earlier: System-on-Chip (SoC) applications.
- 2002/earlier: System-in-Package (SiP) technology.
- An Intel P4 processor contains 42 million transistors (1 billion in 2005)
- Today, we produce > 30 million transistors per person (1 billion/person by 2008).

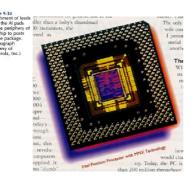

Unit 1 NTUEE / Intro. EDA

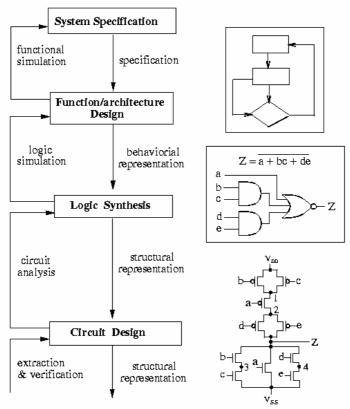
SoC Architecture

 An SoC system typically consists of a collection of components/subsystems that are appropriately interconnected to perform specified functions for users.

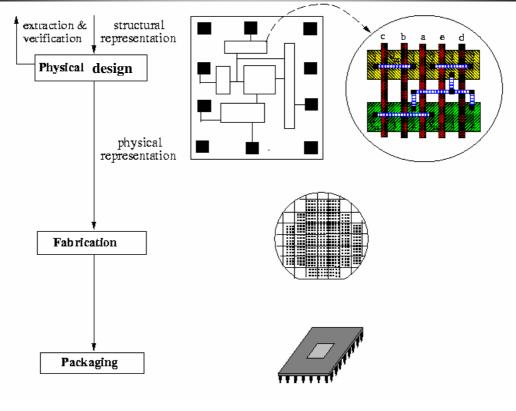
IC Design & Manufacturing Process

Unit 1 NTUEE / Intro. EDA 11


From Wafer to Chip



Traditional VLSI Design Cycles


- 1. System specification
- 2. Functional design
- 3. Logic synthesis
- 4. Circuit design
- 5. Physical design and verification
- 6. Fabrication
- 7. Packaging
- Other tasks involved: testing, simulation, etc.
- Design metrics: area, speed, power dissipation, noise, design time, testability, etc.
- Design revolution: interconnect (not gate) delay dominates circuit performance in deep submicron era.
 - Interconnects are determined in physical design.
 - Shall consider interconnections in early design stages.

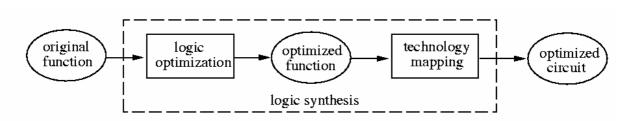
Unit 1 NTUEE / Intro. EDA

Traditional VLSI Design Cycle

Traditional VLSI Design Flow (Cont'd)

Unit 1 NTUEE / Intro. EDA 15

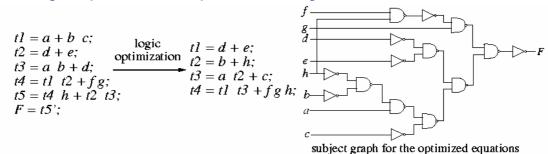
Design Actions


- **Synthesis:** increasing information about the design by providing more detail (e.g., logic synthesis, physical synthesis).
- Analysis: collecting information on the quality of the design (e.g., timing analysis).
- **Verification:** checking whether a synthesis step has left the specification intact (e.g., layout verification).
- Optimization: increasing the quality of the design by rearrangements in a given description (e.g., logic optimizer, timing optimizer).
- Design Management: storage of design data, cooperation between tools, design flow, etc. (e.g., database).

Design Issues and Tools

- System-level design
 - Partitioning into hardware and software, co-design, co-simulation, etc.
 - Cost estimation, design-space exploration
- Algorithmic-level design
 - Behavioral descriptions (e.g., in Verilog, VHDL)
 - High-level simulation
- From algorithms to hardware modules
 - High-level (or architectural) synthesis
- Logic design:
 - Schematic entry
 - Register-transfer level and logic synthesis
 - Gate-level simulation (functionality, power, etc.)
 - Timing analysis
 - Formal verification

Unit 1 NTUEE / Intro. EDA 17


Logic Design/Synthesis

- Logic synthesis programs transform Boolean expressions into logic gate networks in a particular library.
- Optimization goals: minimize area, delay, power, etc
- Technology-independent optimization: logic optimization
 - Optimizes Boolean expression equivalent.
- Technology-dependent optimization: technology mapping/library binding
 - Maps Boolean expressions into a particular cell library.

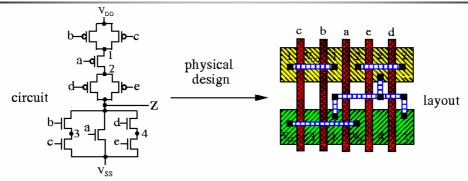
Logic Optimization Examples

- Two-level: minimize the # of product terms.
 - $F = \bar{x_1}\bar{x_2}\bar{x_3} + \bar{x_1}\bar{x_2}x_3 + x_1\bar{x_2}\bar{x_3} + x_1\bar{x_2}x_3 + x_1x_2\bar{x_3} \Rightarrow F = \bar{x_2} + x_1\bar{x_3}.$
- Multi-level: minimize the #'s of literals, variables.
 - E.g., equations are optimized using a smaller number of literals.

 Methods/CAD tools: Quine-McCluskey method (exponential-time exact algorithm), Espresso (heuristics for two-level logic), MIS (heuristics for multi-level logic), Synopsys, etc.

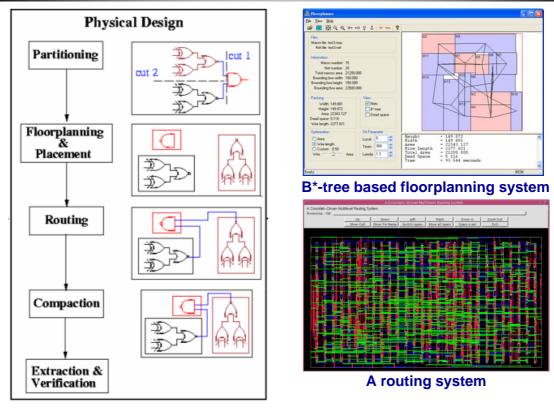
Unit 1 NTUEE / Intro. EDA 19

Design Issues and Tools (Cont'd)

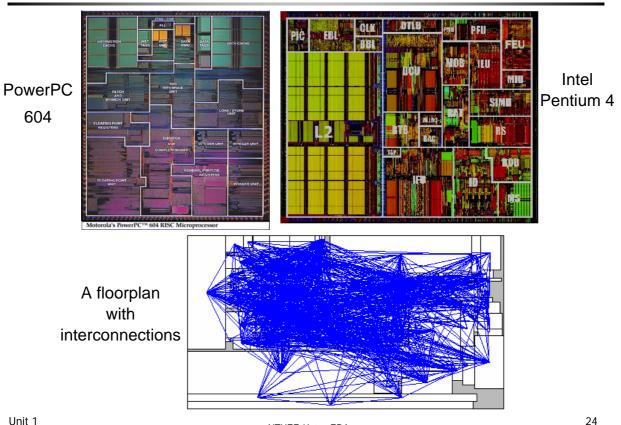

- Transistor-level design
 - Switch-level simulation
 - Circuit simulation
- Physical (layout) design
 - Partitioning
 - Floorplanning and Placement
 - Routing
 - Layout editing and compaction
 - Design-rule checking
 - Layout extraction
- Design management
 - Data bases, frameworks, etc.
- Silicon compilation: from algorithm to mask patterns
 - The *idea* is approached more and more, but still far away from a single *push-buttom* operation

Circuit Simulation of a CMOS Inverter (0.6 μ m)

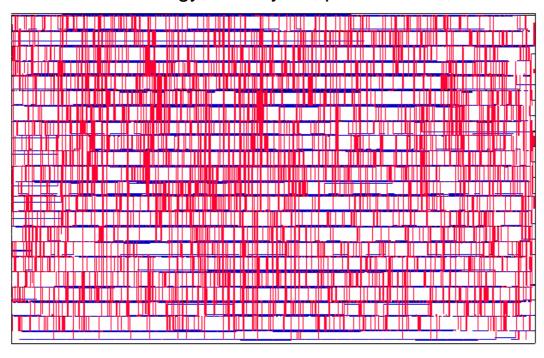
M1 3 2 0 0 nch W=1.2u L=0.6u AS=2.16p PS=4.8u AD=2.16p PD=4.8u M2 3 2 1 1 pch W=1.8u L=0.6u AS=3.24p PS=5.4u AD=3.24p PD=5.4u CL 3 0 0.2pF VDD 1 0 3.3 VIN 2 0 DC 0 PULSE (0 3.3 Ons 100ps 100ps 2.4ns 5ns) .LIB '../mod_06' typical .OPTION NOMOD POST INGOLD=2 NUMDGT=6 BRIEF .DC VIN OV 3.3V 0.001V .PRINT DC V(3) .TRAN 0.001N 5N .PRINT TRAN V(2) V(3) .END v_{out} 2 ns Time Unit 1 21


Physical Design

NTUEE / Intro. EDA

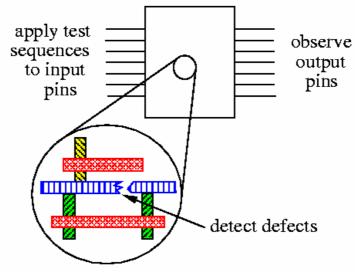

- Physical design converts a circuit description into a geometric description.
- The description is used to manufacture a chip.
- Physical design cycle:
 - 1. Logic partitioning
 - 2. Floorplanning and placement
 - 3. Routing
 - 4. Compaction
- Others: circuit extraction, timing verification and design rule checking

Physical Design Flow

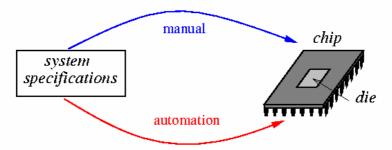

Unit 1 23 NTUEE / Intro. EDA

Floorplan Examples

Routing Example


• 0.18um technology, two layers, pitch = 1 um, 8109 nets.

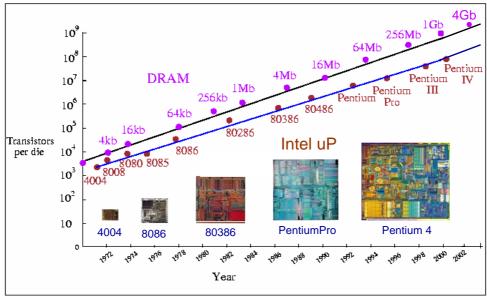
Unit 1 NTUEE / Intro. EDA 25


Testing

- Goal of testing is to ensure defect-free products.
- Need high quality tests that can detect realistic defects
- Varieties of testing: functional testing, performance testing

26

IC Design Considerations



- Several conflicting considerations:
 - Design Complexity: large number of devices/transistors
 - Performance: optimization requirements for high performance
 - Time-to-market: about a 15% gain for early birds
 - Cost: die area, packaging, testing, etc.
 - Others: power, signal integrity (noise, etc.), testability, reliability, manufacturability, etc.

Unit 1 NTUEE / Intro. EDA 27

"Moore's" Law: Driving Technology Advances

- Logic capacity doubles per IC at a regular interval.
- Moore: Logic capacity doubles per IC every two years (1975).
- D. House: Computer performance doubles every 18 months (1975)

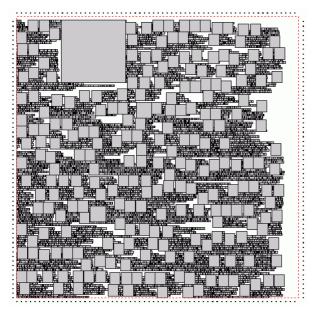
Technology Roadmap for Semiconductors

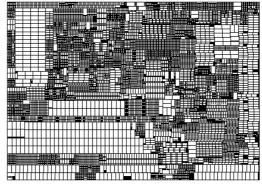
Year	1997	1999	2002	2005	2008	2011	2014
Technology							
node (nm)	250	180	130	100	70	50	35
On-chip local							
clock (GHz)	0.75	1.25	2.1	3.5	6.0	10	16.9
Microprocessor							
chip size (mm^2)	300	340	430	520	620	750	901
Microprocessor							
transistors/chip	11M	21M	76M	200M	520M	1.40B	3.62B
Microprocessor							
cost/transistor	3000	1735	580	255	110	49	22
(×10 ⁻⁸ USD)							
DRAM bits							
per chip	256M	1G	4G	16G	64G	256G	1T
Wiring level	6	6–7	7	7-8	8–9	9	10
Supply voltage							
(V)	1.8-2.5	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6	0.37-0.42
Power (W)	70	90	130	160	170	175	183

- Source: International Technology Roadmap for Semiconductors (ITRS), Nov. 2001. http://www.itrs.net/ntrs/publntrs.nsf.
- Deep submicron technology: node (**feature size**) < 0.25 μ m.
- Nanometer Technology: node < 0.1 μm.

Unit 1 NTUEE / Intro. EDA 29

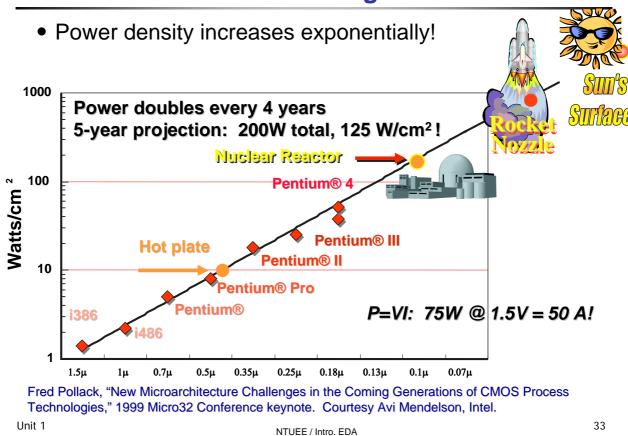
ITRS 2004 Technology Roadmap

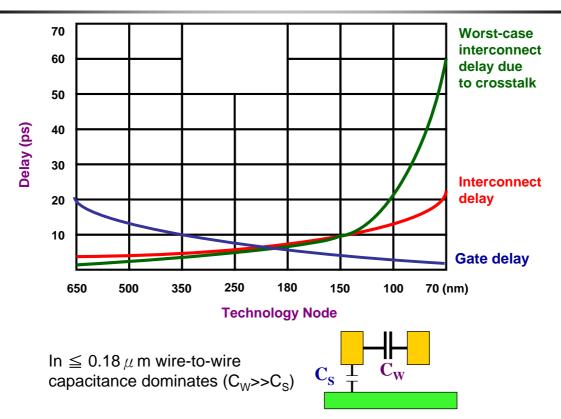

	Year of Production	2003	2004	2005	2006	2007	2008	2009
	Technology Node		hp90			hp65		
	DRAM ½ Pitch (nm)	100	90	80	70	65	57	50
	MPU/ASIC Metal 1 (M1) ½ Pitch (nm)	120	107	95	85	76	67	60
	MPU/ASIC 1/2 Pitch (nm) (Un-contacted Poly)	107	90	80	70	65	57	50
	MPU Printed Gate Length (nm) ††	65	53	45	40	35	32	28
	MPU Physical Gate Length (nm)	45	37	32	28	25	22	20
	SRAM Cell (6-transistor) Area factor ++	120.3	117.8	115.6	113.7	111.9	110.4	109
	Logic Gate (4-transistor) Area factor ++	320	320	320	320	320	320	320
	SRAM Cell (6-transistor) Area efficiency ++	0.63	0.63	0.63	0.63	0.63	0.63	0.63
	Logic Gate (4-transistor) Area efficiency ++	0.50	0.50	0.50	0.50	0.50	0.50	0.50
NEW	SRAM Cell (6-transistor) Area ++	1.23	0.95	0.74	0.58	0.45	0.35	0.28
	SRAM Cell (6-transistor) Area w/overhead ++	2.0	1.5	1.2	0.93	0.73	0.57	0.45
NEW	Logic Gate (4-transistor) Area ++	3.27	2.59	2.06	1.63	1.30	1.03	0.82
	Logic Gate (4-transistor) Area w/overhead ++	6.5	5.2	4.1	3.3	2.6	2.1	1.6
	Transistor density SRAM (Mtransistors/cm ²)	305	393	504	646	827	1,057	1,348
	Transistor density logic (Mtransistors/cm²)	61	77	97	122	154	194	245
	Generation at introduction *		р07с			p10c		
WAS	Functions per chip at introduction (million transistors [Mtransistors])	180	226	285	360	453	571	719
IS	Functions per chip at introduction (million transistors [Mtransistors])	<u>307</u>	<u>386</u>	<u>487</u>	<u>614</u>	<u>773</u>	<u>974</u>	<u>1227</u>
	Chip size at introduction (mm²) ‡	280	280	280	280	280	280	280
	Cost performance MPU (Mtransistors/cm ² at introduction) (including on-chip SRAM) ‡	110	138	174	219	276	348	438
	Generation at production *		p04c			р07с		
	Functions per chip at production (million transistors [Mtransistors])	153	193	243	307	386	487	614
	Chip size at production (mm²) §§	140	140	140	140	140	140	140
	Cost performance MPU (Mtransistors/cm ² at production, including on-chip SRAM) ‡	110	138	174	219	276	348	438

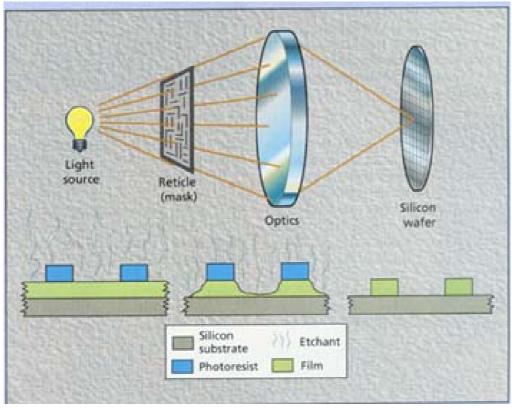

ITRS 2004 Technology Roadmap (cont'd)

	Year of Production	2010	2011	2012	2013	2014	2015	2016	2017	2018
	Technology Node	hp45			hp32			hp22		
WAS	DRAM ½ Pitch (nm)	45		35	32		25	22		18
IS	DRAM ½ Pitch (nm)	45	<u>40</u>	35	32	<u>28</u>	25	22	<u>20</u>	18
WAS	Generation at introduction *	p13c			p16c			р19с		
IS	Generation at introduction *	p13c	_=		p16c	_==		p19c	_=	
WAS	Functions per chip at introduction (million transistors [Mtransistors])	1,546		2,454	3,092		4,908	6,184		9,816
IS	Functions per chip at introduction (million transistors [Mtransistors])	<u>1,546</u>	<u>1,948</u>	<u>2,454</u>	3,092	<u>3,896</u>	<u>4,908</u>	<u>6,184</u>	<u>7,791</u>	<u>9.816</u>
WAS	Chip size at introduction (mm²) ‡	280		280	280		280	280		280
IS	Chip size at introduction (mm²) ‡	280	280	280	280	280	280	280	280	280
WAS	Cost performance MPU (Mtransistors/cm ² at introduction) (including on-chip SRAM) ‡	552		876	1,104		1,753	2,209		3,506
IS	Cost performance MPU (Mtransistors/cm ² at introduction) (including on-chip SRAM) ‡	552	<u>696</u>	876	1,104	<u>1,391</u>	1,753	2,209	<u>2,783</u>	3,506
WAS	Generation at production *	p10c			p13c			p16c		
IS	Generation at production *	p10c	_==		p13c	_==		p16c	_==	
WAS	Functions per chip at production (million transistors [Mtransistors])	773		1,227	1,546		2,454	3,092		4,908
IS	Functions per chip at production (million transistors [Mtransistors])	773	<u>974</u>	1,227	1,546	<u>1,948</u>	2,454	3,092	3,896	4,908
WAS	Chip size at production (mm²) §§	140		140	140		140	140		140
IS	Chip size at production (mm²) §§	140	<u>140</u>	140	140	<u>140</u>	140	140	<u>140</u>	140
WAS	Cost performance MPU (Mtransistors/cm ² at production, including on-chip SRAM) ‡	552		876	1,104		1,753	2,209		3,506
IS	Cost performance MPU (Mtransistors/cm ² at production, including on-chip SRAM) ‡	552	<u>696</u>	876	1,104	<u>1,391</u>	1,753	2,209	2,783	3,506

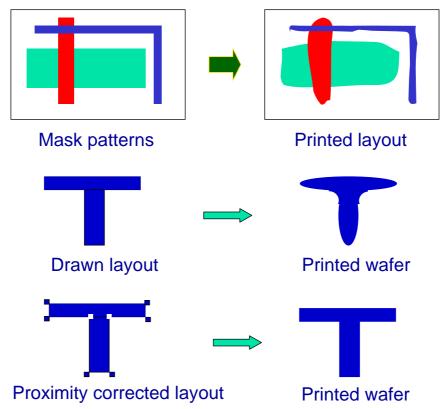
Unit 1 NTUEE / Intro. EDA 31


Design Complexity Increases Dramatically!!

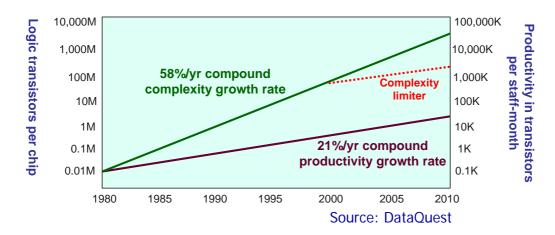



Power Is Another Big Problem!!

Interconnect Dominates Circuit Performance!!



Lithography Process


Unit 1 NTUEE / Intro. EDA 35

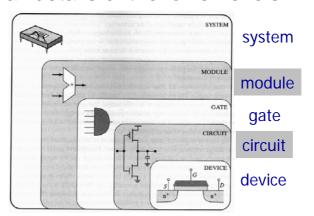
Sub-wavelength Lithography Causes Problems!!

Unit 1 NTUEE / Intro. EDA 36

Design Productivity Crisis

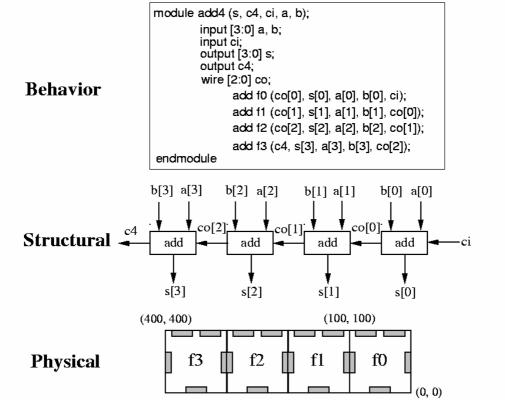
- Human factors may limit design more than technology.
- Keys to solve the productivity crisis: CAD (tool & methodology), hierarchical design, abstraction, IP reuse, platform-based design, etc.

Unit 1 NTUEE / Intro. EDA 37

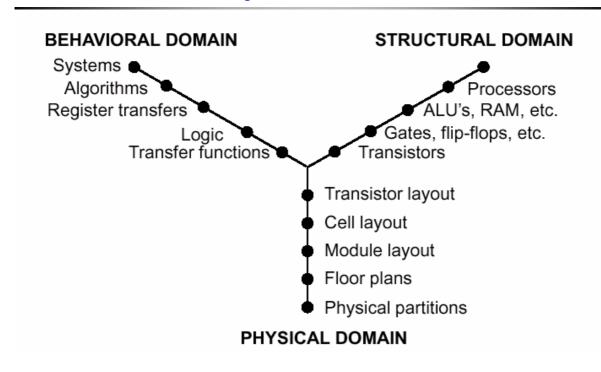

Hierarchical Design

- *Hierarchy:* something is composed of simpler things.
- Design cannot be done in one step ⇒ partition the design hierarchically.

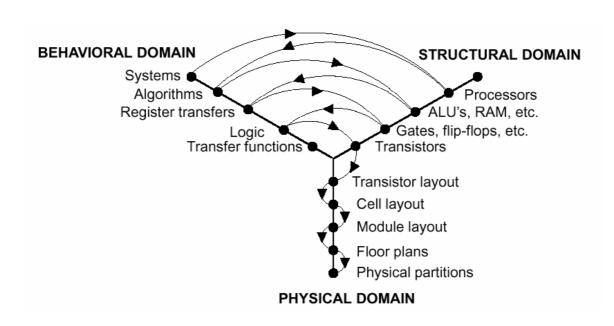
Abstraction


• Abstraction: when looking at a certain level, you don't need to know all details of the lower levels.

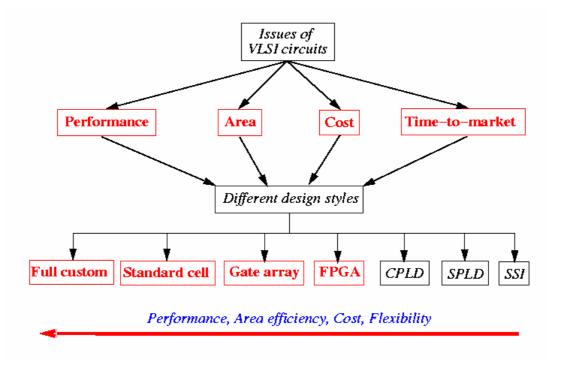
- Design domains:
 - Behavioral: black box view
 - Structural: interconnection of subblocks
 - Physical: layout properties
- Each design domain has its own hierarchy.


Unit 1 NTUEE / Intro. EDA 39

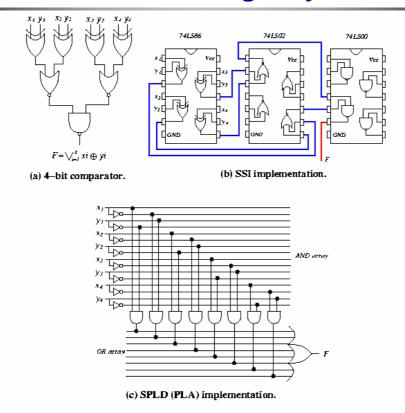
Three Design Views


Unit 1 NTUEE / Intro. EDA 40

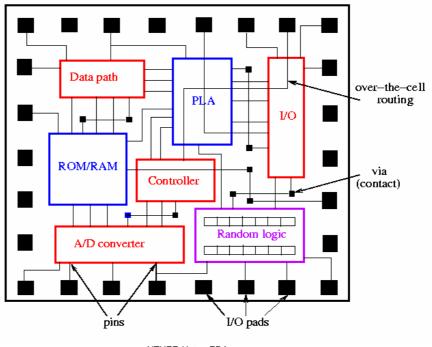
Gajski's Y-Chart


Unit 1 NTUEE / Intro. EDA 41

Top-Down Structural Design

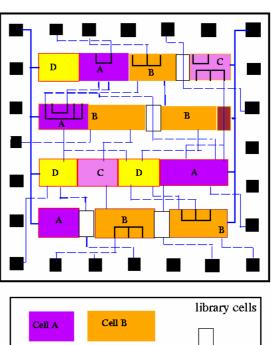

Design Styles

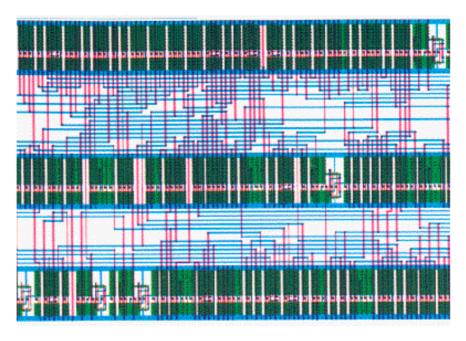
• Specific design styles shall require specific CAD tools


Unit 1 NTUEE / Intro. EDA 43

SSI/SPLD Design Style

Full Custom Design Style

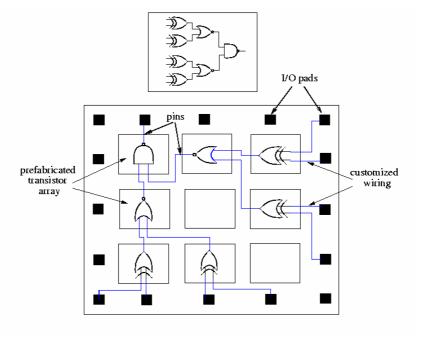

- Designers can control the shape of all mask patterns.
- Designers can specify the design up to the level of individual transistors.


Unit 1 45 NTUEE / Intro. EDA

Standard Cell Design Style

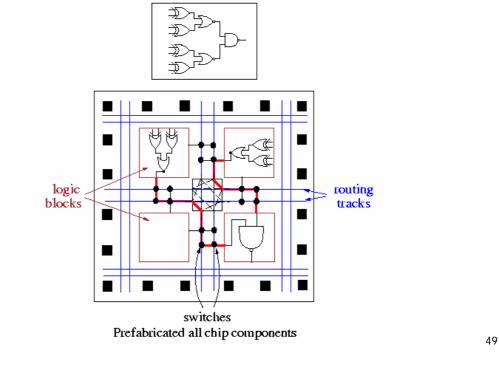
- Selects pre-designed cells (of the same height) to implement logic
- Over-the-cell routing is pervasive in modern designs

Standard Cell Example

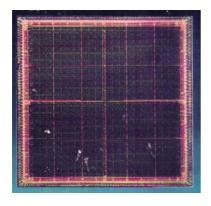


Courtesy of Newton/Pister, UC-Berkeley

Unit 1 NTUEE / Intro. EDA 47


Gate Array Design Style

- Prefabricates a transistor array
- Needs wiring customization to implement logic



FPGA Design Style

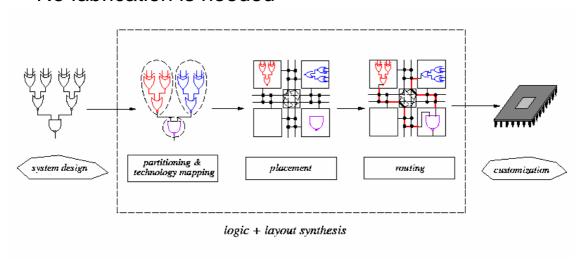
- Logic and interconnects are both prefabricated.
- Illustrated by a symmetric array-based FPGA

Array-Based FPGA Example

Unit 1

Lucent Technologies 15K ORCA FPGA, 1995

- 0.5 um 3LM CMOS
- 2.45 M Transistors
- 1600 Flip-flops
- 25K bit user RAM
- 320 I/Os



Fujitsu's non-volatile Dynamically Programmable Gate Array (DPGA), 2002

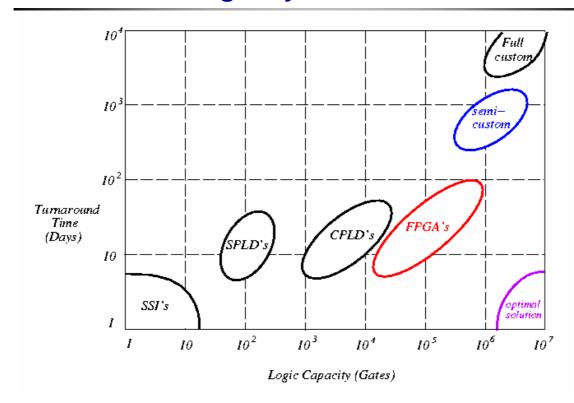
Unit 1 NTUEE / Intro. EDA 50

FPGA Design Process

- Illustrated by a symmetric array-based FPGA
- No fabrication is needed

Unit 1 NTUEE / Intro. EDA 51

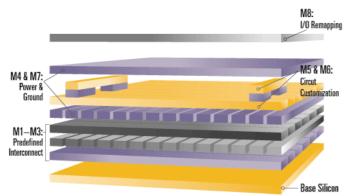
Comparisons of Design Styles

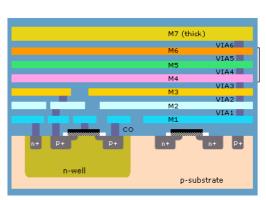

	Full custom	Standard cell	Gate array	FPGA	SPLD
Cell size	variable	fixed height*	fixed	fixed	fixed
Cell type	variable	variable	fixed	programmable	programmable
Cell placement	variable	in row	fixed	fixed	fixed
Interconnections	variable	variable	variable	programmable	programmable

^{*} Uneven height cells are also used.

	Full custom	Standard cell	Gate array	FPGA	SPLD
Fabrication time			+	+++	++
Packing density	+++	++	+		
Unit cost in large quantity	+++	++	+		_
Unit cost in small quantity			+	+++	++
Easy design and simulation			_	++	+
Easy design change			_	++	++
Accuracy of timing simulation	_	_	_	+	++
Chip speed	+++	++	+	_	

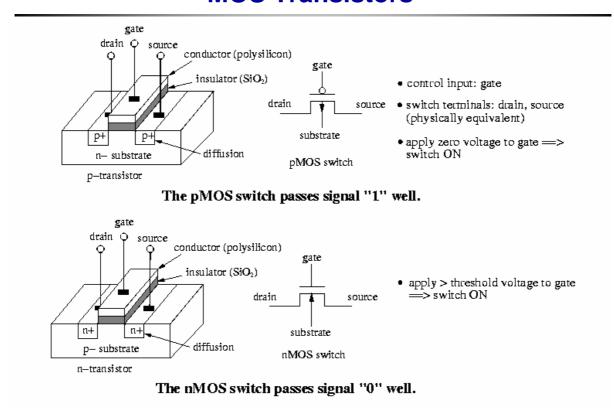
+ desirable; - not desirable


Design Style Trade-offs


Unit 1 NTUEE / Intro. EDA 53

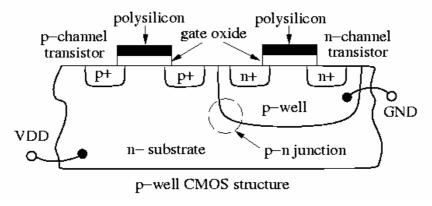
The Structured ASIC Is Coming!

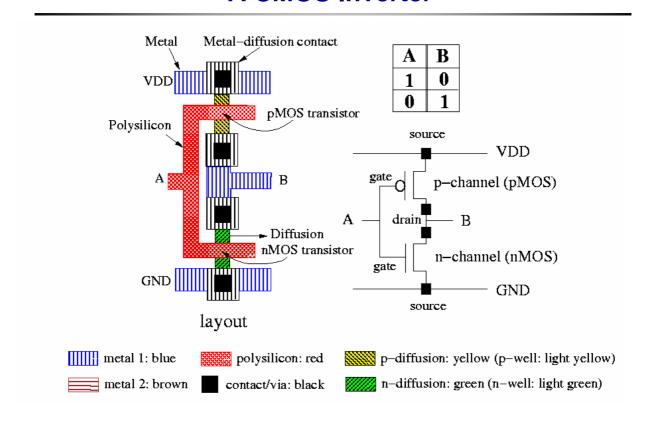
- A structured ASIC consists of predefined metal and via layers, as well as a few of them for customization.
- The predefined layers support power distribution and local communications among the building blocks of the device.
- Advantages: fewer masks (lower cost); easier physical extraction and analysis.



A structured ASIC (M5 & M6 can be customized)

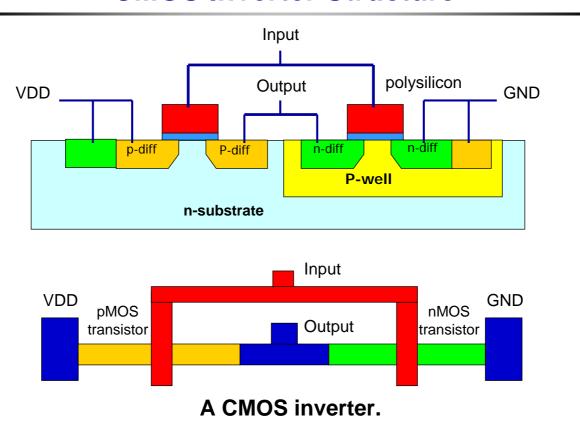
Faraday's 3MPCA structured ASIC (M4--M6 can be customized)


MOS Transistors

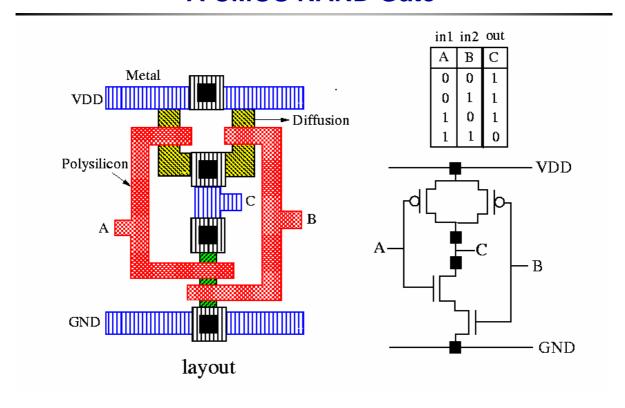

Unit 1 NTUEE / Intro. EDA 55

Complementary MOS (CMOS)

- The most popular VLSI technology (vs. BiCMOS, nMOS).
- CMOS uses both *n*-channel and *p*-channel transistors.
- Advantages: lower power dissipation, higher regularity, more reliable performance, higher noise margin, larger fanout, etc.
- Each type of transistor must sit in a material of the complementary type (the reverse-biased diodes prevent unwanted current flow).

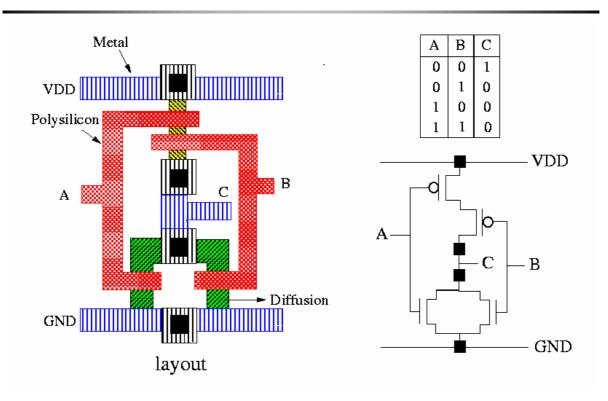


A CMOS Inverter



Unit 1 NTUEE / Intro. EDA 57

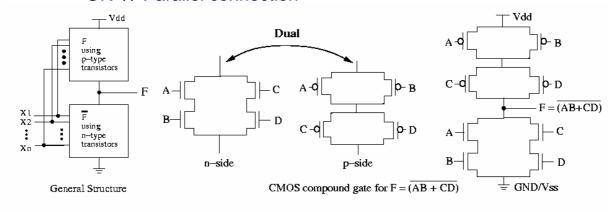
CMOS Inverter Structure



A CMOS NAND Gate

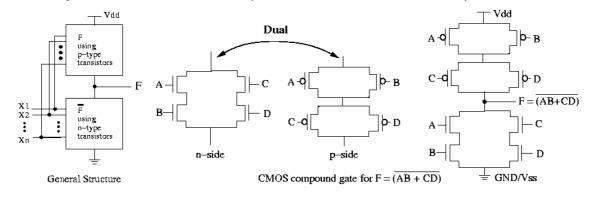
Unit 1 NTUEE / Intro. EDA 59

A CMOS NOR Gate


Basic CMOS Logic Library

Name	Distinctive shape	Algebraic equation	Cost (# of transistors)	Scaled gate delay (ps)
AND	х ү —	F=XY	6	24
OR	х ү ——	F=X+Y	6	24
NOT (inverter/ repeater)	х	F=X	2	10
Buffer (driver/ repeater)	x	F=X	4	20
NAND	х	F=XY	4	14
NOR	х	F= X+Y	4	14
Exclusive-OR (XOR)	х ч	F=XY+XY =X Q Y	14	42

Unit 1 NTUEE / Intro. EDA 61


Construction of Compound Gates

- Example: $F = \overline{A \cdot B + C \cdot D}$.
- Step 1 (n-network): Invert F to derive n-network $(\overline{F} = A \cdot B + C \cdot D)$
- Step 2 (n-network): Make connections of transistors:
 - AND ⇔ Series connection
 - OR ⇔ Parallel connection

Construction of Compound Gates (cont'd)

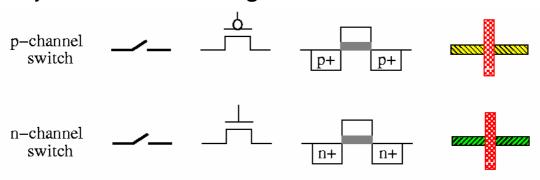

- Step 3 (p-network): Expand F to derive p-network
 - $(F = \overline{AB + CD} = \overline{AB} \cdot \overline{CD} = (\overline{A} + \overline{B}) \cdot (\overline{C} + \overline{D}))$
 - each input is inverted
- Step 4 (p-network): Make connections of transistors (same as Step 2).
- Step 5: Connect the *n*-network to GND (typically, 0V) and the *p*-network to VDD (5V, 3.3V, or 2.5V, etc).

Unit 1 NTUEE / Intro. EDA 63

A Complex CMOS Gate

- The functions realized by the n and p networks must be complementary, and one of the networks must conduct for every input combination.
- Duality is not necessary.

Unit 1 NTUEE / Intro. EDA 64


CMOS Properties

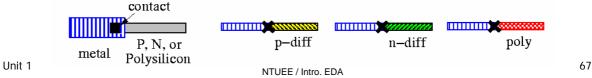
- There is always a path from one supply (VDD or GND) to the output.
- There is never a path from one supply to the other. (This is the basis for the low power dissipation in CMOS--virtually no static power dissipation.)
- There is a momentary drain of current (and thus power consumption) when the gate switches from one state to another.
 - Thus, CMOS circuits have dynamic power dissipation.
 - The amount of power depends on the switching frequency.

Unit 1 NTUEE / Intro. EDA 65

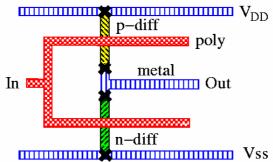
Stick Diagram

- Intermediate representation between the transistor level and the mask (layout) level.
- Gives topological information (identifies different layers and their relationship)
- Assumes that wires have no width.
- Possible to translate stick diagram automatically to layout with correct design rules.

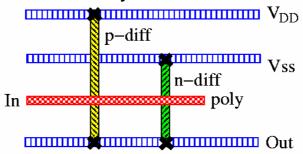
Stick Diagram (cont'd)


• When the same materials (on the same layer) touch or cross, they are connected and belong to the same electrical node.

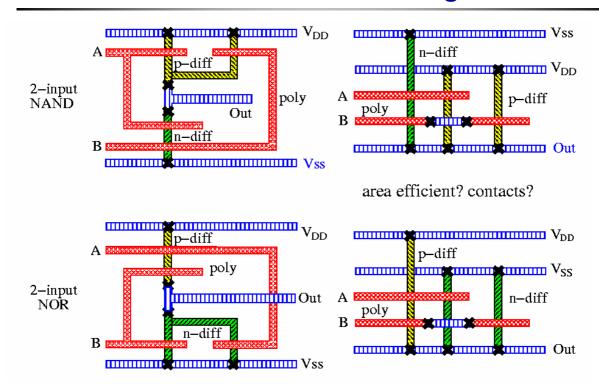
- When **polysilicon** crosses N or P **diffusion**, an N or P transistor is formed.
 - Polysilicon is drawn on top of diffusion.
 - Diffusion must be drawn connecting the source and the drain.
 - Gate is automatically self-aligned during fabrication.



 When a metal line needs to be connected to one of the other three conductors, a contact cut (via) is required.

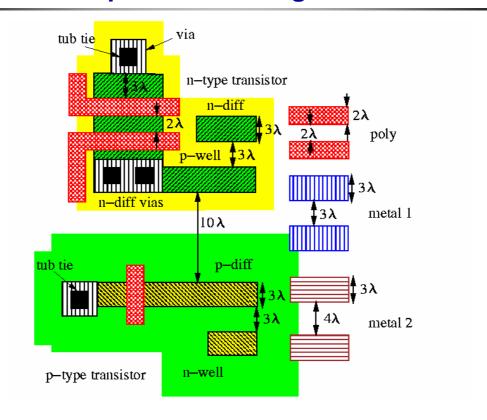


CMOS Inverter Stick Diagrams


Basic layout

More area efficient layout

CMOS NAND/NOR Stick Diagrams



Unit 1 NTUEE / Intro. EDA 69

Design Rules

- Layout rules are used for preparing the masks for fabrication.
- Fabrication processes have inherent limitations in accuracy.
- Design rules specify geometry of masks to optimize yield and reliability (trade-offs: area, yield, reliability).
- Three major rules:
 - Wire width: Minimum dimension associated with a given feature.
 - Wire separation: Allowable separation.
 - Contact: overlap rules.
- Two major approaches:
 - "Micron" rules: stated at micron resolution.
 - λ rules: simplified micron rules with limited scaling attributes.
- λ may be viewed as the size of minimum feature.
- Design rules represent a tolerance which insures very high probability of correct fabrication (not a hard boundary between correct and incorrect fabrication).
- Design rules are determined by experience.

Example CMOS Design Rules

Unit 1 NTUEE / Intro. EDA 71

MOSIS Layout Design Rules

- MOSIS design rules (SCMOS rules) are available at http://www.mosis.org.
- 3 basic design rules: wire width, wire separation, contact rule.
- MOSIS design rule examples

R1	Min active area width	3 λ
R3	Min poly width	2 λ
R4	Min poly spacing	2 λ
R5	Min gate extension of poly over active	2 λ
R8	Min metal width	3 λ
R9	Min metal spacing	3 λ
R10	Poly contact size	2 λ
R11	Min poly contact spacing	2 λ