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Abstract: In the side-chambers of radial turbomachinery, which are rotor–stator cavities, complex
flow patterns develop that contribute substantially to axial thrust on the shaft and frictional torque
on the rotor. Moreover, leakage flow through the side-chambers may occur in both centripetal
and centrifugal directions which significantly influences rotor–stator cavity flow and has to be
carefully taken into account in the design process: precise correlations quantifying the effects of
rotor–stator cavity flow are needed to design reliable, highly efficient turbomachines. This paper
presents an experimental investigation of centripetal leakage flow with and without pre-swirl in
rotor–stator cavities through combining the experimental results of two test rigs: a hydraulic test
rig covering the Reynolds number range of 4× 105 ≤ Re ≤ 3× 106 and a test rig for gaseous
rotor–stator cavity flow operating at 2× 107 ≤ Re ≤ 2× 108. This covers the operating ranges of
hydraulic and thermal turbomachinery. In rotor–stator cavities, the Reynolds number Re is defined as
Re = Ωb2/ν with angular rotor velocity Ω, rotor outer radius b and kinematic viscosity ν. The influence
of circumferential Reynolds number, axial gap width and centripetal through-flow on the radial
pressure distribution, axial thrust and frictional torque is presented, with the through-flow being
characterised by its mass flow rate and swirl angle at the inlet. The results present a comprehensive
insight into the flow in rotor–stator cavities with superposed centripetal through-flow and provide
an extended database to aid the turbomachinery design process.

Keywords: rotor–stator cavity; leakage flow; centripetal through-flow; disc torque; axial thrust; radial
pressure distribution

1. Introduction

In rotor–stator cavities, which are found in all radial turbomachines, complex flow patterns occur
and influence axial thrust on the shaft as well as disc-friction torque. During the design phase of radial
turbomachinery, to design axial bearings reliably we have to know the maximum axial thrust on the
shaft with sufficient precision. Moreover, if the geometry of the cavities is designed carefully, losses
due to friction can be minimised and efficiency maximised.

The first thorough experimental study of turbulent rotor–stator cavity flow was conducted by
Daily and Nece [1], who designed a test rig able to reach Reynolds numbers up to Re = 107. Based on
their torque and velocity distribution measurements, they identify two turbulent flow regimes in which
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rotor and stator boundary layers are either merged or separated. When these layers are separated,
velocity measurements indicate the existence of a fluid core in the cavity middle, where radial velocity
is negligible and circumferential velocity varies only with radius, not with axial coordinate. The
existence of these flow regimes depends on circumferential Reynolds number Re and relative axial
gap width, defined as the ratio of axial gap width to disc outer radius. They also provide empirical
correlations for the torque coefficient cM for each flow regime, allowing turbomachinery designers to
estimate disc torque and machine efficiency during the design phase.

In [2], models for rotor–stator cavity flow with through-flow are introduced which are based on
assumed velocity profiles and wall shear stress measurements. The models allow for the calculation of
radial pressure distribution and axial thrust for the cases of closed cavity and centripetal through-flow.
Additionally, in the through-flow case, they take into account the angular momentum flux into the
cavity. This paper tests the validity of these models at a large Reynolds number range.

Radtke and Ziemann [3] experimentally investigated not only closed rotor–stator cavities, but
also centripetal and centrifugal through-flow with and without preswirl alongside variations of the
cavity geometry. We compare our measurement results to theirs.

Poncet et al. [4] investigated turbulent flow with separated boundary layers in a rotor–stator
cavity with and without centripetal through-flow in the Reynolds number range of 1.04× 106 ≤ Re ≤
4.2× 106 at relative cavity widths of 0.024 ≤ G ≤ 0.048. In their paper, Laser Doppler Anemometry
measurements of core swirl ratio are compared to predictions based on measurements of radial
pressure distribution. Using the 1/7 power law for the boundary layer velocity profiles, they derived a
theoretical model for the core swirl ratio K (r) which is calibrated using the measurement results. The
validity of their model is reported for a wide range of Reynolds numbers and through-flow mass fluxes.

Poncet et al. [5] proposed a new Reynolds stress turbulence model suitable for numerical
investigations of rotor–stator cavity flow that is reported to be superior to k-ε turbulence models
for this application. They investigated the mean flow structure, the core swirl ratio, the radial
pressure distribution and turbulence statistics for closed cavities, and centripetal as well as centrifugal
through-flow. Their paper gives a comprehensive summary of flow structures with separated boundary
layers inside rotor–stator cavities.

Will [6] investigated centripetal and centrifugal flow in a rotor–stator cavity, using analytical,
experimental and numerical methods. He developed a new one-dimensional flow model of core swirl
ratio, assuming separated boundary layers and using the logarithmic law of the wall.

Wang et al. [7] performed particle image velocimetry measurements in a water-filled microscale
rotor–stator cavity made of glass with smooth compared to hydrophobic discs at low Reynolds
numbers. They found a reduction of torque of more than 50 % when using hydrophobic rotors, which
was attributed to a thin air layer between disc and liquid in the case of hydrophobic rotor surfaces and
to a reduction of turbulence intensity.

In the present study, experimental results of two rotor–stator test rigs are combined to study how
disc torque, radial pressure distribution and axial thrust are influenced by Reynolds number, cavity
width, centripetal through-flow and angular momentum flux into the cavity. The small test rig is
operated with water, can be equipped with different discs with an outer radius of b = 110 mm each
and is made of PMMA (Plexiglass). It covers a Reynolds number range of 3.8× 105 ≤ Re ≤ 3.2× 106

and an axial gap width range of 0.0182 ≤ G ≤ 0.0728. A more detailed description can be found
in [8–10]. The large test rig, first introduced by Barabas et al. [11], can reach Reynolds numbers up
to Re = 2.5× 108 since it has a large disc radius and is operated with carbon dioxide. Relative gap
widths of 0.0125 ≤ G ≤ 0.0375 are investigated in this test rig. Both rigs allow the superimposition of
centripetal through-flow with different inlet swirl angles. Only corotating inlet swirl is investigated.

2. Rotor–Stator Cavity Test Rigs, Measurement Procedures and Uncertainty Calculation

A schematic of the large rotor–stator test rig used in this study is given in Figure 1. The rotor has
angular velocity Ω, outer radius b and hub radius a. Cavity width is given by distance s. Through-flow
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with mass flow rate ṁ enters the cavity through a centripetal swirl generator, which has inlet width
d, and exits axially at the hub. Swirl generators are changed to create through-flow with different
inlet swirl angles α. In the case of a closed cavity, the swirl generator is replaced by a ring structure,
resulting in a cylindrical shroud without any opening. The rig is cooled by water to remove the heat
generated by fluid friction.Version March 27, 2020 submitted to Int. J. Turbomach. Propuls. Power 3 of 17
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Figure 1. A schematic of the large rotor–stator cavity test rig. The dashed lines indicate the pressure
measurements; measured torque coefficients cM correspond to the torque acting on the surface indicated
by the red line.

A detailed drawing of the small test rig can be seen in ([10], Figure 33), including the sensors used.
It is constructed similarly to the large test rig but does not have a hub in its front cavity. Additionally,
it does not need to be cooled.

To determine the axial force resulting from the radial pressure distribution in the front cavity
of the small test rig, the following measurement technique was used; greater detail is given in [10].
Tension–compression force transducers and a linear ball bearing are used to measure the axial thrust
on the rotor and the shaft. The sum of the axial forces on both parts is given by

Fa = Fab − Faf =
∫

Ab

pb (r)dA−
∫

Af

pf (r)dA = −πa2 p (b)− πΩ2ρ
[
cFb

[
b4 − a4

]
− cFfb4

]
(1)

where Fa is the axial force measured by tension–compression force transducers, and Fab and Faf are the
axial forces due to the pressure pb in the back and the pressure pf in the front cavity, respectively. The
radial pressure distribution in the back and front cavity is characterised by the axial thrust coefficients
cFb and cFf, respectively, which are defined as

cFb =
π
[
b2 − a2] p (r = b)− Fab

πρΩ2 [b4 − a4]
(2)

cFf =
πb2 p (r = b)− Faf

πρΩ2b4 . (3)

In the case of a closed cavity without through-flow and equal widths of the front and back cavity
(s = sback), identical flow structures in the front and back cavity are assumed, which leads to the
assumption cFb = cFf. In this test rig configuration, the axial thrust coefficient

cFb =
Fa + πa2 p (r = b)

πρΩ2a4 (4)
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of the back cavity is calculated from measurements of the net axial thrust Fa. The measured coefficient
cFb is transformed into a correlation, which is then used to calculate the axial thrust coefficients cFf in the
front cavity from net axial force Fa measurements using Equation (1) in different test rig configurations.

The large test rig has nine taps to measure radial pressure distribution, to which differential
pressure transducers are connected to measure the pressure differences p (r = b) − p (ri) directly
(see Figure 1). In addition, temperature and absolute pressure are measured at the outer radius b.
From these measurements, density ρ and kinematic viscosity ν are calculated. The radial pressure
distribution in the small test rig is measured at twelve distinct radial positions; density and kinematic
viscosity are assumed to be constant [10]. The pressure coefficient

cp (r) =
p (r = b)− p (r)

ρΩ2b2 (5)

is a dimensionless measure of static pressure p (r) relative to that at disc outer radius b.
The axial thrust coefficient cF can be calculated using the pressure coefficient cp by

cF =
2

b2 − r2
p, min

b∫

rp, min

cp (r) r dr (6)

and this procedure is employed for the large test rig. The minimal pressure measurement radius
is denoted by rp, min (see Figure 1). The integral is approximated using the trapezoidal rule, i.e.,
pressure coefficient cp is assumed to vary linearly with the radius r between two adjacent pressure
measurement taps.

The torque coefficient

cM = 2
Mfront

ρΩ2b5 (7)

measures the fluid friction torque Mfront on the front-facing side of the disc, indicated by a red line
in Figure 1. It is calculated as follows for both test rigs (see [10]): the overall torque Mall is measured
between the motor and the coupling, and includes the friction torque Mfriction generated by the bearings
and the fluid friction on the shaft. The fluid friction in the back cavity is modelled by a correlation,
cM, back, and the friction on the cylindrical outer rotor surface is given by the correlation cM, cylindrical.
This leads to

cM = 2
Mall −Mfriction (ρ, Ω)

ρΩ2b5 − cM, back − cM, cylindrical (8)

where Mfriction (ρ, Ω) is a correlation derived from measurements with no disc installed. In the large
test rig, this is conducted at different CO2 pressure levels p and the shaft rotating at varying angular
velocities Ω. In the small test rig, only the angular velocity Ω is varied [10].

The correlation cM, back is found by setting the front and back cavity widths equal, s = sback, with
the test rigs in the closed cavity configuration and by assuming cM, back = cM, front. The overall torque
Mall at varying angular velocities Ω and pressure levels p in the large test rig is measured, then cM, back
is found from

2cM, back = 2
Mall −Mfriction (ρ, Ω)

ρΩ2b5 − cM, cylindrical. (9)

In [3], a correlation cM, cylindrical is given which predicts the friction on the cylindrical outer rotor
surface in rotor–stator cavities. It is assumed that this correlation holds for the friction on this surface
in the large test rig, although extrapolation to Reynolds numbers higher than those investigated by
Radtke and Ziemann [3] is required. This correlation is used in the torque coefficient calculation in
the large test rig case. The friction on the cylindrical outer rotor surface is neglected in the small test
rig [10].
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For the large test rig, the calculation of torque coefficient uncertainties includes measurement
uncertainties for the following quantities: overall torque Mall, breakaway torque, temperature T,
absolute static pressure p, angular rotor velocity Ω and manufacturing tolerances. The uncertainty
of the correlation cM, cylindrical is not known and not included in the calculation, meaning that the
torque coefficient uncertainties calculated here provide a lower bound; in reality they may be higher.
To calculate these uncertainties, the first-order error propagation method is used as presented in [12].
Uncertainties of measurements in the small test rig are taken from [10].

The curve fit and model parameter uncertainty calculations are carried out as presented in [13];
the method is briefly summarised here. Let x = (x1, · · · , xn)

T be a column vector of measured values
with associated covariances u

(
xi, xj

)
and y = (y1, · · · , ym)

T be a column vector of unknown model
parameters. The column vector of model equations is given by M (x, y) = 0. The measured values
x will most likely not fulfil the model M (x, y) = 0 for any vector of model parameters y; therefore,
the vector x is replaced by a column vector z = (z1, . . . , zn)

T of free parameters that should fulfil the
model equations M (z, y) = 0 while minimising the squared error norm χ2. This error norm assigns
a high weight to measurement results with low uncertainties and vice versa. The problem is solved,
using a column vector b of Lagrange multipliers, for the unknown column vector w =

(
bT , yT , zT)T

by finding a Karush–Kuhn–Tucker point w∗ of the Lagrange function

L (x, w) =
1
2

χ2 + MT (z, y) · b =
1
2
[z− x]T ·U−1

xx · [z− x] + MT (z, y) · b. (10)

Here, (Uxx)ij = u
(

xi, xj
)

are components of the matrix Uxx of measurement covariances. The
Karush–Kuhn–Tucker conditions for this problem, which are solved for w, read

M∗ (x, w) =




∂L
∂b (x, w)
∂L
∂y (x, w)
∂L
∂z (x, w)


 =




M (z, y)
∂MT

∂y (z, y) · b
z− x + Uxx · ∂MT

∂z (z, y) · b


 = 0. (11)

A solution w∗to these conditions includes the vector y∗ of optimal model parameters.
The covariances u

(
w∗i , w∗j

)
, including the covariances u

(
y∗i , y∗j

)
of optimal model parameters

y∗, are derived by first order error propagation and are given by

Uw∗w∗ = Q (w = w∗) ·Uxx ·QT (w = w∗) (12)

Q (w) = −
[

∂M∗

∂w
(x, w)

]−1
· ∂M∗

∂x
(x, w) . (13)

Here, (Uw∗w∗)ij = u
(

w∗i , w∗j
)

are the components of the matrix Uw∗w∗ of covariances of the vector w∗.

The standard uncertainties u
(
y∗i
)

are then given by u
(
y∗i
)
=
√

u
(
y∗i , y∗i

)
.

If the uncertainties of the measured values are unknown, the curve fit method reduces to
calculating the Karush–Kuhn–Tucker point y∗ that minimises the squared error norm 1/2 MT (x, y∗) ·
M (x, y∗). In this case, all measured values x are equally weighted.

3. Closed Cavity

The flow in a closed cavity with a cylindrical shroud but without preswirl guide vanes is taken as
the reference configuration, the configuration originally studied by Daily and Nece [1]. In this section,
the dependency of the torque coefficient, the pressure coefficient and the axial thrust coefficient on the
circumferential Reynolds number and the relative axial gap width are investigated. In later sections,
the influence of centripetal through-flow is compared to this reference configuration.
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3.1. Torque Coefficient

In the radial turbomachinery design process, frictional losses in side chambers should be
minimised. The gap width has a significant influence on frictional losses; the correlations by Daily
and Nece [1] showed that disc torque is minimal in the transition zone between the two flow regimes.
Moreover, they found that for merged and separated boundary layers, the torque coefficient cM is
proportional to Re−0.25 and Re−0.20, respectively.

Figure 2 compares torque measurements of closed cavities with hydraulically smooth discs from
the small, water-operated test rig from [10], the large carbon dioxide test rig, and the test bench used by
Radtke and Ziemann [3], and gives the correlations provided by Daily and Nece [1]. All uncertainties
shown as error bars in figures are 99 % (2.576 standard deviations) confidence intervals; all those
quoted in text are 68 % (1 standard deviation) intervals.

Figure 2. Measured torque coefficients (see Equation (7)) of closed rotor–stator cavities with
hydraulically smooth disc. The lines belonging to measurement points are best curve fits. “Hu
(2018)” refers to [10], “R., Z. (1982)” to [3], and “D., N. (1960)” to [1].

The low torque coefficient values of the small test rig are a result of the hydrophobic properties
of the material used and its low surface roughness: PMMA is used for both the disc and the casing;
its transparency implies that its surface is very smooth. In the large, carbon dioxide operated test rig,
the installed disc is polished and hydraulically smooth at all Reynolds numbers investigated. Optical
measurements of the disc surface do not show any significant roughness. In contrast, the shroud and
the casing are rough, the roughness of the latter being approximately 10 µm tip-to-tip. Moreover, holes
are drilled in the cylindrical outer disc surface for balancing purposes, which increases the torque. All
these aspects influence torque magnitude and make a direct comparison of the different test rig results
difficult. Therefore, only the behaviour of the torque coefficients with varying Reynolds number and
different axial gap widths is investigated.

For the small test rig, the change in torque coefficient with increasing Reynolds number shows
a good correlation with the results of Daily and Nece [1], with torque coefficient being proportional
to Re−0.253± 0.010 and Re−0.223± 0.009 for the small cavity width G = 0.0182 and the large cavity width
G = 0.0728, respectively. According to Daily and Nece [1], measurements at the small cavity width
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G = 0.0182 are in the merged boundary layer regime, while those at the large cavity width G = 0.0728
feature separated boundary layers. In this range of Reynolds number up to Re = 4× 106 and with
incompressible fluids, no deviation from the predictions made by Daily and Nece [1] can be seen.

The large test rig and that of Radtke and Ziemann [3] are operated with compressible gases, carbon
dioxide and air, respectively. Furthermore, they operate in Reynolds number regions of Re ≥ 3× 106.
Torque data from these test rigs show that by increasing the Reynolds number Re, the torque coefficient
cM decreases significantly more slowly than in the Reynolds number range of Re ≤ 4× 106: the
largest torque coefficient decrease is proportional to Re−0.134± 0.003 (large test rig, G = 0.0125), while
the slowest is proportional to Re−0.07 ([3], G = 0.0125), as shown by the curve fits in Figure 2. This
suggests that the regimes introduced by Daily and Nece [1] cannot reliably be applied to rotor–stator
cavities at Reynolds numbers Re ≥ 107. It is important to note that the behaviour of the torque
coefficient differs for each test rig with respect to the relative cavity width: the data by Radtke and
Ziemann [3] show that with increasing relative cavity width, the exponent c in cM ∝ Rec decreases,
while the data from the large test rig show the opposite: with increasing relative cavity width, the
exponent c increases.

3.2. Radial Pressure Distribution

A radial pressure gradient develops in rotor–stator cavities, which exerts axial thrust on the rotor
disc or on the shaft in a radial turbomachine. To predict this precisely, the radial pressure distribution
must be known for the operating point of the machine.

Kurokawa and Sakuma [2] proposed two models to calculate the core swirl ratio K = uϕ/Ωr (with
circumferential velocity uϕ at the cavity middle z = s/2) and the pressure coefficient cp (r). Both
models are applicable to rotor–stator cavity flow without through-flow as well as with centripetal
through-flow. Each model is based on the characteristics of one of the two flow regimes identified
by Daily and Nece [1]. The interference gap model assumes the absence of a rotating core, the presence
of boundary layers on the rotor and the stator with a thickness of half the cavity width each, and
velocity distributions according to the 1/7 power law. In the non-interference gap model, a rotating core
with axially constant circumferential and vanishing radial velocity is assumed to exist between the
boundary layers. The models take into account the circumferential Reynolds number Re; additionally,
the interference gap model includes the relative cavity width G, but the non-interference gap model
does not. In the case of closed cavity flow, no other variables are taken into account.

Figure 3 shows the variation of the radial pressure distribution for a range of circumferential
Reynolds numbers at a small cavity width. Measurement data for the small test rig are taken from [10].
According to Kurokawa and Sakuma [2], only the small test rig operates in the non-interference
gap region and all other measurements are at operating conditions with interfering boundary layers.
Measurements in the Reynolds number range of 1.5× 106 ≤ Re ≤ 2.6× 107 show that with increasing
Reynolds number, the radial pressure gradient increases, and at Re ≈ 2.6× 107 the radial pressure
gradient is greatest. However, although the Kurokawa and Sakuma models predict similar behaviour
with increasing Reynolds numbers in this range, their predictions deviate significantly from the
observed data, especially at low relative radii r/b. In addition, a further increase of the Reynolds
number Re to the range of Re ≥ 3× 107 leads to a decrease of the radial pressure gradient, while the
models by Kurokawa and Sakuma [2] predict a continued increase. Note that in the small test rig,
the changes in radial pressure gradient with Reynolds number are small for the relative cavity width
G = 0.0182 [10], thus only one representative set of measurements is shown.



Int. J. Turbomach. Propuls. Power 2020, 5, 7 8 of 17

Figure 3. Radial pressure distribution cp (r) (see Equation (5)) at small cavity widths with closed
cavities. The markers denote measurements; lines are predictions using the models proposed by
Kurokawa and Sakuma [2]. r/b is the radial position relative to the discs’ outer radius. “Hu (2018)”
refers to [10], and “R., Z. (1982)” to [3].

3.3. Axial Thrust Coefficient

In Figure 4, axial thrust coefficients cF are plotted against Reynolds numbers Re for different
relative cavity widths G alongside predictions by the models given in Kurokawa and Sakuma [2]. The
axial thrust coefficient decreases as cavity width increases and as Reynolds number increases. For the
small test rig, cF decreases significantly faster with increasing Reynolds number than for the large
test rig. Moreover, with small relative cavity width G = 0.0182, the decrease in axial thrust coefficient
slows down for Reynolds numbers Re ≥ 2× 106, and thus its slope in this range is much closer to the
slope of the axial thrust coefficients obtained from the large test rig. This change in slope indicates a
change in flow characteristics, for example, an increasing influence of turbulence. Further research is
needed to investigate this phenomenon.

Considering the whole Reynolds number range of 3.8× 105 ≤ Re ≤ 2.5× 108 and all axial
gap widths investigated, a continuous decrease of axial thrust coefficients with increasing Reynolds
numbers is apparent. There is no hint of discontinuities or other phenomena in the Reynolds number
range where no measurement data are available. Fitting the axial thrust coefficients cF measured in the
small and the large test rig to a curve results in the empirical approximation

cF = 3.76× 10−2 + 2.28× 10−2
[
10−7Re

]−0.505
. (14)

This curve is plotted in Figure 4 as a brown dotted line.
It is again apparent that the flow models by Kurokawa and Sakuma [2] fail to capture the variation

of axial thrust with Reynolds number, but the influence of different cavity widths is reproduced
qualitatively. Measurements published by Radtke and Ziemann [3] are much closer to predictions by
Kurokawa and Sakuma [2] than to the results of the small and the large test rig, and do not show any
significant influence of the cavity width.
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Figure 4. Change of axial thrust coefficient cF with Reynolds number Re. Markers are measurements
of the large test rig, the small test rig by Hu [10], and the test rig by Radtke and Ziemann [3]. Lines of
the same colour as a set of markers are predictions by the models given in [2]. Lines and markers of the
same colour share operating conditions, i.e. their axial cavity widths G are the same for both the large
and small test rig. The final curve is a best fit to the measurement results of the large test rig and the
data of Hu [10]. Uncertainties are neglected in the fit.

4. Centripetal Through-Flow

In a radial turbomachine, superposed centripetal through-flow can occur in a side chamber,
significantly influencing the coefficients investigated earlier. The mass flow through the cavity is given
by the through-flow coefficient

cD =
ṁ

ρΩb3 (15)

with cD < 0 for centripetal through-flow. The small and large test rigs can operate at through-flow
coefficient ranges of −6.64× 10−3 ≤ cD ≤ 0 and −1.45× 10−3 ≤ cD ≤ 0, respectively.

A significant amount of angular momentum can be carried into the rotor–stator cavity if the inflow
has a circumferential velocity component; this angular momentum flow is given by the coefficient

cL =
ṁ2 tan α

4π2ρ2b5Ω2d
(16)

where α is the preswirl guide vane angle relative to the radial direction. With a preswirl angle
of α = 0°, radial inflow occurs and no angular momentum flows into the cavity, resulting in an
angular momentum coefficient of cL = 0. Corotational swirl corresponds to preswirl angles of α > 0°,
with the angular momentum coefficient cL being positive. The small test rig covers the range of
0 ≤ cL ≤ 9.6× 10−5 and the large one 0 ≤ cL ≤ 1.6× 10−5.

It is important to note that computational fluid dynamics simulations along with measurements
in the small test rig not presented here show a significant influence of centripetal inlet area on the
results: a jet develops at the inlet, with smaller inlet areas generating higher velocity jets for the same
mass flow rate. The inlet gap widths d are 3.75× 10−3 and 1.82× 10−2 times the disc radius b for the
large and small test rig, respectively. Results are presented separately.

4.1. Large Test Rig

The large test rig has four different configurations: in addition to the closed cavity, one of three
different preswirl guide vanes for centripetal through-flow may be installed. The preswirl angles
investigated are 0°, 26° and 52°.
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Figure 5 illustrates the torque coefficients cM measured with and without centripetal through-flow
for a relative gap width of G = 0.0125 and in the Reynolds number range of 7.5× 107 ≤ Re ≤ 9.6× 107.
It is apparent that with increasing centripetal mass flow (cD decreasing below zero), the torque
coefficient cM first decreases, reaches a minimum and then increases to higher values than that of
the closed cavity configuration. The torque coefficient minima are all found at through-flow mass
flux coefficients of cD ≈ −6.1× 10−4, but at different angular momentum flow coefficients cL. This
indicates that the point where the minima occur depends only on mass flow, and not on inlet swirl
angle. However, the torque coefficient values strongly depend on the angular momentum flow into the
cavity, with high preswirl angles leading to lower torque coefficients at the same mass flux coefficients.

Figure 5. Change of measured torque coefficients cM with through-flow coefficient cD and angular
momentum coefficient cL at the relative gap width of G = 0.0125 and in the Reynolds number range of
7.5× 107 ≤ Re ≤ 9.6× 107: the closed cavity configuration is compared to centripetal through-flow at
preswirl angles of 0°, 26° and 52°.

For large Reynolds numbers of Re ≥ 1.8× 108 shown in Figure 6, the decline of torque coefficients
from radial inflow to a preswirl angle of 26° is much larger than for the moderate Reynolds numbers
in Figure 5, but the torque coefficients at preswirl angles 26° and 52° differ significantly only at high
through-flow mass flux (small through-flow coefficient values cD < 0). Minimum torque coefficients
are found at cD ≈ −3.7× 10−4 for radial inflow and the 26° preswirl angle, but at cD ≤ −5× 10−4

for the 52° preswirl angle. For this gap width and Reynolds number range, the angular momentum
flux entering the cavity plays an important role: for radial inflow, where by definition cL = 0, the
minimum torque coefficient is cM = 8× 10−4, but with increasing angular momentum inflow in the
case of corotating preswirl, the torque coefficient quickly drops to values below 6.5× 10−4.
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Figure 6. Torque coefficients cM measured at the relative gap width of G = 0.0125 and in the Reynolds
number range of 1.8× 108 ≤ Re ≤ 2.9× 108: The closed cavity configuration is compared to centripetal
through-flow at three different preswirl angles.

With a relative cavity width of G = 0.0375 and a Reynolds number of 7.5× 107 ≤ Re ≤ 9.6× 107,
the torque coefficient behaves as shown in Figure 7. The only difference in experimental set-up from
that of Figure 5 is that the cavity width is three times larger. Again, torque coefficients are significantly
higher with radial inflow (α = 0°, no preswirl) than with preswirl, but while a difference between
preswirl angles of 26° and 52° is observed at the smaller cavity width, no significant difference is
observed here. For this larger cavity width, the minima of the torque coefficient seem to be shifted to
smaller through-flow mass flux coefficients compared to the small cavity width, but this conclusion is
not certain since the uncertainties of the measured torque coefficient are about as large as the change
in the torque coefficients itself.

The explanation for greater torque coefficients in the case of radial inflow, which has been
observed, is as follows. If through-flow enters the cavity radially, i.e., with a preswirl angle of α = 0°,
it creates a large gradient in the axial direction between the circumferential velocities of the fluid
and disc close to its outer radius. This gives rise to a large drag, resulting in torque coefficients
significantly higher than in the closed cavity or the centripetal through-flow case with corotating
preswirl. The difference in circumferential velocity between the inflow and the disc is smaller with
corotating preswirl, therefore the velocity gradient, drag and torque coefficient decrease.

The development of axial thrust coefficients with centripetal through-flow is shown in Figure 8
for the same measurements that are shown in Figure 5 (G = 0.0125, 7.5× 107 ≤ Re ≤ 9.6× 107):
centripetal through-flow significantly increases the thrust coefficient as essentially it is an accelerated
flow which results in a larger radial pressure gradient. With increasing centripetal mass flow
(decreasing cD), the axial thrust coefficient reaches a maximum for preswirl angles of 26° and 52°
at a through-flow coefficient of cD ≈ −1.1× 10−3. For radial inflow, it seems that the thrust coefficient
converges towards a maximum, too, which is outside of the investigated through-flow mass flux range.
For this gap width and Reynolds number, centripetal through-flow with preswirl angles of 26° and
52° generates higher axial thrust coefficients compared to radial inflow with a preswirl angle of 0°.
The small differences in the axial thrust coefficients between measurements with preswirl angles of
26° and 52° are not considered significant, because the experiment at the preswirl angle of 52° was
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conducted at a slightly higher Reynolds number than those for 26°. The angular momentum coefficient
cL alone is again insufficient to describe the axial thrust behaviour because multiple different axial
thrust coefficient values are observed for one angular momentum coefficient value.

Figure 7. Torque coefficients cM measured at the relative gap width of G = 0.0375 and in the Reynolds
number range of 7.5× 107 ≤ Re ≤ 9.6× 107: The closed cavity configuration is compared to centripetal
through-flow at three different preswirl angles.

Figure 8. Change of measured axial thrust coefficients cF with through-flow coefficient cD and angular
momentum coefficient cL at the relative gap width of G = 0.0125 and in the Reynolds number range of
7.5× 107 ≤ Re ≤ 9.6× 107: the closed cavity configuration is compared to centripetal through-flow at
preswirl angles of 0°, 26° and 52°.



Int. J. Turbomach. Propuls. Power 2020, 5, 7 13 of 17

To investigate the influence on axial thrust of mass and angular momentum flow into the cavity,
the radial pressure distribution of the closed cavity configuration and the centripetal through-flow
case with 52° preswirl angle is plotted in Figure 9. To provide a better view of the pressure gradients,
markers and error bars are omitted. With increasing centripetal through-flow, the pressure at relative
radii of r/b < 0.7 decreases as indicated by larger pressure coefficient values cp. Simultaneously, the
pressure at relative radii of 0.75 < r/b < 1 increases, leading to lower pressure coefficients compared
to the closed cavity configuration. Since in the computation of axial thrust coefficients the pressure
coefficients are weighted with the radial position r, a small pressure increase at large radii can balance
larger pressure drops at small radii. This happens at the maxima of axial thrust coefficients as at this
point a change in the radial pressure distribution does not cause a change in cF.

Figure 9. Measured radial pressure distribution at the relative cavity width of G = 0.0125 and in the
Reynolds number range of 7.5× 107 ≤ Re ≤ 9.6× 107: the closed cavity configuration is compared to
centripetal through-flow at the preswirl angle of 52°.

4.2. Small Test Rig

In Figure 10, axial thrust coefficients cF and torque coefficients cM measured in the small test rig
with the cavity closed are compared to those obtained with radial inflow for the small relative cavity
width of G = 0.0182. The result shows an almost linear increase of thrust and torque coefficient with
decreasing through-flow coefficient cD, with the slope depending on the circumferential Reynolds
number: as Reynolds number increases, the slopes ∂ cM/∂ cD and ∂ cF/∂ cD decrease.

In comparison to the results of the large test rig, it appears that the torque coefficient minima,
observed in the large test rig for moderate through-flow mass flow rates and radial inflow, do not
appear. The axial thrust coefficients of the large test rig with radial inflow, plotted in Figure 8, increase
with decreasing through-flow coefficients, just as in the small test rig. However, in the large test rig,
this increase decelerates with decreasing through-flow coefficients, while, in the small test rig, no
deceleration is observable.

In Figure 11, the influence of preswirl angle on torque and axial thrust coefficient for the small
test rig is presented. It is important to note that, in this figure, the Reynolds number of the data points
is found on the lower horizontal axes while the through-flow coefficient is found on the upper ones.
The torque coefficient behaviour with varying preswirl angles is similar to that observed in the large
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test rig: when the preswirl angle increases from 0° (radial inflow) to 26°, the torque coefficient drops
sharply, while a further increase of the preswirl angle to 52° only leads to a marginal decrease of the
torque coefficient compared to the results with a preswirl angle of 26°. Regarding the thrust coefficient,
it is found that an increase of the preswirl angle increases the thrust coefficient, as in the large test
rig. Interestingly, this increase is very small at the operating point Re ≈ 2× 106, cD ≈ −3× 10−3, but
larger at all other points.

Figure 10. Axial thrust coefficients cF and torque coefficients cM measured in the small test rig
(compare [10]) at the small relative cavity width of G = 0.0182: shown are results of a closed cavity
(cD = 0) and of radial inflow (α = 0°, cL = 0, cD < 0).

Figure 11. The influence of the preswirl angle on torque (cM) and axial thrust coefficients (cF) in the
small test rig (compare [10]) with the relative cavity width set to G = 0.0182. For the results shown
here, the product of through-flow coefficient cD and Reynolds number Re is constant. The horizontal
error bars refer to the Reynolds number uncertainties.
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5. Conclusions

In the closed cavity configuration and in the Reynolds number range of Re ≤ 3.2× 106, the
decrease of torque coefficient with increasing Reynolds number behaves in the same way as found
experimentally by Daily and Nece [1] and as predicted by Kurokawa and Toyokura [14]. For Reynolds
numbers Re ≥ 3× 106, torque coefficient decreases significantly more slowly with increasing Reynolds
number. This behaviour is observed in two different test rigs with two different compressible fluids
(the large carbon-dioxide-operated test rig used here and the air-operated test rig built by Radtke and
Ziemann [3]).

In both the small and large test rigs and in the closed cavity case, axial thrust coefficient
is found to decrease with increasing Reynolds number. Neither of the models proposed by
Kurokawa and Sakuma [2] predicts this behaviour. In the large test rig at the small cavity width,
the radial pressure gradient decreases with increasing Reynolds number. However, the model
by Kurokawa and Sakuma [2] applicable to this case predicts the opposite behaviour. However,
these models capture the influence of the relative axial gap width qualitatively: with increasing
Reynolds number, axial thrust coefficient decreases; with increasing cavity width, axial thrust
coefficient increases.

In the large test rig with centripetal through-flow, as mass flow coefficient decreases, torque
coefficient first decreases to a minimum and then increases. The torque coefficient minima are found at
different mass flow coefficients, depending on the specific Reynolds number, relative axial gap width,
and preswirl angle. Such minima are not found in the small, water-operated test rig, where in contrast
centripetal through-flow with radial inflow increases torque coefficients.

In both the large and small test rigs, increasing the preswirl angle from 0° to 26° leads to a reduction
of torque coefficient. No significant differences between preswirl angles of 26° and 52° were observed,
with one exception: in the large test rig, at Reynolds numbers in the range of 7.5× 107 ≤ Re ≤ 9.6× 107,
at the small cavity width of G = 0.0125, and when the preswirl angle was increased to 52°, a further
reduction of torque coefficient was observed.

For the small gap width G = 0.0125 and a Reynolds number range of 7.5× 107 ≤ Re ≤ 9.6× 107,
a mass flow coefficient of cD < 0 with any preswirl angle investigated lead to a larger axial thrust
coefficient than that of the closed cavity configuration without through-flow. Characteristic maxima
of axial thrust coefficients are observed for preswirl angles of 26° and 52°. For radial inflow, the
coefficients seem to converge towards a maximum, which lies outside the test rig’s operating range.
Almost the same behaviour of axial thrust coefficients is observed in the small test rig with radial
inflow, where centripetal through-flow increases the axial thrust coefficients, but no signs of maxima
are found. Preswirl angle was also found to influence axial thrust coefficient, with an increase in
preswirl angle resulting in an increase in the coefficient in both the large and small test rigs.

Finally, the increase of axial thrust coefficient with centripetal through-flow and a preswirl angle
of 52° observed in the large test rig is a result of the pressure increasing at relative radii of r/b > 0.75
and decreasing at relative radii of r/b < 0.7 compared to the radial pressure distribution of the closed
cavity case.
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Abbreviations

The following abbreviations and mathematical symbols are used in this manuscript:

PMMA Polymethyl Methacrylate
a Hub radius
b Disc radius
b, b∗ Column vector of Lagrange multipliers, used in curve fits
cD Mass flow coefficient
cF Axial thrust coefficient as a function of cp (large test rig)
cFb, cFf Axial thrust coefficient in back and front cavity, respectively (small test rig)
cL Through-flow angular momentum coefficient
cM Torque coefficient for one disc side
cp Pressure coefficient
d Width of centripetal through-flow inlet gap
Fa, Fab, Faf Axial thrust, axial thrust in back and front cavity
G Relative axial gap width
i, j Indices of matrix components
k Turbulence kinetic energy
K Core swirl ratio
ṁ Mass flow rate of through-flow
M (x, y), M∗ (x, w) Column vector of model functions/extended model functions
p (r) Pressure at radial position r
pb (r), pf (r) Pressure at radial position r in back and front cavity, respectively
Q (w) Sensitivity matrix, used in curve fit error propagation
r Radial position 0 ≤ r ≤ b
Re, Rer Circumferential Reynolds number, local Reynolds number
s, sback Axial gap width, axial gap width of back cavity
Mall, Mfriction, Mfront Overall torque, friction torque and torque on front disc face
Uxx, Uw∗w∗ , uij Matrices of covariances, covariance components
uϕ Circumferential fluid velocity
w, w∗ Column vector of all unknown values, used in curve fits
rp, min Minimal radial pressure measurement position
x = (x1, · · · , xn)

T Column vector of measured values, used in curve fits
y = (y1, · · · , ym)

T , y∗ Column vector of model parameters, used in curve fits
z Axial coordinate 0 ≤ z ≤ s
z = (z1, . . . , zn)

T , z∗ Column vector of fitted values, replaces x in model function
α Swirl angle of the preswirl generator
ε Dissipation rate of the turbulent kinetic energy k
ν Kinematic viscosity
ρ Density
χ2 Squared error norm, used in curve fits
Ω Angular velocity of the rotor
L Lagrange function
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