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Abstract 
 
This paper discusses the determination of the parity of a string of N binary digits, the well-known 

problem in classical as well as quantum information processing. It can be formulated as an oracle 

problem. It has been established that quantum algorithms require at least N /2 oracle calls. We 

present an algorithm that reaches this lower bound and is also optimal in terms of additional gate 

operations required. 
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1 Introducing Quantum Computing 

 
      Quantum computing is a promising approach of computation that is based on equations 

from Quantum Mechanics.  

 

A Bit is the basic computational unit of computing. It encodes a 0 or a 1.  A register of n bits 

can store ANY n-bit number. A qubit (quantum bit) exists in a superposition of states, and 

encodes the values 1 and 0 simultaneously.  A quantum register of n qubits stores ALL n-bit 

numbers, i.e. 2
n
 values[1]. 

 

Quantum State 

 

      The quantum state |ψ〉 represents a qubit if there are α, β ∈ C, where C is the set of Complex 

numbers, such that  

|ψ〉〉〉〉 = α|0〉〉〉〉 + β|1〉〉〉〉            or 

|ψ〉〉〉〉 = sin θθθθ |0〉〉〉〉 + cos θθθθ |1〉〉〉〉 
 

With |α|
2
 + |β|

2
 =1. |0〉 and |1〉 are the computational basis states. Measuring the state |ψ〉 with 

respect to {|0〉, |1〉} basis will give |0〉 with probability |α|
2 

and |1〉 with probability |β|
2
 . The 

states |+〉 and |–〉 defined as 
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Matrix notation  

 

A 2-level quantum system can store a single qubit state .We will have 

Also, we can say that:  |0〉 = 01      and |1

 

The symbol |.〉 is called a ket, while the symbol 

transpose of |ψ〉 

where z1,…, zn ∈ Complex. 

 

Writing |1〉 〈0| + |0〉 〈1| means mapping |1

 

Combing Qubits  

 

Let A and B be quantum systems with state spaces H

quantum system is  

For two qubits, 

 

 
 

 

This is made by tensor product 

This means that : 

• An operation on a single qubit will in general affect all coefficients of the joint state 

vector. 

• A single qubit operation is highly parallel operation.  

• Adding a single quantum bit doubles the memory

 

A note about operations on a Quantum Computer is that apart from measurements 

(Input/Output Operations) any quantum operation 

vectors and output vectors have the same number of components), 

I is the identity matrix), Reversible

ψ
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level quantum system can store a single qubit state .We will have  

              
= 01      and |1〉 = 10.   That is |x〉 = binary (x + 1). 

, while the symbol 〈.| is called a bra. 〈ψ| represents the conjugate 

          

1| means mapping |1〉 to 〈0| and |0〉 to 〈1|.  Note that |ψ〉 〈ψ| = 1 .

Let A and B be quantum systems with state spaces HA and HB , the state space of the joint 

 

 

 

An operation on a single qubit will in general affect all coefficients of the joint state 

A single qubit operation is highly parallel operation.   

Adding a single quantum bit doubles the memory 

A note about operations on a Quantum Computer is that apart from measurements 

(Input/Output Operations) any quantum operation U is Linear, Length-preserving 

vectors and output vectors have the same number of components), Unitary (i.e. UU 
t

Reversible, and Deterministic . 
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the conjugate 

| = 1 . 

, the state space of the joint 

An operation on a single qubit will in general affect all coefficients of the joint state 

A note about operations on a Quantum Computer is that apart from measurements 

rving (i.e. input 
t
 = I , where 
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For detailed discussions on quantum computing and information, you can selectively refer to 

([2], [3], [4]). 

 

2. Simulating Quantum Algorithms. 
 

      Any simulator for quantum algorithms must be capable of performing heavy mathematical 

matrix transforms. The design of the simulator itself usually takes the form of circuit model of 

connected gates. 

 

The circuit model of computation is equivalent to Turing machine model but is nearer to real 

computers ([2]).       The building blocks that can build any circuit are called logic gates. The 

functionality of logic gates is described in terms of truth table, which specifies all possible 

configurations of input and the corresponding output. The elementary logic gates with their 

truth tables are given below, where A and B denote inputs and F denotes output. 
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(Figure 2: elementary classical logic gates) 

      A set of connected gates accomplishing a certain computation is called a circuit. A gate 

called XOR (exclusive OR) and its inverse are given below. Actually, XOR is a common used 

circuit, so we handle it as if it is an elementary gate. 

 

                     

 
(Figure 3: another two elementary logic gates) 

 

Note that: the NOT gate is reversible (as you can guess the input for any given output), while 

the AND gate is irreversible , so we can say that the AND gate erases information. 

 

Quantum gates are the same as the classical ones, but with maintaining the Reversibility and 

Length-preserving by usually outputting extra bits (ancilla bits) which usually correspond to a 

sufficient number of the inputs. For example, the quantum XOR gate takes two inputs, x and y 

say , and outputs x and the main output that is x ⊕⊕⊕⊕y. 

|x, y〉〉〉〉 ���� |x, x ⊕⊕⊕⊕ y〉〉〉〉 
When studying quantum gates we usually classify them according to the number of qubits the 

gate operates on into 1D (1 dimensional), 2D, and 3D. The common 1D quantum gates are: 
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The common 2D quantum gates are CNOT and SWAP. The CNOT (Controlled-Not) is 

quantum version of the XOR operation and it indicates the interaction between two qubits. This 

gate has many representations besides        

|x, y〉〉〉〉 ���� |x, x ⊕⊕⊕⊕ y 
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I/O transform

 

 

(Figure 4: 

 

Block diagram and function 

If first qubit is set then, apply NOT on the second qubit, else do nothing

 

The SWAP gate can be derived from successive 

 

The common 3D quantum gates are 

controlled 3D versions of   CNOT 

quantum circuit models, you can refer to ([6], [7]) and ([1], [3]) respectively.

 

3. Parity  

 

Digital information processing relie

The most basic form of error detection checks the parity, which indicates if the number of 1’s in 

a binary string is even or odd.  

 

The number of computational steps required to determine the parit

linearly with the length of the string; this holds true for classical as well as for quantum 

information processors [19]. Quantum algorithms can reduce the number of steps required by a 

factor of 2 compared to classical algor
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I/O transform Gate  

 

 
first input is the 

control (black) 

Matrix  

 

(Figure 4: Different representations of CNOT gate) 

 
If first qubit is set then, apply NOT on the second qubit, else do nothing 

gate can be derived from successive CNOT gates. 

   

The common 3D quantum gates are Toffoli and Fredkin which may be considered as the 

CNOT and SWAP, respectively. For more about classical and 

quantum circuit models, you can refer to ([6], [7]) and ([1], [3]) respectively. 

Digital information processing relies on a number of error checking and correction algorithms. 

The most basic form of error detection checks the parity, which indicates if the number of 1’s in 

The number of computational steps required to determine the parity of a binary string increases 

linearly with the length of the string; this holds true for classical as well as for quantum 

information processors [19]. Quantum algorithms can reduce the number of steps required by a 

factor of 2 compared to classical algorithms [19], [20]. 
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respectively. For more about classical and 

s on a number of error checking and correction algorithms. 

The most basic form of error detection checks the parity, which indicates if the number of 1’s in 

y of a binary string increases 

linearly with the length of the string; this holds true for classical as well as for quantum 

information processors [19]. Quantum algorithms can reduce the number of steps required by a 
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(Figure 5: Parity algorithm for n=2 qubits  and n=3 bottom) 

 

4. Grover Database search  

 
    Classically, searching a database of N elements for a certain element to specify its index 

requires O(N) comparisons, and 








2

N
O

 on average. Grover's algorithm achieves the same in 

( )NO  ([18]). Figure 8 shows a sample database. 

index value 

1 Chicago 
2 Cairo 

3 Mansoura 

M  M  
(figure 8: sample search database) 

 

     Grover's algorithm operates an N-element database, which sometimes is called Quantum 

Auto-associative Memory (QuAM). The basic idea of Grover's algorithm is to perform a check 

on all the elements several times and gradually increase the amplitude of the required state. 

After ( )NO  iterations, a measurement operation will give the correct answer with probability 

close to 1. 

  

In the sample database,  |x〉 and |I(x)〉 correspond to indices and values respectively. Unitary 

operators applied are:  

U1= I – 2 |w〉〉〉〉 〈〈〈〈w| 

U2= 2 | p0〉〉〉〉 〈〈〈〈 p0| – I 

where | p0〉 is the initial state of the database and |w〉 , a target state. When a target state |w〉 is 0, 

then  
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U2 is a reverse transformation on the average, and is called a Diffusion operator. U1 is a 

transformation of selective rotation on a target state, and is called an Oracle operator, with the 

following effect:  

( ) xxO
xf )(

1−=
 

If  x  is the required element then the state |x〉 is rotated through π. Where f(x) =1 if x is the 

target, and f(x) =0 otherwise. 

 

Tracing Grover's Algorithm 

 
    When it was the time to implement a case study utilizing the package, we decided to re-

implement the most of  the package, initially in VB.NET, into a web Flash object with 

ActionScript, and then embed it into a form as if it is built in VB.NET. This weird 

implementation is for many reasons: 

• Challenging our programming skills. 

• Better visuality, compared to command-line textual outputs  

• Execution speed, compared to other web objects such as java applets. 

 

      The window for Grover's algorithm is shown in figure 9. At the first sight, the overall 

design of the window looks similar to that found in adopted Quasi. The window consists of two 

sky-blue panels with three buttons in between. The upper panel shows the circuit, with a blue 

indicator to track progress of execution which can be controlled using the forward and 

backward buttons. Each step is called a stage. The lower panel is for states.  

    The algorithm is restricted to the case of searching for an item out of four. We then need 2 (= 

log2 4) qubits and a third on for control. To specify the index of the desired item, use restart 

button which shows the following window: 

 
figure 10: specifying the index () 

we have 16 stages and a final measure (M). A better look shows that we are applying one 

circuit twice each of 7 stages. We think that gate symbols are self describing as H for hadamard 

and ⊕ for phase flip. Stage 5 is the oracle. At the end, we will find the system in the required 

state. 
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(figure 9: Grover windows) 

 

 

The initial state is ( |000> 1.0 + 0.0i), and here are some steps of execution: 

 

State after stage 1: 

|000> 

0.7071067811865475 + 

0.0i 

|100> 

0.7071067811865475 + 

0.0i 

 

State after stage 2: 
|000> 

0.4999999999999999 + 

0.0i 

|010> 

0.4999999999999999 + 

0.0i 

|100> 

0.4999999999999999 + 

0.0i 

|110> 

0.4999999999999999 + 

0.0i 

indicator 

a stage 
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State after stage 3: 
|001> 

0.4999999999999999 + 

0.0i 

|011> 

0.4999999999999999 + 

0.0i 

|101> 

0.4999999999999999 + 

0.0i 

|111> 

0.4999999999999999 + 

0.0i 

(figure 11: first steps of execution of Grover's algorithm) 

 

 

5. Results and Conclusion  
 

Experimental results for the pure-state algorithm shown in Fig. 5, is shown below. 

 

 
FIG. 12. Experimental results for the pure-state algorithm shown in Fig. 5. 

 



Advanced Computing: An International Journal ( ACIJ ), Vol.3, No.2, March 2012 

8 

 

 

 

We have introduced a family of quantum algorithms that solve the parity problem with an 

optimal number of quantum gate operations. It uses the black-box scheme introduced by Beals 

et al. [19] to represent the strings as oracle gates. In agreement with the lower bound 

established by Beals et al., we can apply it after Grover search. The determination of the parity 

of a string of N binary digits can be formulated as an oracle problem. It has been established 

that quantum algorithms require at least N /2 oracle calls.  
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