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Abstract: The pharmacological activities of thiazole and pyrazole moieties as antimicrobial and
anticancer agents have been thoroughly described in many literature reviews. In this study, a conve-
nient synthesis of novel pyrazolo[5,1-b]thiazole-based heterocycles was carried out. The synthesized
compounds were characterized by IR, 1H and 13C NMR spectroscopy and mass spectrometry. Some
selected examples were screened and evaluated for their antimicrobial and anticancer activities and
showed promising results. These products could serve as leading compounds in the future design of
new drug molecules.

Keywords: pyrazolo[5,1-b]thiazole; X-ray crystallography; antibacterial activity; antifungal activity;
anticancer activity

1. Introduction

Antibiotics saved millions of lives during the twentieth century by eliminating the
deadly threat of infection. In recent years, the overuse of antimicrobial agents has played a
significant role in creating more resistant strains of bacteria [1], thus causing an increase
in morbidity and mortality [2]. Therefore, safer, cheaper, and more effective antimicrobial
agents with a new mode of action are needed [3]. Although cancer is considered the second
leading cause of death, taking the lives of 9.6 million people every year [4,5], many cancers
are curable if detected early and treated promptly [6]. Chemotherapy is a treatment that
uses medications to destroy cancer cells. It typically works by preventing cancer cells from
developing, dividing, or proliferating. However, chemotherapy has several disadvantages,
one of which is a lack of selectivity leading to extreme side effects and minimal efficacy.
Another is the emergence of drug resistance [7]. Therefore, there is an urgent need to
design and synthesize potent and highly selective anticancer molecules that offer little-to-
zero toxicity to normal cells [8]. Thiazole derivatives demonstrate many pharmacological
activities [9–17]. The thiazole ring can be traced in several well-established drugs such
as the non-steroidal anti-inflammatory drug meloxicam, the anti-ulcer drug famotidine,
the antibacterial sulfathiazole, the antiviral ritonavir, the antiparasitic thiabendazole, and
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many anticancer medicines including dasatinib, dabrafenib, and epothilones. Figure 1
shows some of the most effective drugs containing a thiazole ring [18].
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Figure 1. Commercial drugs containing a thiazole ring. 

Pyrazole derivatives have been reported as antimicrobial [19], analgesic [20], anti-
inflammatory [21], and anticancer agents [22]. Additionally, many pharmaceutical drugs 
contain the pyrazole moiety, such as the antidepressant fezolamine and the anti-inflam-
matories celecoxib, mepirizole, and lonazolac. Moreover, the pyrazole derivative pyrazo-
furin has been reported to have antiviral [23,24] and anticancer activities [24,25]. Figure 2 
depicts some of the most potent drugs containing a pyrazole ring. 

Figure 1. Commercial drugs containing a thiazole ring.

Pyrazole derivatives have been reported as antimicrobial [19], analgesic [20], anti-
inflammatory [21], and anticancer agents [22]. Additionally, many pharmaceutical drugs con-
tain the pyrazole moiety, such as the antidepressant fezolamine and the anti-inflammatories
celecoxib, mepirizole, and lonazolac. Moreover, the pyrazole derivative pyrazofurin has
been reported to have antiviral [23,24] and anticancer activities [24,25]. Figure 2 depicts
some of the most potent drugs containing a pyrazole ring.
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Many literature reviews suggest that the pharmacophore hybrids may have en-
hanced efficacy, fewer drug–drug interactions, and less potential to induce drug re-
sistance [26]. In light of the significance of pyrazoles and thiazoles, numerous studies have 
been conducted on the synthesis and biological evaluations of new hybrid pharmaco-
phores containing pyrazole and thiazole moieties [27–30].  

Figure 3 presents three examples of pharmacologically active pyrazolo[5,1-b]thiazole 
derivatives: pyrazolo[5,1-b]thiazole derivative (A) (a protein kinase inhibitor for treating 
cancer and other diseases) [31], pyrazolothiazole (B) (a potent corticotropin-releasing fac-
tor 1(CRF1) receptor antagonists) [32], and pyrazolo[5,1-b]thiazole derivative (C) (pos-
sessing a strong suppressant function against the H37Ra strain) [33] (Figure 3). 
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Hydrazides are an important class of biologically active compounds [34–38]. Hydra-
zides and their condensation products have been reported to possess a wide range of 
pharmacological and biological activities, including antibacterial [34], tuberculostatic [35], 
HIV inhibitory [36], pesticidal [37], and antifungal [38] activities. Some of them are used 
as monoamine oxidase (MAO) inhibitors and serotonin antagonists in psychopharmacol-
ogy [39]. Furthermore, isonicotinoyl hydrazide (isoniazid) is an excellent antituberculosis 
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Many literature reviews suggest that the pharmacophore hybrids may have enhanced
efficacy, fewer drug–drug interactions, and less potential to induce drug resistance [26]. In
light of the significance of pyrazoles and thiazoles, numerous studies have been conducted
on the synthesis and biological evaluations of new hybrid pharmacophores containing
pyrazole and thiazole moieties [27–30].

Figure 3 presents three examples of pharmacologically active pyrazolo[5,1-b]thiazole
derivatives: pyrazolo[5,1-b]thiazole derivative (A) (a protein kinase inhibitor for treating
cancer and other diseases) [31], pyrazolothiazole (B) (a potent corticotropin-releasing factor
1(CRF1) receptor antagonists) [32], and pyrazolo[5,1-b]thiazole derivative (C) (possessing a
strong suppressant function against the H37Ra strain) [33] (Figure 3).
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Hydrazides are an important class of biologically active compounds [34–38]. Hy-
drazides and their condensation products have been reported to possess a wide range of
pharmacological and biological activities, including antibacterial [34], tuberculostatic [35],
HIV inhibitory [36], pesticidal [37], and antifungal [38] activities. Some of them are used
as monoamine oxidase (MAO) inhibitors and serotonin antagonists in psychopharmacol-
ogy [39]. Furthermore, isonicotinoyl hydrazide (isoniazid) is an excellent antituberculosis
drug [40–42]. A variety of methods have been used to form hydrazides [43]. The hydrazi-
nolysis of carboxylic acid esters in alcohol solutions is a convenient method for preparing
carbohydrazides [44]. In light of this, and as part of our ongoing research on pharmacologi-
cally potent molecules [45–50], new hydrazide–hydrazones attached to pyrazolothiazole
were synthesized and evaluated for their antimicrobial and anticancer activities.

2. Results
2.1. Chemistry

Hydrazide (2) was synthesized by treating diethyl 3,6-dimethylpyrazolo[5,1-b]thiazole-
2,7-dicarboxylate (1) [51] with hydrazine hydrate (Scheme 1). The molecular structure
was confirmed using IR, MS, and NMR analyses. Its IR spectrum showed the absence of
C=O in the ester group, and the presence of absorption bands due to C=O in the amide
and NHNH2 functions (see Experimental section). Another perfect confirmation of the
structure formation obtained from NMR (1H and 13C) revealed the absence of any signals
due to ethoxy protons and carbons. Additionally, the mass spectrum demonstrated the
molecular ion peak at the expected m/z value of 268 (41%). Compound 2 was reacted
with the appropriate aromatic aldehyde to afford the corresponding hydrazones 3a,b
(Scheme 1). Their 1H NMR spectra revealed the absence of amino signals, which also
confirms the presence of a signal at (6.78–6.81 ppm) for N=CH (imine group) in the
hydrazone compounds.
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Scheme 2. Unexpected synthesis of O-Ethyl N-phenylcarbamothioate (4). 

Scheme 1. Synthesis of pyrazolothiazoles 2 and 3a,b.

Hydrazide 2 was reacted with phenyl isothiocyanate in ethanol and in the presence
of a catalytic amount of triethylamine to afford O-ethyl N-phenylcarbamothioate (4) [52],
rather than the expected product 5 (Scheme 2). The structure was confirmed using spectral
and X-ray analysis (Figure 4). CCDC 2075096 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from the Cambridge Crystal-
lographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Additional information
relating to compound 4 is provided in Table 1.
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tionally, the thione tautomer is more stable than the thiol in the solution [54,55]. The equi-
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The ring closure reaction of acid hydrazide 2 with carbon disulfide in ethanolic KOH
afforded the target compound 6 (Scheme 3). It was observed that 1,3,4-oxadiazole-2-
thione derivatives exist in the thione form in solution, rather than in the thiol form [53,54].
Additionally, the thione tautomer is more stable than the thiol in the solution [54,55]. The
equilibrium is even more favored towards the thione as it is better solvated than the thiol
form [54]. In the 1H NMR spectrum of compound 6 (Scheme 3), a signal at δ 12.9 of the
NH proton was recorded.
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Table 1. Experimental details of compound 4.

Crystal Data

Chemical formula C9H11NOS

Mr 181.25

Crystal system, space group Triclinic, P-1

Temperature (K) 293

a, b, c (Å) 9.6587 (4), 11.7585 (5), 12.1212 (5)

β (◦) 88.807 (2), 84.858 (2), 84.314 (2)

V (Å3) 1364.24 (10)

Z 6

Radiation type Cu Kα

µ (mm−1) 2.76

Crystal size (mm) 0.47 × 0.27 × 0.15

Data collection

Diffractometer Bruker APEX-II CCD

Absorption correction Multi-scan
SADABS Bruker 2018

Tmin, Tmax 0.932, 0.959

No. of measured, independent and observed
[I > 2σ(I)] reflections 12,396, 4728, 4213

Rint 0.055

Refinement

R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.06

No. of reflections 4728

No. of parameters 341

H-atom treatment H atoms treated by a mixture of independent
and constrained refinement

∆ρmax, ∆ρmin (e Å−3) 0.36, −0.56
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The reaction of hydrazide 2 with ethyl cyanoacetate in absolute ethanol resulted in
compound 7 as the sole product (Scheme 4). Its IR spectrum showed the absence of any
absorption band due to the cyano group and the presence of the stretching bands at 3164,
1726, and 1651 cm−1, corresponding to NH and two C=O groups, respectively. Its mass
spectrum demonstrated the molecular ion peak at an m/z value of 402. On the other hand,
hydrazide 2 was converted to acyl azide 8 in the presence of sodium nitrite and acetic acid
(Scheme 4). The reaction between compound 8 and ethyl acetoacetate or ethyl cyanoacetate
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afforded the target compounds 9 and 10, respectively (Scheme 4). The structures of com-
pounds 8–10 were confirmed through analytical data and spectral analysis (See Experiment
section). The suggested mechanism for the selective synthesis of compounds 9 and 10
via the reaction of hydrazide 8, ethyl acetoacetate, or ethyl cyanoacetate in the presence
of sodium ethoxide is outlined in Scheme 5 [56]. The reaction was assumed to proceed
through a concerted [3+2]-cycloaddition reaction. The non-isolable intermediate 11 was
further transformed into stable 1,2,3-triazole derivative 9 through rapid elimination of two
water molecules induced by sodium ethoxide.
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2.2. Biological Activity Evaluation
2.2.1. Anticancer Screening of the Synthesized Compounds

The in vitro anti-tumor activity of the synthesized compounds was assessed against
two human cancer cell lines: human hepatocellular carcinoma cell line (HepG-2) and colon
carcinoma cell line (HCT-116), using the MTT assay [57]. Their activity was compared to
the reference drug Doxorubicin. In addition, calculations of the tested compounds’ concen-
trations needed to inhibit 50% of the cancerous cell population (IC50) were implemented.
These are presented in Tables 2 and 3.

Table 2. Viability values and IC50 of some selected samples against hepatocellular carcinoma cell line
(HepG-2).

IC50
(µg/mL)

Viability %
Sample Concentration (µg/mL) Sample

500 250 125 62.5 31.25 15.6 7.8 3.9

0.36 2.08 3.36 4.86 6.51 11.04 19.38 24.82 28.86 DOX

93.2 20.88 31.76 42.63 57.12 72.36 86.04 92.37 97.48 3a

30.5 8.71 16.38 24.92 37.65 49.43 62.04 78.19 89.28 3b

6.9 4.37 9.46 16.76 23.66 34.15 40.72 46.58 61.43 6

114 24.53 39.15 47.32 61.98 78.43 89.04 95.17 98.76 7

12.6 5.14 11.89 20.97 31.76 38.69 45.38 57.43 72.96 8
DOX (Doxorubicin).

Table 3. Viability values and IC50 of evaluated compounds against colon carcinoma cell line
(HCT-116).

IC50
(µg/mL)

Viability %
Sample Concentration (µg/mL) Sample

500 250 125 62.5 31.25 15.6 7.8 3.9

0.49 2.08 3.36 4.86 6.51 11.04 19.38 24.82 28.86 DOX

86.9 16.08 25.43 36.81 58.19 74.26 88.43 96.51 99.48 3b

13.6 6.91 10.85 17.44 25.28 36.59 43.87 67.34 84.73 6

28.9 9.76 17.34 26.69 35.42 46.94 63.79 76.45 84.76 8
DOX (Doxorubicin).

Of all the tested compounds, 1,3,4-oxadiazole derivative 6 exhibited the highest
activity against the two tested cell lines; HepG-2 and HCT-116, with an IC50 = 6.9 and
13.6 µg/mL, respectively. Having azide moiety, pyrazolothiazole derivative 8 revealed high
activity against HepG-2 and HCT-116, with an IC50 = 12.6 and 28.9 µg/mL, respectively.

These results support previously published results indicating that compound structures
containing an 1,3,4-oxadiazole ring [58] or azide moiety [59] have potent antitumor activities.

2.2.2. The In Vitro Antimicrobial Assessments

Assessments of the antimicrobial activities of the synthesized compounds were per-
formed using the inhibition zone technique [60] against six species: two fungal species
(Aspergillus fumigatus (RCMB 002008 (4) and Candida albicans (RCMB 05036)), two Gram-
positive bacteria (Staphylococcus aureus (RCMB010010 and Bacillus subtilis (RCMB 010067)),
and two Gram-negative bacteria (Salmonella SP. (RCMB 010043) and Escherichia coli (RCMB
010052)). The standard drugs used for comparison were Amphotericin B, Gentamicin,
and Ampicillin. The inhibition zone diameter (IZD) was used as the criterion for the
antimicrobial activity and all results are summarized in Table 4.
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Table 4. The in vitro antimicrobial assessment of the synthesized compounds tested at 5 mg/mL
using the inhibition zone assay (inhibition zone diameter in millimeters (mm)).

Sample

Microorganisms

Fungi Gram-Positive Bacteria Gram-Negative Bacteria

AF CA SA BS SSP EC

3a 11 15 13 12 13 14

3b 13 15 10 NA 12 14

4 17 16 15 14 15 17

6 18 15 14 15 14 15

7 NA 10 12 9 12 12

8 12 NA 14 12 13 14

10 14 12 12 12 12 14

Amphotericin B. 23 25

Ampicillin - - 23 32

Gentamycin - - - - 17 19
NA: no activity. Results of the antimicrobial evaluation are expressed as the mean of inhibition zone diameter
(mm) for different compounds tested in triplicate: Aspergillus fumigatus (RCMB 002008 (4) (AF), Candida albicans
(RCMB 05036) (CA), Staphylococcus aureus (RCMB010010) (SA), Bacillus subtilis (RCMB 010067) (BS), Salmonella SP.
(RCMB 010043) (SSP), Escherichia coli (RCMB 010052 (EC).

The results of Table 4 illustrate the following points:

• All the tested compounds except compound 7 showed excellent activity against
Aspergillus fumigatus. Compounds 4 and 6 were especially effective.

• All tested compounds except compound 8 showed high antifungal activity against
Candida albicans.

• Compounds 3b, 7, and 8 were found to be more active against Staphylococcus aureus
than against Bacillus subtilis.

• The best antibacterial activity was observed for compounds 4 and 6: their inhibitory
effect appears to be equipotent to Gentamycin against Salmonella SP and Escherichia coli.

Many thiocarbamate derivatives such as tolnaftate, tolciclate, and piritetrade are
commonly used as fungicidal agents, and this explains the highest antifungal activity of
compound 4 [61–65].

3. Materials and Methods
3.1. Chemistry
3.1.1. Materials and Equipment

See Supplementary Materials.

3.1.2. Synthesis of 3,6-Dimethylpyrazolo[5,1-b]thiazole-2,7-dicarbohydrazide (2)

A mixture of diethyl 3,6-dimethylpyrazolo[5,1-b]thiazole-2,7-dicarboxylate (1) [51]
(1.48g, 5 mmol), and hydrazine hydrate (80%, 15 mmol) in ethanol (15 mL) were refluxed
for 3 h. Excess ethanol was evaporated under reduced pressure and the solid product was
filtered, dried, and recrystallized from ethanol/DMF to afford target compound 2 at 90%
yield; mp: 210–211

◦
C; IR (KBr) νmax 3338–3201(NH2+NH), 1717 (C=O) cm−1; 1H NMR

(CDCl3): δ 2.04 (s, 3 H, CH3), 2.16 (s, 3 H, CH3), 3.31 (s, 4H, NH2), 11.58 (s, 2 H, 2NH);
13C NMR (CDCl3): δ 13.52 (CH3), 15.68 (CH3), 128.55, 129.71, 137.77, 137.86, 147.46, 186.80
(C=O); MS m/z (%) 268 (M+, 41%), 251 (100%). Anal. Calcd. for C9H12N6O2S (268.30): C,
40.29; H, 4.51; N, 31.32. Found: C, 40.33; H, 4.62; N, 31.25.
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3.1.3. Synthesis of Hydrazones 3a,b

A mixture of hydrazide 2 (0.536g, 2 mmol) and appropriate aldehydes (4.2 mmol)
in absolute ethanol/DMF (20mL) were refluxed for 5 h. The resulting precipitate was
filtered off, washed, dried, and recrystallized by DMF/ethanol to afford the corresponding
hydrazones 3a,b.

3a: Yield (72%), mp. > 300 ◦C; IR (KBr) νmax 3274 (NH), 1714 (C=O), 1609 (C=N)
cm−1; 1H-NMR (CDCl3): δ 1.92 (s, 3H, CH3), 2.20 (s, 3H, CH3), 6.78 (s, 2H, 2CH), 7.23–7.85
(m, 10H, ArH), 10.78 (s, 1H, NH), 11.75 (s, 1H, NH); 13C-NMR: δ 11.02 (CH3), 14.0 (CH3),
111.12, 128.5, 129.8, 130.3, 133.1, 135.7, 136.0, 146.2, 151.4, 163.0, 167.2 (C=O). Anal. Calcd.
for C23H20N6O2S (444.51): C, 62.15; H, 4.54; N, 18.91. Found: C, 62.22; H, 4.42; N, 18.77.

3b: Yield (80%), mp. 260 ◦C; IR (KBr) νmax 3515 (NH), 1686 (C=O), 1595 (C=N) cm−1;
1H-NMR (CDCl3): δ, 1.90 (s, 3H, CH3), 2.20 (s, 3H, CH3), 2.45 (s, 6H, 2CH3), 6.81 (s, 2H,
2CH), 7.28–7.84 (m, 8H, ArH), 11.25 (s, 2H, 2NH); 13C-NMR: δ 11.50 (CH3), 14.31 (CH3),
18.95 (2CH3), 111.30, 128.1, 129.7, 131.20, 133.1, 136.12, 136.7, 148, 151.0, 156.0, 163.0, 165.61
(C=O). Anal. Calcd. for C25H24N6O2S (472.56): C, 63.54; H, 5.12; N, 17.78. Found: C, 63.34;
H, 5.22; N, 17.87.

3.1.4. Synthesis of O-Ethyl N-phenylcarbamothioate (4)

A mixture of hydrazide (2) (0.268g, 1 mmol) and phenyl isothiocyanate (0.27 g, 0.24 mL,
2 mmol) in EtOH (10 mL), in the presence of a few drops of triethylamine as a catalyst, was
heated under reflux for 5 h and then allowed to cool to room temperature. The precipitated
solid was filtered off, dried, and recrystallized from methanol to afford compound 4 [52]
at 20% yield; mp: 55–56 ◦C; IR (KBr) νmax 3212 (NH), 3039, 2982 (CH) cm−1; 1H NMR
(CDCl3): δ 1.23 (t, 3 H, CH3), 4.65 (q, 2 H, CH2), 7.20–7.46 (m, 5H, ArH), 9.12 (s, 1 H, NH);
13C NMR (CDCl3): δ14.90, 68.50, 121.10, 121.10, 128.40, 129.57, 129.57, 137.85 (Ar-C), 188.50
(C=S). Anal. Calcd. for C9H11NOS (181.25): C, 59.64; H, 6.12; N, 7.73. Found: C, 59.75; H,
6.07; N, 7.88.

3.1.5. Synthesis of Bis(1,3,4-oxadiazole) 6

Hydrazide 2 (3.75 g, 14 mmol) was dissolved in absolute ethanol (50 mL). CS2 (2.7g,
2.1 mL, 35 mmol) was then added to the solution, followed by the addition of a KOH
solution (1.6 g, 28 mmol) in water (20 mL). The reaction mixture was thoroughly stirred and
refluxed for 3 h until the evolution of H2S ceased. After completion of the reaction, excess
ethanol was removed under reduced pressure. The mixture was poured into a mixture of
H2O/ice and acidified with concentrated HCl. The precipitated solid was filtered off and
recrystallized from ethanol/DMF, resulting in thione 6. Yield (40%); mp. 250 oC; IR (KBr)
νmax 3313 (NH), and 1116 (C=S) cm−1; 1H NMR (CDCl3): δ 1.31 (s, 3H, CH3), 2.48 (s, 3H,
CH3), 12.90 (s, 2H, NH); 13C-NMR δ 11.50 (CH3), 14.01(CH3), 104.02, 107.30, 135.11, 142.90,
156.74, 162.21, 177.77 (C=S). Anal. Calcd. for C11H8N6O2S3 (352.42): C, 37.49; H, 2.29; N,
23.85; Found: C, 37.38; H, 2.18; N, 23.99.

3.1.6. Synthesis of Bis(pyrazole) Derivative 7

A mixture of hydrazide 2 (1.34 g, 5 mmol) and ethyl cyanoacetate (2.26 mL, 20 mmol)
in ethanol (10 mL) was heated under reflux for 5 h. The precipitated solid product was
filtered and recrystallized from ethanol, resulting in 7 at 55% yield; mp. 250–251 ◦C; IR
(KBr) νmax 3164 (NH), 2982 (CH aliphatic), 1726, 1651 (2C=O), 1560 (C=N) cm−1; MS m/z
(%) 402 (M+, 4%), 400 (52%), 399 (35%), 45 (100%). Anal. Calcd. for C15H14N8O4S (402.39):
Calc.: C, 44.77; H, 3.51; N, 27.85. Found: C, 44.65; H, 3.42; N, 27.93.

3.1.7. Synthesis 3,6-Dimethylpyrazolo[5,1-b]thiazole-2,7-dicarbonyl Azide (8)

To a suspension of hydrazide 2 (2.68 g, 10 mmol) in 30 mL of H2O, 3.5 g (50 mmol) of
sodium nitrite was added. The mixture was then cooled in ice and treated portion-wise
with 3 mL (50 mmol) of acetic acid. After stirring at room temperature for 3 h, the resulting
precipitate 8 was filtered, washed with H2O, and dried: yield 90%; mp 120–121 ◦C; IR (KBr)
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νmax 2982 (CH), 2167 (N=N), 1724 (C=O), 1686 (C=O) cm−1; MS m/z (%) 290 (M+, 14%),
40 (100%). Anal. Calcd for C9H6N8O2S (290.26): C, 37.24; H, 2.08; N, 38.60. Found: C, 37.35;
H, 2.16; N, 38.49.

3.1.8. Synthesis of Bis(1,2,3-triazole) Derivatives 9,10

Compound 8 (0.290 g, 1 mmol) was added to a stirred solution of sodium metal (0.10 g)
in ethanol (20 mL), and the mixture was left to stir at room temperature for 20 min. Either
ethyl acetoacetate or ethyl cyanoacetate (2 mmol) was added while stirring. The reaction
mixture was then left to stir for a further 24 h. The formed solid product was filtered
off, washed with water, dried, and recrystallized from EtOH to afford the corresponding
bis(1,2,3-triazole) derivatives 9 and 10, respectively.

9. Yield (72%), mp. 300 ◦C; IR (KBr) νmax 1694 (2C=O), 1594 (C=N) cm−1; 1H-NMR
(CDCl3): δ 1.31 (s, 6H, 2CH3), 2.26 (s, 6H, 2CH3), 2.38 (s, 6H, 2CH3), 4.32 (q, 4H, 2CH2);
13C-NMR: δ 13.40, 14.3, 15.10, 18.10, 60.75, 111.10, 130.0, 134.0, 137.20, 138.0, 145.00, 151.15,
164.93, 169.34 (C=O). Anal. Calcd. for C21H22N8O6S (514.51): C, 49.02; H, 4.31; N, 21.78.
Found: C, 49.13; H, 4.37; N, 21.88.

10. Yield (75%), mp. 210–211 ◦C; IR (KBr) νmax 1697 (2C=O), 1597 (C=N) cm−1;
1H-NMR (CDCl3): δ 1.19 (s, 6H, 2CH3), 2.46 (s, 3H, CH3), 3.30 (s, 3H, CH3), 4.28 (q, 4H,
2CH2), 7.71 (s, 4H, NH2); 13C-NMR: δ 12.40, 15.10, 19.44, 60.23, 61.75, 111.30, 131.20, 133.89,
137.20, 138.20, 146.00, 151.02, 165.93, 169.20 (C=O). Anal. Calcd. for C19H20N10O6S (516.49):
C, 44.18; H, 3.90; N, 27.12. Found: C, 44.22; H, 3.84; N, 27.23.

3.2. Biological Tests
3.2.1. Evaluation of Antitumor Activity

The MTT assay was used to investigate the in vitro antitumor activity of the synthe-
sized compounds against two human cancer cell lines: human hepatocellular carcinoma
cell line (HepG-2) and colon carcinoma cell line (HCT-116) [57].

3.2.2. Antimicrobial Evaluation

The inhibition zone technique [60] was used to evaluate the antimicrobial activity
of the synthesized compounds against six pathogens. Amphotericin B, Gentamicin, and
Ampicillin were the standard medications utilized for comparison. The antimicrobial
activity was measured using the inhibition zone diameter (IZD).

4. Conclusions

New pyrazolo[5,1-b]thiazole derivatives, synthesized using simple synthetic methods,
can be used as leading compounds in the development of future, novel drug molecules.

Supplementary Materials: The following are available online, Online supplementary information
includes detailed methods of the antitumor and antimicrobial evaluations, Figures S1–S4: IR, Mass,
1H-NMR, and 13C-NMR spectra of compound 1, Figures S5–S7: IR, 13C-NMR and Mass spectra of
compound 2, Figures S8–S10: IR, 1H-NMR, and 13C-NMR spectra of compound 4, Figures S11,S12:
IR, and Mass spectra of compound 7, Figures S13,S14: IR, and Mass spectra of compound 8.
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