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In this supplementary information, we will give a further discussion about the time refraction and time reflection of
TCB modes in arbitrary time dependent axion-type ME media, and will give the derivation of the wave front velocity
vf = v1 of TCB modes with the simplified dispersion relation ω± = v1k

√
(k ± β)/k in detail.

Time refraction and time reflection of TCB modes in general conditions

The two TCB modes in time-dependent axion-type ME media take the form B± = T±(t)eikzÛ∓, where the temporal
parts T±(t) satisfy the following equation:

d2T±
dt2

+
d ln ε

dt

dT±
dt

+ v2k(k ± µΘ̇)T± = 0. (S1)

where ε, µ, Θ are all functions of time in general. For simplicity, we demand all the parameters in Eq. (S1) are
real. According to the Maxwell equations and the constitutive relations, the other three electromagnetic vectors of
the corresponding TCB modes read

D± = ΘB± ±
ε

k
Ḃ±, E± = ±1

k
Ḃ±, H± =

1

µ
B± ∓

Θ

k
Ḃ±. (S2)

Arbitrary two linearly independent solutions of linear Eq. (S1) can be regarded as the bases of its solution space. Sup-
posing g(t) and h(t) are two independent real solutions of (S1), then other two solutions that are complex conjugates
of each other can be constructed:

T 1
±(t) = g(t) + ih(t) = ρ±(t)eiψ±(t), T 2

±(t) = g(t)− ih(t) = ρ±(t)e−iψ±(t), (S3)

where ρ±(t) and ψ±(t) are the amplitude and the polar angle of T 1(t)±. T 1
±(t) and T 2

±(t) are also a set of bases of
the solution space. Therefore, B± can always separate into two parts B± = B1

± + B2
± with

B1
± = A1

±ρ±(t)ei(kz+ψ±(t)), B2
± = A2

±ρ±(t)ei(kz−ψ±(t)). (S4)

Consider a linearly polarized incident plane wave Bin = Aei(kz−ω0t) =
∑
±(A/

√
2)ei(kz−ω0t±φ)Û∓, as t < t0, with

ω0 = k/
√
ε0µ0 and A =

∑
±(A/

√
2)e∓iφÛ±, where φ is the polarized angle with respect to x axis. After the wave

passes through the time interface t0 of the time wave plate, the wave becomes the superposition of the two TCB
modes B =

∑
±B±, and the two TCB modes can be further separate into two independent parts given in Eq. (S4).

In terms of the temporal boundary conditions, the coefficients of the two parts can be determined

Aσ± =
Ain
±ei(±φ−ω0t0+δσψ±(t0))

2ρ±(t0)ε1(t0)ψ̇±(t0)
δσ
[(
ε0ω0 − ε1(t0)ωσ±(t0)

)
+ ik

(
Θ1(t0)−Θ0

)]
, (σ = 1, 2), (S5)

where ωσ±(t) = i d
dt lnTσ±(t) = d

dt [δ
σψ±(t) + i ln ρ±(t)], and Ain

± is the amplitude of corresponding circularly polarized

incident wave, for the case of linearly polarized incident wave, Ain
± = A/

√
2e∓iφ. If Θ̇1(t) ≡ β/µ1 > 0, and ε1, µ1 are

constant, Eq. (S5) reduces to the simplified expression given in Eq. (7) of the main text.
Because the lagrangian does not contain spatial coordinates explicitly, i.e. the system is invariant under spatial

translation, according to Noether’s theorem, the conservation of momentum of the system can be expressed as

∂

∂t
(D ×B) +∇ ·

[
1

2

(
D ·E + B ·H

)~~I −DE −HB

]
= 0, (S6)
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FIG. S1. Apparent momentum densities of the time refracted and time reflected parts of the two TCB modes versus k for the
simplified case Θ̇1(t) ≡ β/µ1 > 0, and ε1 ≡ ε0, µ1 ≡ µ0.

where P = D×B is the apparent momentum density of electromagnetic fields, and
~~M = 1

2

(
D·E+B·H

)~~I−DE−HB
is the Maxwell stress tensor. Since the TCB modes are transverse with respect to k and their spatial parts merely

vary with z, we have ∂P±/∂t = −∇ · ~~M± = 0. Therefore, the momentum density P± should be constant.
For t > t0, the momentum density is P± = Re(D1

± + D2
±) × Re(B1

± + B2
±) = P 1

± + P 2
± + P cross

± , where P 1
± =

Re(D1
±)×Re(B1

±) and P 2
± = Re(D2

±)×Re(B2
±) are the momentums of the two independent parts respectively, and

P cross
± = Re(D1

±) × Re(B2
±) + Re(D2

±) × Re(B1
±) is the cross term. Substituting Eq. (S2) and Eq. (S4) into the

momentum densities, we obtain the cross term is alway zero P cross
± ≡ 0 and P σ

± = δσ 1
2kε1(t)ψ̇±(t)ρ±(t)2

∣∣Cσ±∣∣2 ẑ (σ =

1, 2). It is easy to check that F = ε1(t)ψ̇±(t)ρ±(t)2 is a first integral of the ordinary differential equation (S1). Actually,
F = ε1(t)[ġ(t)h(t)− g(t)ḣ(t)] according to Eq. (S3). Since g(t) and h(t) are both the solutions of (S1)

ε1g̈ + ε̇1ġ + ε1v
2k(k ± µΘ̇)g = 0, (S7a)

ε1ḧ+ ε̇1ḣ+ ε1v
2k(k ± µΘ̇)h = 0, (S7b)

computing (S7a)·h−(S7b)·g yields d
dtF = 0, so F ≡ ε1(t0)ψ̇±(t0)ρ±(t0)2. Then we obtain

P± = P 1
± + P 2

± = P in
± =

ε0ω0

2k
|Ain
± |2ẑ, (S8)

where the momentums of the two independent branches are respectively

P σ
± = δσ

|Ain
± |2

8kε1(t0)ψ̇±(t0)

[(
ε0ω0 − δσε1(t0)ψ̇±(t0)

)2

+

(
k
(
Θ1(t0)−Θ0

)
− ε1(t0)

ρ̇±(t0)

ρ±(t0)

)2
]
ẑ, (σ = 1, 2). (S9)

Fig. S1 shows the momentums for the simplified case discussed in the main text. We can see that the momentums of
the two parts are always in opposite directions. Supposing ψ̇±(t0) < 0, then P 1

± is always along the incident direction
while P 2

± is along the inverse direction, and their vector sum always equals to the incident momentum. Therefore, B1
±

and B2
± have clear physical meaning, i.e. the time refraction and the time reflection of the corresponding circularly

polarized incident wave.
Similarly, we can calculate the Poynting vectors S± = Re(E1

± + E2
±) × Re(H1

± + H2
±) of the TCB modes. It

can be demonstrated that the cross term of the time refracted and reflected parts also vanishes for each TCB mode:
Scross
± = Re(E1

±) × Re(H2
±) + Re(E2

±) × Re(H1
±) = 0. Thus the total energy flow equals to the sum of the time
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refracted and reflected parts:

S± = S1
± + S2

±, (S10)

where

Sσ± = Re(Eσ
±)×Re(Hσ

±) =
1

ε1(t)µ1(t)
P σ
± (σ = 1, 2). (S11)

Therefore, the Poynting vectors change with time in general, and S± 6= Sin
± unless ε1µ1 ≡ ε0µ0. In addition, the

energy densities corresponding to the refracted and reflected parts are, respectively,

Wσ
± =

1

2

[
Re(Dσ

±) ·Re(Eσ
±) + Re(Bσ

±) ·Re(Hσ
±)
]

=
|Aσ±|2

4

[
ε1(t)

k2
ρ̇±(t)2 +

(
ε1(t)ψ̇±(t)2

k2
+

1

µ1(t)

)
ρ±(t)2

]
. (S12)

However, the cross term W cross
± of the refracted and reflected parts does not equal to zero, so W± 6= W 1

± +W 2
±.

It should be noted that the definition of time refracted and reflected parts is not unique, because we can arbitrarily
choose the pair of independent real solutions g(t) and h(t) given in Eq. (S3). How to define the time refraction and
reflection uniquely is still an open question in general situations. Nevertheless, to choose the pair of plane wave
solutions Tσ± = eiδσω±t as the time refraction and reflection seems quite reasonable in the simplified case discussed
in the main text. In the situation of Gaussian pulse incidence, this choice ensures the defined refracted pulse and
reflected pulse move in opposite directions with group velocities (see main text for details).

For the simplified case, the Poynting vectors and energy densities take the form

Sσ± = 〈Sσ±〉 = −δσ ω±
2kµ1

|Aσ±|2ẑ, (S13a)

Wσ
± = 〈Wσ

±〉 =
k ± β/2

2kµ1
|Aσ±|2. (S13b)

Therefore, the energy transport velocities of the two TCB modes are determined by

vE± =
〈S±〉
〈W±〉

= v1

√
k(k ± β)

k ± β/2
k̂. (S14)

As we have discussed in the main text, the energy is not conserved generically in time-dependent systems. However,
Sσ
± and Wσ

± given in Eqs. (S13) are both invariant with time. The reason of this exceptional conservation is that the
axion coupling in the lagrangian density LΘ = Θ(t)Eσ

± ·Bσ
± = 0 for the pair of TCB plane-wave modes.

For ordinary spatial refraction and reflection, the conservation of energy leads to the equality of the incident light
intensity I0 = |〈Sin〉| with the sum of the transmitted intensity IT = |〈S1〉| and the reflected intensity IR = |〈S2〉|:
I0 = IT + IR (for one dimension), while this equality is false for time refraction and time reflection. If we follow
the traditional definitions of transmissivity T = IT /I0 and reflectivity R = IR/I0, then T + R 6= 1 owing to energy
non-conservation. However, we can introduce modified transmissivity and modified reflectivity respectively

T =
IT

IT+R
=

|〈S1〉|
|〈S1〉|+ |〈S2〉|

, R =
IR

IT+R
=

|〈S2〉|
|〈S1〉|+ |〈S2〉|

. (S15)

Under these redefinitions, the normalization condition is satisfied: T +R = 1 (see Fig. 2(a) in the main text).

Front velocity of TCB modes

Ref. [S1, S2] point out that the superluminal group velocities vg± of CFJ modes indicate the violation of causality.
However, our calculation in Eq. (S14) shows that the energy transport velocity is lower than the speed of light in
vacuum, although, the energy transport velocity defined in Eq. (S14) is more “interpretive” than measurable [S3]. By
contrast, a more visualized definition is the front velocity which gives the speed of the wavefront of a step-function
discontinuous wave and measures the speed of information propagation [S4, S5]. In the following section, we will
prove that the front velocity vf ≡ v1 in the linearly varying axion-type media.
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Firstly, let’s give the Fourier expansion with respect to wave vector k for an arbitrary TM wave B(z, t) traveling
along z axis in linearly varying axion-type ME media:

B(z, t) =

∫ ∞
−∞

dk
(
A1
−(k)eiω−(k)t +A2

−(k)e−iω−(k)t
)

eikz Û+

+

∫ ∞
−∞

dk
(
A1

+(k)eiω+(k)t +A2
+(k)e−iω+(k)t

)
eikz Û−.

(S16)

where the piecewise “frequencies” are

ω−(k) =

{
v1k
√

(k − β)/k k ∈ (−∞, 0) ∪ (β,∞)

iv1k
√

(−k + β)/k k ∈ [0, β]
(S17a)

ω+(k) =

{
v1k
√

(k + β)/k k ∈ (−∞,−β) ∪ (0,∞)

− iv1k
√

(−k − β)/k k ∈ [−β, 0]
(S17b)

and they obey the relation ω+(−k)∗ = −ω−(k). The corresponding piecewise “phase velocities” are v±(k) = ω±(k)/k.
Because B is a real vector field: B(z, t) = B(z, t)∗, the Fourier coefficients are not independent:

Aσ−(−k)∗ = Aσ+(k), (σ = 1, 2). (S18)

Therefore, Eq. (S16) can be written as

B(z, t) =

∫ ∞
−∞

dk
(
A1
−(k)eiω−(k)t +A2

−(k)e−iω−(k)t
)

eikz Û+ + c.c. (S19)

We also can adopt another convention to define the piecewise “frequencies” and the piecewise “phase velocities”:

ω′±(k) = ω±(k)∗, v′±(k) = v±(k)∗. (S20)

Here, we use symbols with prime, e.g. ω′±(k) and v′±(k), to represent the second convention to differentiate from the
first convention given in Eq. (S17). The two conventions are obviously equivalent to each other, if the the following
transform relations are satisfied:{

A′σ± (k) = Aσ±(k) (σ = 1, 2), ± k ∈ (−∞,−β) ∪ (0,∞)

A′1±(k) = A2
±(k), A′1±(k) = A2

±(k), ± k ∈ [−β, 0].
(S21)

Now we consider the time refraction and reflection of an incident pulse with two well-defined front edges z = ±a
at the time interface t0 = 0, i.e. B(z, 0) = B(z, 0)Û+ + c.c. = 0 for |z| > a, and B(z, 0) is supposed to be a smooth
function. Without loss of the generality, we still choose ε1 = ε0, µ1 = µ0, Θ1(0) = Θ0, and assume that the incident
pulse is merely superposed by the plane waves traveling towards the positive direction of z axis:

Bin(z, t) =

∫ ∞
−∞

Ain(k)eik(z−v0t)Û+ + c.c. (t < 0). (S22)

where Ain(k) is given by

Ain(k) =

∫ ∞
−∞

dzB(z, 0)e−ikz =

∫ a

−a
dzB(z, 0)e−ikz. (S23)

Since B(z, 0) is a smooth function with the compact support [−a, a], according to the Paley-Wiener-Schwartz theorem
[S6], Ain(κ) is analytic on the complex plane and satisfies

|Ain(κ)| ≤ C ea|Im(κ)|

1 + |κ|
, (S24)

for some constant C.
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According to the law of time refraction and time reflection for a particular wave vector given in Eq. (6) and Eq. (7)
in the main text, we have

B(z, t) =

∫ ∞
−∞

dk
1

2

[ ∑
σ=1,2

(
1− δσ v0

v−(k)

)
eiδσω−(k)t

]
Ain(k) eikz Û+ + c.c.

=
∑
σ=1,2

Bσ(z, t) Û+ + c.c. (t > 0),

(S25)

where

Bσ(z, t) =

∫ ∞
−∞

dk
1

2

(
1− δσ v0

v−(k)

)
Ain(k) eik(z+δσv−(k)t) (σ = 1, 2). (S26)

Note that the similar expression B′σ(z, t) is also valid for the second convention given in Eq. (S20), and∑
σ=1,2

Bσ(z, t) =
∑
σ=1,2

B′σ(z, t). (S27)

To extend the integral (S26) to complex plane, we introduce two pairs of two-valued complex functions

u±(κ) = v1

√
(κ± β)/κ, Ω±(κ) = κu±(κ) = v1κ

√
(κ± β)/κ, (S28)

with complex variable κ = k + iε. The two functions have two branch points κ = 0, κ = ∓β on real axis, and the
line segment between the two points is the branch cut. Note that to choose the branch cut in this way follows the
single-valued branch of square root function:

√
κ :=

√
|κ|ei arg(κ)/2 with the convention arg(κ) ∈ (−π, π]. The limit

from the upper half plane to real axis

lim
ε→0+

u±(k + iε) = lim
ε→0+

v1

√(
1± β k

k2 + ε2

)
∓ i

βε

k2 + ε2
= lim
ε→0+

v1

√
k ± β
k
∓ iε

=

{
v1

√
(k ± β)/k k /∈ Branch cut

∓ i
√

(−k ∓ β)/k k ∈ Branch cut

(S29)

is exactly the piecewise “phase velocity”, and the limit of Ω±(κ) is accordingly the piecewise “frequency” under the
first convention, i.e.

lim
ε→0+

u±(k + iε) = v±(k), lim
ε→0+

Ω±(k + iε) = ω±(k). (S30)

On the contrary, the limits from the lower half plane to real axis gives the quantities under the second convention:

lim
ε→0−

u±(k + iε) = v′±(k), lim
ε→0−

Ω±(k + iε) = ω′±(k). (S31)

Therefore, Bσ(z, t) defined in the first convention can be written as a complex integral

Bσ(z, t) =

∫ ∞+i0+

−∞+i0+

dκ
1

2

(
1− δσ v0

u−(κ)

)
Ain(κ)eiκ(z+δσu−(κ)t)

=

(∫
I

+

∫
II

)
dκ B̃σ(k, t)eiκ(z+δσv1t),

(S32)

and so do B′σ(z, t) defined in the second convention:

B′σ(z, t) =

∫ ∞+i0−

−∞+i0−
dκ

1

2

(
1− δσ v0

u−(κ)

)
Ain(κ)eiκ(z+δσu−(κ)t)

=

(∫
I′

+

∫
II′

)
dκ B̃σ(κ, t)eiκ(z+δσv1t),

(S33)
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0 β k

iε

Γ

Cr

CR

III

Γ′

C ′
r

C ′
R

II′I′

FIG. S2. Contour Γ and contour Γ′ for the two integrals given in Eq. (S35). Contour Γ (Γ′) can separate into four parts: I, II,
Cr, and CR (I′, II′, C′r, and C′R). k = 0 and k = β on the real axis are two branch points of u±(κ) and the integrand, their
connecting line is the branch cut.

where B̃σ(κ, t) is short for

B̃σ(κ, t) =
1

2

(
1− δσ v0

u−(κ)

)
Ain(κ)eiκδσ(u−(κ)−v1)t. (S34)

The integrals need to be separated into I and II (or I′ and II′) two parts because the branch point κ = β is also a
pole of the integrand. The integrand is analytic in the whole complex plane except the branch cut on the real axis,
so the contour integrals with either the contour Γ or the contour Γ′ shown in Fig.S2 equal to zero∮

Γ

dκ B̃σ(κ, t)eiκ(z+δσv1t) =

(∫
I

+

∫
II

+

∫
Cr

+

∫
CR

)
dκ B̃σ(κ, t)eiκ(z+δσv1t) = 0, (S35a)∮

Γ′
dκ B̃σ(κ, t)eiκ(z+δσv1t) =

(∫
I′

+

∫
II′

+

∫
C′r

+

∫
C′R

)
dκ B̃σ(κ, t)eiκ(z+δσv1t) = 0, (S35b)

where Cr is an infinitesimal semicircle with radius r above the pole k = β, CR is an infinite semicircle with radius R
in the upper half plane, and C ′r, C

′
R are their counterparts in the lower half plane.

For the third term of Eq. (S35a),∣∣∣∣∫
Cr

dκ
1

2

(
1− δσ v0

u−(κ)

)
Ain(κ)eiκ(z+δσu−(κ)t)

∣∣∣∣
=

∣∣∣∣∣
∫ 0

π

reiφidφ
1

2

(
1− δσ

√
reiφ + β

reiφ

)
Ain(reiφ + β)ei(reiφ+β)(z+δσu−(reiφ+β)t)

∣∣∣∣∣
≤πr

2
max

[(
1− δσ

√
reiφ + β

reiφ

)
Ain(reiφ + β)ei(reiφ+β)(z+δσu−(reiφ+β)t)

]

≤πr
2

max

∣∣∣∣∣1− δσ
√
reiφ + β

reiφ

∣∣∣∣∣max
∣∣∣Ain(reiφ + β)ei(reiφ+β)(z+δσu−(reiφ+β)t)

∣∣∣ ,

(S36)
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where

max

∣∣∣∣∣1− δσ
√
reiφ + β

reiφ

∣∣∣∣∣ ≤ max

(
1 +

√∣∣∣∣reiφ + β

reiφ

∣∣∣∣
)

= 1 +

√
r + β

r
, (S37)

and Ain(reiφ + β)ei(reiφ+β)(z+δσu−(reiφ+β)t) is bounded as r → 0, therefore we have

lim
r→0

∣∣∣∣∫
Cr

dκ
1

2

(
1− δσ v0

u−(κ)

)
Ain(κ)eiκ(z+δσu−(κ)t)

∣∣∣∣ = 0. (S38)

So the third term has no contribution to the contour integral.
For an integration

∫
CR

f(κ)dκ along the infinite semicircle CR in the upper half plane, if |zf(z)| tends to zero

uniformly when |z| → ∞ both in the upper half plane and on the real axis, then the integral will vanish. We thus
need to check the limit of |κB̃σ(κ, t)eiκ(z+δσv1t)| as |κ| → ∞ for calculating the fourth term of Eq. (S35a). In light of
Eq. (S24), we have the following inequality∣∣∣κB̃(κ, t)eiκ(z+δσv1t)

∣∣∣ =|κ|
∣∣∣∣12
(

1− δσ v0

u−(κ)

)
Ain(κ)eiκδσ(u−(κ)−v1)teiκ(z+δσv1t)

∣∣∣∣
≤|κ|

2

∣∣∣∣(1− δσ v0

u−(κ)

)
eiκδσ(u−(κ)−v1)t

∣∣∣∣ C eaε

1 + |κ|
e−ε(z+δ

σv1t)

=
C

2

∣∣∣∣(1− δσ v0

u−(κ)

)
eiκδσ(u−(κ)−v1)t

∣∣∣∣ |κ| e−ε(z−a+δσv1t)

1 + |κ|
.

(S39)

If z−a+v1t > z−a−v1t > 0 for t > 0, the exponential term tends to zero in the upper half plane. And on account of
the limit lim|κ|→∞ u−(κ) = v1, |κB̃σ(κ, t)eiκ(z+δσv1t)| → 0 uniformly for |κ| → ∞ both in the upper half plane and on
the real axis. Thus the integral of the fourth term also vanishes when R→∞ as long as z−a+ v1t > z−a− v1t > 0.
According to Eq. (S35a), the sum of the first two terms also should be zero as z− a− v1t > 0 (t > 0), then we obtain
Bσ(z, t) = 0 (σ = 1, 2), for z − a− v1t > 0 and t > 0. Substituting this result into Eq. (S25) yields

B(z, t) = 0, for z > v1t+ a (t > 0). (S40)

A similar analysis of the integral given in Eq. (S35b) leads to the result:

B(z, t) = 0, for z < −(v1t+ a) (t > 0). (S41)

In other words, the wavefronts of both front and back edges can not propagate with a speed faster than v1.
On the other hand, if |z| < v1t+ a, no matter Γ or Γ′ is chosen to calculate Bσ(z, t) (or B′σ(z, t)), at least one of

B1(z, t) and B2(z, t) would not be zero. Therefore, B(z, t) 6= 0 for |z| < v1t + a (t > 0). In conclusion, the velocity
of wave front is exactly v1.

In the above discussion, we only concern the dispersion caused by Θ̇ = β. In practice, the permittivity ε1 and
permeability µ1 have dispersion with k in media, and accordingly v1 = 1/

√
ε1µ1 is also some function of k. The front

velocity thus depends on the analyticity of v1(k) for actual materials and need to be further investigated. However, for
the interaction between light and time-dependent true axion field in vacuum, or for the CFJ modes in Chern-Simons
modified electrodynamics, the dispersion relation is precisely ω± = ck

√
(k ± β)/k, so the front velocity vf ≡ c and

the causality will not be violated.
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