

L-fuzzy valued measure and integral

Vecislavs Ruza, Svetlana Asmuss

1 University of Latvia, Department of Mathematics
2 Institute of Mathematics and Computer Science of University of Latvia

Abstract

We continue to develop a construction of an L-fuzzy valued measure by extending a measure defined on a σ-algebra of crisp sets to an L-fuzzy valued measure defined on a T accumulative in the case when operations with L-sets and L-fuzzy numbers are defined by using the minimum triangular norm T. We introduce an L-fuzzy valued integral over an L-set with respect to an L-fuzzy valued measure, consider its properties and describe a method of L-fuzzy valued integration.

Keywords: L-set, L-fuzzy real number, L-fuzzy valued measure, L-fuzzy valued integral.

1. Introduction

One can find a lot of works regarding a fuzzy approach to measure and integral. The most important concepts and results concerning this topic are considered in [1], [2], [3]. Our interest is in developing a theory where not only sets are fuzzy, but also measure and integral take fuzzy real values. In the previous papers [4], [5] we suggested the construction that allows us to obtain an L-fuzzy valued measure defined on a T -algebra of L-sets by extension of a measure defined on a σ-algebra of crisp sets. We continue to develop the results obtained before and describe how an L-fuzzy valued measure defined on a T -algebra can be obtained for a given σ-algebra Φ ⊂ 2X and a finite measure μ : Φ → R+. On the next stage we introduce the concept of an L-fuzzy valued integral over a measurable L-set. Some properties of L-fuzzy valued integral are considered. We suppose that L is a complete, completely distributive lattice (see e.g. [6]) and operations with L-sets and L-fuzzy numbers are defined by using the minimum triangular norm T .

We give our preference to the fuzzy real numbers as they were first defined by B. Hutton [7] and then studied thoroughly in a series of papers (see e.g. [8], [9], [10]). The preference of using this approach for defining fuzzy real numbers is motivated by our intention to develop results on approximation from [11], [12]. For problems that can be solved only approximately the notion of the error of a method of approximation plays the fundamental role. In order to estimate the quality of approximation on an L-fuzzy set, we need an appropriate L-fuzzy analogue of a norm. Our intention is to use the L-fuzzy valued integral to define an L-fuzzy norm for investigation of the error of approximation on an L-set.

2. Preliminaries

2.1. L-sets

Given a (crisp) universe X and a complete, completely distributive lattice L(∧, ∨, 0L, 1L), an L-subset A of X (or, briefly, an L-set A) is a function A : X → L. The class of all L-subsets of X is denoted L X . The operations with L-sets A, B are defined by using the minimum triangular norm T M, its corresponding conorm S M and decreasing involution N:

\[(A \land B)(x) = T M(A(x), B(x)), \]
\[(A \lor B)(x) = S M(A(x), B(x)), \]
\[A'(x) = N(A(x)). \]

A finite family of L-sets A 1, A 2, …, A n is said to be T M-disjoint (see e.g. [1]) iff for each k ∈ {1, …, n} we have \(\bigvee _{i=1,i\neq k}^{n} A_i \land A_k = 0 \). A countable family of L-sets is said to be T M-disjoint iff every finite subfamily of this family is T M-disjoint.

In order to consider an L-fuzzy valued T M-measure we consider classes of L-sets called T M-clans and T M-tribes (see e.g. [1]).

Definition 2.1. A subclass \(\mathcal{A} \subset L^X \) is called a T M-clan on X if the following properties are satisfied:

- \(\emptyset \in \mathcal{A} \);
- for all \(A \in \mathcal{A} \) we have \(A^c \in \mathcal{A} \);
- for all \(A, B \in \mathcal{A} \) we have \(A \land B \in \mathcal{A} \).

Definition 2.2. A subclass \(\Sigma \subset L^X \) is called a T M-tribe on X if the following properties are satisfied:

- \(\emptyset \in \Sigma \);
- for all \(A \in \Sigma \) we have \(A^c \in \Sigma \);
- for all sequences \((A_n)_{n \in \mathbb{N}} \subset \Sigma \) we have \(\bigwedge _{n=1}^\infty A_n \in \Sigma \).

2.2. L-fuzzy real numbers

For our purposes we use the L-fuzzy real numbers as they were first defined by B. Hutton [7].

Definition 2.3. An L-fuzzy real number is a function \(z : \mathbb{R} \to L \) such that

- \(z \) is non-increasing;
- \(\bigwedge _{t}^{\infty} z(t) = 0_L, \bigvee _{t}^{t} z(t) = 1_L; \)
- \(z \) is left semi-continuous, i.e. for all \(t_0 \in \mathbb{R} \) we have \(\bigwedge _{t<t_0}^{\infty} z(t) = z(t_0) \).
In the original papers of this subject (see [7], [8], [9]) \(L \)-fuzzy real numbers were defined not as order reversing functions, but as equivalence classes of such functions. However each class of equivalence has a unique left semi-continuous representative and therefore an \(L \)-fuzzy real number can be identified with this representative. A deep theoretical justification of viewing fuzzy numbers as distribution function was given by U. Höhle [10], who showed that such fuzzy real numbers can be obtained from the set of rational numbers \(\mathbb{Q} \) by means of Dedekind completion in the same way as real numbers \(\mathbb{R} \) are obtained from \(\mathbb{Q} \) if one applies the multiple-valued logic, instead of the binary logic which stands behind the Dedekind completion in the classic case.

The set of all \(L \)-fuzzy real numbers is called the \emph{the \(L \)-fuzzy real line} and it is denoted by \(\mathbb{R}(L) \). An \(L \)-fuzzy number \(z \) is called \emph{non-negative} if \(z(0) = 1_L \). We denote by \(\mathbb{R}_+(L) \) the set of all non-negative \(L \)-fuzzy real numbers.

Operations with \(L \)-fuzzy real numbers such as addition \(\oplus \) and multiplication by a real positive number \(a \) are defined as following:

\[
(z_1 \oplus z_2)(t) = \bigvee \left\{ z_1(t, \tau) \land z_2(t, \tau) \mid \tau \in \mathbb{R} \right\}, \quad (z)(t) = z(t, t).
\]

The supremum and the infimum of a set of non-negative \(L \)-fuzzy numbers \(F \subseteq \mathbb{R}_+(L) \) are defined by the formulas (see e.g. [11], [12]):

\[
(\inf F)(t) = \bigwedge \left\{ z(t) \mid z \in F, t \in \mathbb{R} \right\}
\]

\[
\sup F = \inf \left\{ z \mid z \in \mathbb{R}(L), z \geq z' \text{ for all } z' \in F \right\}.
\]

Taking into account that \(F \) is bounded from below it is easy to see that \(\inf F \) is an \(L \)-fuzzy real number. In case \(F \) is bounded from above (i.e. there exists \(z_0 \in \mathbb{R}(L) \) such that \(z \leq z_0 \) for all \(z \in F \)), \(\sup F \) is an \(L \)-fuzzy real number, otherwise the condition

\[
\bigwedge_n \sup F(t) = 0_L
\]

does not necessarily hold.

Going forward we will need also the countable addition of non-negative fuzzy real numbers. Given a sequence of non-negative fuzzy real numbers \((z_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}_+(L) \) we consider the countable sum

\[
\bigoplus_{n=1}^{\infty} z_n = \sup \left\{ z_1 \oplus z_2 \oplus \cdots \oplus z_n \mid n \in \mathbb{N} \right\}.
\]

For \(a \in \mathbb{R}_+ \) and \(\alpha \in \mathbb{L} \) by \(z(a, \alpha) \) we denote a special type of non-negative \(L \)-fuzzy real numbers

\[
(z(a, \alpha))(t) = \begin{cases} 1, & t \leq 0, \\
\alpha, & 0 < t \leq a, \\
0, & t > a, \end{cases}
\]

that will play an important role in our work.

\section{Construction of \(L \)-fuzzy valued measure}

\subsection{Measurable \(L \)-sets}

For a given \(\sigma \)-algebra \(\Phi \subseteq 2^X \) and a finite measure \(\nu : \Phi \rightarrow \mathbb{R}_+ \) an \(L \)-fuzzy valued measure can be obtained by the following schema (see [4], [5]):

- For \(M \in \Phi, \alpha \in \mathbb{L} \) we define an \(L \)-fuzzy set

\[
(A(M, \alpha))(x) = \begin{cases} \alpha \in M, \\
0, & x \notin M. \end{cases}
\]

All these \(L \)-sets form a class of \(L \)-sets that we denote by \(\varnothing \):

\[\varnothing = \{A(M, \alpha)|M \in \Phi, \alpha \in \mathbb{L}\}.
\]

Note that the following properties hold for all \(L \)-sets \(A_1, A_2, \ldots, A_n \in \mathbb{L} \):

- \(\bigwedge_{i=1}^{n} A_i \in \mathbb{L} \);
- there exist such \(T \)-disjoint \(L \)-fuzzy sets \(B_1, B_2, \ldots, B_k \in \mathbb{L} \) that

\[
\bigvee_{i=1}^{n} A_i = \bigvee_{i=1}^{k} B_i.
\]

- Next we define an \(L \)-fuzzy valued function

\[
m : \varnothing \rightarrow \mathbb{R}_+(L)
\]

by the formula

\[
m(A(M, \alpha)) = \nu(A(M, \alpha)).
\]

Obviously,

- for all sets \(A_i = A(M_i, \alpha_i) \in \mathbb{L} \), \(i = 1, 2 \):

\[
m(A_1) \oplus m(A_2) = m(A_1 \land A_2) \oplus m(A_1 \lor A_2);
\]

- for all \((M_n)_{n \in \mathbb{N}} \subseteq \Phi \) and \(M = \bigcup_{n \in \mathbb{N}} M_n \) we have

\[
\sup \{m(A(M_n, \alpha))| n \in \mathbb{N}\} = m(A(M, \alpha)).
\]
Now taking into account that consider a sequence \(T \)

\[m(A, \alpha) = m(A \cup M_n, \alpha). \]

\[\bigoplus_{n=1}^{\infty} m(A, \alpha) = m(A \bigcup_{n \in \mathbb{N}} M_n, \alpha). \]

• Now we extend \(m \) to the \(L \)-fuzzy valued function \(m^*: L^X \rightarrow \mathbb{R}_+ \) as following:

\[m^*(E) = \text{Inf} \{ \bigoplus_{n=1}^{\infty} (m(E_n) \cap (E_n)_{n \in \mathbb{N}} \subseteq \varnothing : E \leq \bigcup_{n=1}^{\infty} E_n) \} \]

\((m^* \) is an \(L \)-fuzzy valued analogue of an outer measure).

Let us note that

(i) for all \(E \in L^X \) there always exists such a sequence \((E_n)_{n \in \mathbb{N}} \subseteq \varnothing \) that \(E \leq \bigcup_{n=1}^{\infty} E_n \);

(ii) \(m^* \) is bounded from above in the following sense:

\[m^*(E) \leq z(\nu(X), 1_L) \text{ for all } E \in L^X; \]

(iii) for all \(E \in \varnothing \) we obtain \(m^*(E) = m(E) \);

(iv) for \(L \)-sets \(A, B \in L^X \) we have

\[m^*(A) \oplus m^*(B) \geq m^*(A \cap B) \oplus m^*(A \cup B). \]

• Finally, we generalize to the fuzzy case the classical concept of \(m^* \)-measurability (in the sense of Caratheodory) and consider \(\Sigma \) - the class of all so called \(m^* \)-measurable \(L \)-sets .

Definition 3.1. A set \(E \in L^X \) is called a \(m^* \)-measurable if it satisfies the following conditions for all \(L \)-sets \(B \in L^X \):

\[m^*(E) \oplus m^*(B) = m^*(E \cap B) \oplus m^*(E \cup B), \]

\[m^*(E^c) \oplus m^*(B) = m^*(E^c \cap B) \oplus m^*(E^c \cup B). \]

Note that

(i) \(E^c \) is \(m^* \)-measurable for all \(m^* \)-measurable \(L \)-sets \(E; \)

(ii) all \(L \)-sets \(E \in \varnothing \) are \(m^* \)-measurable.

3.2. \(L \)-fuzzy valued measure of measurable \(L \)-sets

We consider \(\mu \) as the restriction of \(m^* \) to \(\Sigma \):

\[\mu(E) = m^*(E) \text{ for all } E \in \Sigma. \]

Theorem 3.2. \(\mu \) is an \(L \)-fuzzy valued \(T_M \)-measure such that \(\mu/\varnothing = m. \)

As it was shown in [5] all \(m^* \)-measurable \(L \)-sets form a \(T_M \)-clan. To obtain that the class \(\Sigma \) is a \(T_M \)-tribe, we consider a sequence \((E_n)_{n \in \mathbb{N}} \) of \(m^* \)-measurable \(L \)-sets. First we notice that

\[m^*(\bigcup_{n=1}^{\infty} E_n) = \text{Sup} \{ m^*(\bigcup_{i=1}^{n} E_i) : n \in \mathbb{N} \}. \]

Now taking into account that \(\bigoplus_{i=1}^{n} E_i \) is \(m^* \)-measurable we obtain that for all \(L \)-sets \(B \in L^X \) and for all \(n \in \mathbb{N} \):

\[m^*(\bigcup_{i=1}^{n} E_i) \oplus m^*(B) = \]

\[m^*(\bigcup_{i=1}^{n} E_i) \oplus m^*(B) \leq \]

\[m^*(\bigcup_{i=1}^{\infty} E_i) \oplus m^*(\bigcup_{i=1}^{\infty} E_i) \]

This means that for all \(n \in \mathbb{N} \)

\[m^*(\bigcup_{i=1}^{n} E_i) \oplus m^*(B) \leq \]

\[m^*(\bigcup_{i=1}^{\infty} E_i) \oplus m^*(\bigcup_{i=1}^{\infty} E_i) \]

and hence

\[\text{Sup} \{ m^*(\bigcup_{i=1}^{n} E_i) : m \in \mathbb{N} \} \oplus m^*(B) \]

Finally we obtain

\[m^*(\bigcup_{i=1}^{\infty} E_i) \oplus m^*(B) = \]

\[m^*(\bigcup_{i=1}^{\infty} E_i) \oplus m^*(\bigcup_{i=1}^{\infty} E_i) \]

By analogy the result can be proved for \(\bigcap_{n=1}^{\infty} E_n \).

Thus by extension of a crisp measure \(\nu \) we obtain \(L \)-fuzzy valued measure

\[\mu: \Sigma \rightarrow \mathbb{R}_+(L) \]

such that

(i) \(\mu/\varnothing = m; \)

(ii) \(\mu/\Phi = \nu. \)

The last equality means that for every \(M \in \Phi \) it holds

\[\mu(A(M, 1_L)) = \nu(M, 1_L). \]

4. \(L \)-fuzzy valued integral

4.1. Definition of \(L \)-fuzzy valued integral

Our aim is to define an \(L \)-fuzzy valued integral

\[\int_{E} f \, d\mu, \]

where \(E \in \Sigma \) and \(f : X \rightarrow \mathbb{R} \) is a non-negative measurable function with respect to \(\sigma \)-algebra \(\Phi. \)

By analogy with the classical case (see e.g. [13]) we define an \(L \)-fuzzy valued integral stepwise, first considering the case of simple non-negative measurable functions (for short SNMF):

\[\int_{E} (\sum_{i=1}^{n} c_i \chi_{C_i}) \, d\mu = \sum_{i=1}^{n} (c_i \mu(C_i \cap E)), \]

whenever

- \(c_i \in \mathbb{R}_+, C_i \in \Phi \) for all \(i = 1, \ldots, n, \)
- \(\chi_{C_i} \) is the characteristic function of \(C_i, i = 1, \ldots, n, \)
\begin{itemize}
 \item \(C_1, \ldots, C_n\) are pairwise disjoint sets.
\end{itemize}

Then considering the case of non-negative measurable functions \(f\) (for short NMF):
\[
\int_E f \, d\mu = \text{Sup}\{\int_E g \, d\mu \mid g \leq f \text{ and } g \text{ is SNMF}\}.
\]

For \(\mathbb{I}_f = \int_E f \, d\mu\) due to properties of the supremum of a set of \(L\)-fuzzy numbers, we have
\begin{itemize}
 \item \(\mathbb{I}_f\) is non-increasing,
 \item \(\mathbb{I}_f(t) = \mathbb{I}_f(1)\),
 \item \(\mathbb{I}_f\) is left semi-continuous, i.e.
\end{itemize}

\[
\bigwedge_{t<0} \mathbb{I}_f(t) = \mathbb{I}_f(n).
\]

Definition 4.1. We say that a non-negative measurable function \(f\) is \(L\)-fuzzy integrable iff
\[
\bigwedge_{t} \mathbb{I}_f(t) = 0_L.
\]

4.2. Properties of \(L\)-fuzzy valued integral

For \(L\)-fuzzy integrable non-negative functions \(f_1, f_2, \ldots, f_n, \ldots\) and measurable \(L\)-sets \(E, E_1, E_2, \ldots, E_n, \ldots \in \Sigma\) the following properties of \(L\)-fuzzy valued integral are true.

1. \(\int_E d\mu = \mu(E)\)
2. \(r \in \mathbb{R}_+ \Rightarrow \int_E rf d\mu = r \int_E f d\mu\)
3. \(f_1 \leq f_2 \Rightarrow \int_E f_1 d\mu \leq \int_E f_2 d\mu\)
4. \(E_1 \leq E_2 \Rightarrow \int_E f d\mu \leq \int_{E_1} f d\mu \leq \int_{E_2} f d\mu\)
5. \((\int_E (f_1 + f_2) \, d\mu) = \int_E f_1 d\mu \oplus \int_E f_2 d\mu\)
6. \((E_1 \cap E_2 = \emptyset \Rightarrow \int_{E_1} f d\mu \oplus \int_{E_2} f d\mu = \int_{E_1 \cup E_2} f d\mu)\)
7. \(E_{n} \cap E_{n+1} \leq E_{n+1} \text{ and } \bigvee_{n \in \mathbb{N}} E_n = E \Rightarrow \int_E f \, d\mu = \text{Sup}\{\int_{E_n} f \, d\mu \mid n \in \mathbb{N}\}\)
8. \(\int_E f d\mu = \text{Sup}\{\int_{f_n} d\mu \mid n \in \mathbb{N}\}\)

5. Integration over a measurable fuzzy set

In this section we suggest a method of calculation of the fuzzy valued integral over a measurable fuzzy set \(E\) in the case when \(L = [0,1]\) and \(E\) is NMF (i.e. \(E\) is measurable with respect to \(\sigma\)-algebra \(\Phi\)).

The main idea of the method is based on the following reasoning. The fuzzy set we want to integrate over can be viewed as a non-negative function. Let us assume that this function is measurable with respect to \(\sigma\)-algebra \(\Phi\). It is known that every non-negative measurable function can be presented as a limit of a non-decreasing sequence of SNMF. Obviously, every fuzzy set that is SNMF can be presented as the union of \(T_M\)-disjoint fuzzy sets from the class \(\wp\). And the \(L\)-fuzzy valued integral over an element from the class \(\wp\) can be easily calculated.

This observation gives a reason for the following theorem.

Theorem 5.1. If \(E: X \to [0,1]\) is a measurable function with respect to \(\sigma\)-algebra \(\Phi\), then fuzzy set \(E\) is measurable with respect to \(T_M\)-tribe \(\Sigma\).

We describe the method gradually depending on the type of a fuzzy set \(E\): first considering the case when \(E\) is an element of the class \(\wp\), then extend it to the case when \(E\) is SNMF or a finite union of elements from the class \(\wp\) and, finally, the case when \(E\) is NMF.

5.1. Integration over \(A(M, \alpha)\)

To show that for all \(A(M, \alpha) \in \wp\) it holds
\[
\int_{A(M, \alpha)} f d\mu = z\int_M f d\nu, \alpha),
\]
we use some special properties of the addition of fuzzy numbers \(z(\alpha, \beta)\) described in subsection 2.2.

- \(a_1, a_2 \in \mathbb{R}_+ \Rightarrow z(a_1, \alpha) \oplus z(a_2, \alpha) = z(a_1 + a_2, \alpha);\)
- \(c \in \mathbb{R}_+ \Rightarrow cz(a, \alpha) = z(ca, \alpha);\)
- \(a_i \in \mathbb{R}_+, i \in J \Rightarrow \text{Sup}\{z(a_i, \alpha) \mid i \in J\} = z(\text{Sup}\{a_i \mid i \in J\}, \alpha)\).

For \(f = \sum_{i=1}^n c_i \chi_{C_i}\) we get
\[
\int_{A(M, \alpha)} \sum_{i=1}^n c_i \chi_{C_i} \, d\mu = \bigoplus_{i=1}^n (c_i \mu(C_i \cap A(M, \alpha))) =
\]
\[
= \bigoplus_{i=1}^n (c_i z(M \cap C_i), \alpha) =
\]
\[
= z\sum_{i=1}^n c_i z(M \cap C_i), \alpha) = z\left(\int_M f d\nu, \alpha\right).
\]

In the case when \(f\) is NMF we have
\[
\int_{A(M, \alpha)} f d\mu = \text{Sup}\{\int_M g d\nu, \alpha) \mid g \leq f \text{ and } g \text{ is SNMF}\} =
\]
\[
= z(\text{Sup}\{\int_M g d\nu, \alpha) \mid g \leq f \text{ and } g \text{ is SNMF}\}, \alpha) =
\]
\[
= z(\int_M f d\nu, \alpha).
\]

5.2. Integration over SNMF \(E\)

If \(E\) is SNMF then \(E(\mathbb{R}) = \{\alpha_1, \ldots, \alpha_n\}\). We assume that
\[
\alpha_1 > \alpha_2 > \ldots > \alpha_n
\]
and denote
\[
M_i = E^{-1}(\alpha_i), \ i = 1, \ldots, n.
\]
Then

- $i \neq j \Rightarrow M_i \cap M_j = \emptyset$;
- $\bigcup_{i=1}^n M_i = \mathbb{R}$;
- $E = \bigvee A(M_i, \alpha_i)$;
- $E^{\alpha_i} = \bigcup_{j=1}^i M_j$

where E^{α_i} as the α_i-cut of fuzzy set E.

Taking into account the property of addition of fuzzy numbers:

$\bigoplus_{j=1}^n (a_i, \alpha_i)(t) =$

\[
\begin{cases}
1, t \leq 0, \\
\alpha_i, 0 < t \leq a_i, \\
\alpha_i+1, a_i + \ldots + a_i < t \leq a_i + \ldots + a_i+1, \\
\ldots \ldots, \\
0, t > a_i + \ldots + a_i,
\end{cases}
\]

we obtain

\[
\int_{E} f \, d\mu = \bigoplus_{i=1}^n \left(\int_{E^{\alpha_i}} f \, d\mu \right) =
\]

\[
\begin{cases}
1, t \leq \int_{M_i} f \, dv, \\
\alpha_i, \sum_{j=1}^{i-1} \int_{M_j} f \, dv < t \leq \sum_{j=1}^{i} \int_{M_j} f \, dv, \\
\ldots \ldots, \\
0, t > \sum_{j=1}^{n} \int_{M_j} f \, dv, \\
1, t \leq \int_{E^{\alpha_i}} f \, dv, \\
\alpha_i, \int_{E^{\alpha_i}} f \, dv < t \leq \int_{E^{\alpha_{i+1}}} f \, dv, \\
\ldots \ldots, \\
\alpha_{n}, \int_{E^{\alpha_{n-1}}} f \, dv < t \leq \int_{E^{\alpha_n}} f \, dv, \\
0, \text{otherwise}.
\end{cases}
\]

5.3. Integration over NMF E

As was already mentioned every NMF E can be presented as the limit of a non-decreasing sequence of SNMF. To describe this sequence we use the same logic as in the previous subsection. Let us take a sequence $(E_n)_{n \in \mathbb{N}}$ such as:

- for all $n \in \mathbb{N}$: $E_n(\mathbb{R}) = \{ \alpha^n_1, \ldots, \alpha^n_{k_n} \}$;
- for all $n \in \mathbb{N}$: $\alpha^n_k > \alpha^n_{k-1}, i = 1, \ldots, k_n - 1$;
- $M^n_i = \{ x \in E | E(x) = \alpha^n_i \}$, $i = 1, \ldots, k_n$;
- $M^n_i = \{ x \in E | \alpha^n_i \leq E(x) < \alpha^n_{i-1} \}$, $i = 2, \ldots, k_n$;
- $E_n = \bigvee_{i=1}^{k_n} E(\alpha^n_i, M^n_i)$, $n \in \mathbb{N}$;
- $E = \bigvee_{n \in \mathbb{N}} E_n$.

Denoting $I = \int_{E} f \, d\mu$ and $I_n = \int_{E_n} f \, d\mu$ we get

\[
I = \text{Sup} \{ \int_{E_n} f \, d\mu | n \in \mathbb{N} \} = \text{Sup} \{ I_n | n \in \mathbb{N} \}.
\]

From the last equality we can get an approximate value of I by fixing n. Obviously, the integral accuracy in this case will be dependent on n.

Acknowledgement

The paper was partly supported by the ESF projects 2009/0138/1DP/1.1.2.1.09/IP/A/VIAA/004 and 2009/0223/1DP/1.1.2.1.09/APIA/VIAA/008.

References