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UGH, EVERYONES
AN EPIDEP’JIOLOGIS‘T.

IT'S UKE WHEN THERE'S A

MOUNTAINEERING DISASTER
IN THE NEWS, AND SUDDENLY
EVERYONE 15 AN EXPERT ON
MOUNTAIN CUMBING SAFETY.

[

I ME'PIN, IT'S NOT EXACTLY’ LIKE THAT.

IF THE ENTIRE WORLD'S POPULATION WERE
SUDDENLY STRANDED ON MOUNTAINTOPS
TOGETHER, A LOT OF PEOPLE WOULD

UNDERSTANDABLY BE TRYING TO BECOME
MOUNTAINEERING EXPERTS REALLY FAST.

\ OKAY THAT'S FAIR.

BUT I DO WISH THEY WOULDN'T
KEEP GOING ON TV AND SAYING
"ACCORDING To My RESEARCH ON
GRAVITY, IF EVERYONE CURLS
INTO A BALL AND ROLLS, WELL
GET 10 THE BOTTOM QUICKLY!"

YES, THAT'S
/ DEFINITELY
NOT HELPING.
/




e We want to take a basic SIRD model to the data for many countries, states, and cities:
e Exploit variation across time and space.
e Measure effects of social distancing via a time-varying f3.

e Make a more general point about structural vs. reduced-form parameters in SIRD models.

e Estimation and simulation:
e Different countries, U.S. states, and cities.
e Robustness to parameters and problem of underidentification.
e "“Forecasts” from each of the last 7 days.

e Extended results available at: https://web.stanford.edu/~chadj/Covid/Dashboard.html.


https://web.stanford.edu/~chadj/Covid/Dashboard.html

Outline (continued)

e Re-opening and herd immunity: How much can we relax social distancing?

How do we make more progress in understanding time-varying parameters and their relation to
observed policies?

Heterogeneous agents SIRD models.

Example of policy counterfactuals with heterogeneous agents SIRD models: introducing a vaccine.



Basic model



e Stocks of people who are:

S: = Susceptible
I; = Infectious
R: = Resolving
D; = Dead

C; = ReCovered

e Constant population size is N:

St+/t+Rt+Dt+Ct:N

e Only one group. Why? | will return to this point repeatedly.



SIRD model: Overview

e Susceptible get infected at rate B¢/, /.

e New infections = B¢le/N - S;.

e Infectiousness resolve at Poisson rate 7, so the average number of days that a person is infectious is
1/v. Eg., v =.2 = 5 days.

e Post-infectious cases then resolve at Poisson rate 6. E.g., 6 =.1 = 10 days.

e Resolution happens in one of two ways:

e Death: fraction .

e Recovery: fraction 1 — 6.



SIRD model: Laws of motion

ASt+1 - _ﬂtstlt/N
N—_——

Alt_;,_]_ = /Btst/t/N — 'Y/t
N—— ~~—
ARey1 = vl - O Ry
~~~ ~~

ADt+1 = (50Rt
———

ACtJ'_]_ = (l - 5)6Rt
—_————

with Dy = 0 and . 6



Social distancing

e What about the time-varying infection rate (3;7
e Disease characteristics — fixed, homogeneous (exceptions?).
e Regional factors (NYC vs. Montana) — fixed, heterogeneous.

e Social distancing — varies over time and space.

e Reasons why ; may change over time:
e Policy changes on social distancing.
e Individuals voluntarily change behavior to protect themselves and others.
e Superspreaders get infected quickly, but then recover and “burn out” early.

e Spatial aggregation: SIRD model is highly non-linear.



Recovering and , |

e Recovering 3;, a latent variable, from the data is straightforward.
e D,.: stock of people who have died as of the end of date t + 1.
e AD;i1 = di11: number of people who died on date t + 1.

e After some manipulations, we can “invert” the model and get:

N ( L1AAd: +Adt+2>

b= §r %Adt+2 + de1

a d:
t+1 t t S’YN 9 t+2 t+1



Recovering and , 1

e With these two equations, a time series for d;, and an initial condition So/N = 1, we iterate forward
in time and recover 3; and S;.1.

e We are using future deaths over the subsequent 3 days to tell us about f3; today.

e While this means our estimates will be three days late (if we have death data for 30 days, we can
only solve for 8 for the first 27 days), we can still generate an informative estimate of ;.

e More general point about SIRD models: state-space representation that we can exploit.



Recovering a ,

e We can also recover the basic reproduction number:
Rot = B x 1/
and the effective reproduction number:

Ret - ROt . St/N

e Now we can simulate the model forward using the most recent value of St and gauge where a region
is headed in terms of the infection and current behavior.

e And we can correlate the [3; with other observables to evaluate the effectiveness of certain
government policies such as mandated lock downs.
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An endogenous

Individuals react endogenously to risk.

Indeed, much of the reaction is not even government-mandated.

We could solve a complex dynamic programming problem.

Instead, Cochrane (2020) has suggested:

Rot = Constant - d; @

where d; is daily deaths per million people.
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Estimates and simulations



Parameters assumed fixed and homogeneous, |

e v = 0.2: the average length of time a person is infectious is 1/7, so 5 days in our baseline. We also
consider v = 0.15 (7 day duration).

e O =0.1: the average length of time it takes for a case to resolve, after the infectious period ends, is
1/6. With 0 = .1, this period averages 10 days.

Combined with the 5-day infectious period, this implies that the average case takes a total of 15 days
to resolve. The implied exponential distribution includes a long tail capturing that some cases take
longer to resolve.

e o = 0.05. We estimate «; from data for each location /. Tremendous heterogeneity across locations
in these estimates, so a common value is not well-identified in our data.
We report results with o = 0 and o = .05.
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Parameters assumed fixed homogeneous, ||

e ) =1.0%.
e Case fatality rates not helpful: no good measure of how many people are infected.

e Evidence from a large seroepidemiological national survey in Spain: 6 = 1.0% in Spain is between 1%
and 1.1%. Because many of the early deaths in the epidemic were linked with mismanagement of care at
nursing homes in Madrid and Barcelona, we pick 1% as our benchmark value.

e Correction by demographics to other countries. For most of the countries, mortality rate clusters around
1%. For the U.S.: 0.76% without correcting for life expectancy and 1.05% correcting by it.

e Other studies suggest similar values of §. New York City data suggests death rates of around 0.8%-1%.

e CDC has release a lower estimate (0.26%). | just do not see it.
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Estimation based entirely on death data

e Johns Hopkins University CSSE data plus a few extra sources for regions/cities.
e Excess death issue:

e New York City added 3,000+ deaths on April 15 ~ 45% more.

° and increases based on vital records.

e Example: Spain, where we have a national civil registry: 43,034 excess deaths vs. 27,117 at CSSE
(18%).

e We adjust all NYC deaths before April 15 by this 45% and non-NYC deaths upwards by 33%.
e We use an HP filter to death data.
e Otherwise, very serious “weekend effects” in which deaths are underreported.

e Even zero sometimes, followed by a large spike.
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Guide to graphs

e 7 days of forecasts: Rainbow color order!

ROY-G-BIV (old to new, low to high)

e Black = current.
e Red = oldest, = second oldest, =third oldest....

e Violet (purple) = one day earlier.

e For robustness graphs, same idea:

e Black = baseline (e.g. § = 0.8%).
e Red = lowest parameter value (e.g. § = 0.8%).

e Green = highest parameter value (e.g. 6 = 1.2%).
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Figure 5: New York City: Percent of the Population Currently Infectious

New York City (only)
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Figure 7: Percent of the Population Currently Infectious
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Figure 9: New York City: Daily Deaths per Million People (§ = 1.0%/0.8%/1.2%)
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Figure 11: Spain: Cumulative Deaths per Million People (y = .2/.1)
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Figure 13: Spain: Cumulative Deaths per Million (Future, v = .2/.1)
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Figure 15: Italy: Cumulative Deaths per Million (Future, § = .1/.07/.2)
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Figure 17: Lombardy, Italy (7 days): Daily Deaths per Million People
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Figure 19: New York City (7 days): Cumulative Deaths per Million (Future)
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Daily deaths per million people

Figure 21: California (7 days): Daily Deaths per Million People
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Daily deaths per million people

Figure 30: Sweden (7 days): Daily Deaths per Million People
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Reopening and herd immunity




Reopening and herd immunity

The disease will die out as long as:

R0t~5t/N<1

e That is, if the "new” Ro¢ is smaller than 1/s(t).

Today's infected people infect fewer than 1 person on average.

e \We can relax social distancing to Ror to 1/s(t).

Note, however, the importance of “momentum.”
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Why random testing is so valuable

6 =0.5% 0 =1.0% 0=1.2%
New York City (only) 51 22
Lombardy, Italy 43 19
New York 31 13
Madrid, Spain 36 15
Detroit 36 15
New Jersey 37 16
Stockholm, Sweden 36 15
Connecticut 33 14
Boston+Middlesex 29 12
Massachusetts 29 12
Paris, France 21 9
Philadelphia 23 10
Michigan 18 8
Spain 17 7
Italy 15 7
lllinois 13 6
Sweden 12 5
Pennsylvania 12 5
United States 9 4
New York excluding NYC 8 3
Los Angeles 5 2
Florida 3 1 30
California 3 1



Using percent susceptible to estimate herd immunity,

Rot+30
Ro Roe
New York City (only) 2.7 0.8 735 1.4 30.3
Lombardy, Italy 2.5 0.9 77.5 1.3 23.4
New York 2.6 0.7 83.8 1.2 26.4
Madrid, Spain 2.6 0.2 81.5 1.2 43.2
Detroit 2.4 0.5 81.6 1.2 37.6
New Jersey 2.6 1.1 78.3 1.3 11.4
Stockholm, Sweden 2.6 1.2 78.3 1.3 7.2
Boston+Middlesex 2.1 0.7 84.9 1.2 32.9
Massachusetts 2.1 1.0 83.3 1.2 21.3
Paris, France 2.4 0.2 89.4 1.1 42.0
Philadelphia 25 0.9 87.2 1.1 17.0
Spain 2.4 0.5 91.5 1.1 290.8
Chicago 2.2 0.9 87.0 1.1 18.0
lllinois 2.0 0.9 91.2 1.1 15.3
Sweden 2.1 0.9 92.7 1.1 15.2
Pennsylvania 2.1 0.8 93.0 1.1 19.5
United States 2.0 0.9 94.7 1.1 13.1
New York excluding NYC 2.0 1.1 92.8 1.1 -2.3
Los Angeles 1.6 1.0 96.2 1.0 5.4
Florida 1.6 0.9 98.0 1.0 15.3
California 15 1.0 97.5 1.0 -3.4
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Simulations of re-opening

e Begin with the basic estimates shown already.

e Different policies are then adopted starting around May 20.
e Black: assumes Ro:(today) remains in place forever.
e Red: assumes Ro:(suppress)= 1/s(today).
e Green: we move 25% of the way from Ro: = “today” back to initial Ro: = “normal.”
e Purple: we move 50% of the way from Ro: = “today” back to initial Ro: = “normal.”
e We assume these Rg; values stay in place forever.

e In practice, over course, B: would likely start to fall again as mortality rises.
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Figure 37: New York City: Re-opening
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Figure 38: New York excluding NYC: Re-opening

New York excluding NYC
R, (®=1.0, R (suppress)=1.1, R0(25/50)=1.3/1.5, 6=0.010, a=0.05

2020

36



'S %3 =y
=1 =1 =}

Daily deaths per million people
w
=1

20
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Daily deaths per million people

Figure 40: Stockholm, Sweden: Re-opening
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Daily deaths per million people

Figure 41: Chicago: Re-opening
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Figure 42: Massachusetts: Re-opening
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More progress on

e Can we understand the evolution of 3; (i.e., initial and final level, rate of decay)?

This might help us to forecast its evolution.
e Also, it might help us map changes of 3; into concrete policies.

e Two points:

1. Agents react endogenously to information: Cochrane (2020), Farboodi, Jarosch, and Shimer (2020), and
Toxvaerd (2020).

2. Economists like to think at the margin.
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More progress on  (continued)

e We looked at:
1. Fraction of housing units located in an urban environment.
2. Population density per square kilometer.
3. Average annual temperature in degrees Celsius.

4. log real GDP /personal income per capita.
e Urbanization and income are significant, but both marginally and, for income, with a surprising sign.

e We do not take this results are anything but a suggestion there are no obvious patterns there.
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More progress on  (continued)

e We map changes of 3; into measures of policies.
e A proxy of the effects of policies: Mobility Trends Reports from Apple Maps.

e However, this proxy mixes voluntary and compulsory reductions in mobility and causality is hard to
ascertain.

e Significant correlation between A and reductions in average mobility (with and without additional
controls).

e Correlation triggered by driving. Walking and mass transit per se are not significant.
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vs. mobility
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vs. mobility
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Heterogeneity

We know heterogeneity is key, for instance, for mortality (age, pre-existing conditions).

Also, for patterns of behavior and social contact.

Role of super-spreaders and nursing homes.

Introduction movement across territories.

Heterogeneous-agents SIRD model. Among many others, Acemoglu et al. (2020) and Berger,
Herkenhoff, and Mongey (2020).
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Super-spreaders
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Super-spreaders (continued)
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Super-spreaders (continued)

100 RO high is 3.00, RO low is 1.25

80 b
m— Super-spreaders

70 == Regular i

60 - b

50 b

Ever infected, percentage




Super-spreaders (continued)

% RO high is 3.00, RO low is 1.25
T T T T T

T T
m— Super-spreaders
= Regular

80~ b

Infected, percentage
W B (9] [o2} ~
o o o o o
T T T T T
L L L L L

n
o
T
I

0 10 20 30 40 50 60 70 80 90 100



e We can take the results that we get from our estimation and undertake policy exercises.
e Take, for instance, the point estimates for NYC, including a Ry = 4.1.
e We model a vaccine.

e Success rate of the vaccine: 75% of vaccinated do not get infected and, of the 25% who do get
infected, only 25% can transmit it (relatively conservative assumption given the clinical success of
other vaccines; recall: COVID-19 has a very different structure than the Influenza virus).

e 90% vaccination rate.

e You can effectively control the epidemic.
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Ever infected (continued)
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Currently infected
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Currently infected (continued)
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Conclusions

Time-varying 8 (or Ro:) needed to capture social distancing, by individuals or via policy.

Is the death rate 0.8% or 1.0% or ??? Random sampling!

“One size fits all” will not work for re-opening.

Susceptible rates are heterogeneous.

e We can employ rich models for policy analysis.

But one needs to be cautious.
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