Well-Supported Semantics for Description Logic Programs

Yi-Dong Shen
Institute of Software, Chinese Academy of Sciences, Beijing, China
http://lcs.ios.ac.cn/~ydshen

IJCAI 2011, Barcelona, Spain
Outline

I. Background and Motivation
II. DL-Programs
III. Well-Supported Models
IV. Well-Supported Answer Set Semantics
V. Related Work
VI. Summary and Future Work
Semantic Web Stack

- User interface and applications
- Trust
- Proof
- Unifying logic
- Querying: SPARQL
- Ontologies: OWL
- Rules: RIF/SWRL
- Taxonomies: RDFS
- Data interchange: RDF
- Syntax: XML
- Identifiers: URI
- Character set: UNICODE
Integration in the Semantic Web

- **Ontologies** describe terminological knowledge.
- **Rules** model constraints and exceptions over the ontologies.
- They provide complementary descriptions of the same problem domain, so a **unifying logic** is used to
 - integrate the two components, and
 - study the semantic properties of the integrated knowledge base.
Three Forms of Integration

- **Loose integration**
 - Ontologies and rules share no predicate symbols (Eiter et al. 2008, AIJ).

- **Tight (or Hybrid) integration**
 - Ontologies and rules share some predicate symbols (Rosati 2006, KR; Lukasiewicz 2010, TKDE).

- **Full integration**
 - Ontologies and rules share the same vocabulary (de Bruijn et al. 2008, KR; Motik and Rosati 2010, JACM).
We consider a loose integration, called Description logic programs (or DL-programs) (Eiter et al. 2008, AIJ)

A DL-program is $KB = (L, R)$

- L: a DL knowledge base (ontologies).
- R: an extended logic program under the answer set semantics.
Semantic Issues with DL-Programs

- **Weak answer set semantics** (Eiter et al. 2008, AIJ)
 - The authors noted that an obvious disadvantage of the semantics is that it may produce counterintuitive answer sets with *circular justifications* by self-supporting loops.

- **Strong answer set semantics** (Eiter et al. 2008, AIJ)
 - We observed that the problem of *circular justifications* persists in this semantics.

- **FLP answer set semantics** (Eiter et al. 2005, IJCAI)
 - We observed that the problem of *circular justifications* persists in this semantics.
Semantic Issues with DL-Programs

Therefore, it presents an interesting yet challenging open problem to develop a new semantics for DL-programs, which produces answer sets free of circular justifications.
Circular Justifications

- A model I of a logic program R is **circularly justified** if the truth of some $a \in I$ is supported by itself in I.

- **Examples**

 1. Consider a logic program $R = \{a \leftarrow b. \ b \leftarrow a\}$ and let $I = \{a, b\}$.

 $a \in I$ is circularly justified by a self-supporting loop: $a \leftarrow b \leftarrow a$

 2. Consider a DL-program $KB = (L, R)$ from (Eiter et al. 2008, AIJ), where $L = \emptyset$ and $R = \{p(a) \leftarrow DL[c \cup p; c](a)\}$. Let $I = \{p(a)\}$.

 $p(a) \in I$ is circularly justified by a self-supporting loop:

 $p(a) \leftarrow DL[c \cup p; c](a) \leftarrow p(a)$
Fages’ Well-Supportedness Condition

- For normal logic programs, the problem of circular justifications is elegantly handled by Fages’ well-supportedness condition (Fages 1994, JMLCS).
- It defines a level mapping, which prevents well-supported models from circular justifications.
- It is a key property to characterize the standard answer set semantics (Gelfond and Lifschitz 1991, NJC):
 - A model of a normal logic program is an answer set under the standard answer set semantics iff it is well-supported (Fages 1994, JMLCS).
Fages’ Well-Supportedness Condition

- Can we extend Fages’ well-supportedness condition from normal logic programs to DL-programs to overcome circular justifications?
- Our answer is Yes.
Our Contributions

- We solve the semantic problem of circular justifications with DL-programs by
 - extending Fages’ well-supportedness condition from normal logic programs to DL-programs, and
 - defining a well-supported semantics for DL-programs, which produces answer sets free of circular justifications.
Outline

I. Background and Motivation

II. DL-Programs

III. Well-Supported Models

IV. Well-Supported Answer Set Semantics

V. Related Work

VI. Summary and Future Work
Notation

- **A DL-program** is $KB = (L, R)$

- L: a **DL knowledge base** built over $\Sigma_L = (A \cup R, I)$
 - A, R, I: atomic concepts, atomic roles, and individuals.

- R: a **rule base** built over $\Sigma_R = (P, C)$
 - P, C: predicate symbols, and constants
 - $P \cap (A \cup R) = \emptyset$, and $C \subseteq I$
 - HB_R: Herbrand base of R built over Σ_R

- **ground(R)**: ground instances (relative to HB_R) of all rules in R
Notation

- R consists of rules of the form

 $$H \leftarrow A_1, \cdots, A_m, \text{not } B_1, \cdots, \text{not } B_n$$

 where H is an atom, and each A_i and B_i are atoms or dl-atoms

- A dl-atom is an interface between L and R:

 $$DL[S_1 \ op_1 \ p_1, \cdots, S_m \ op_m \ p_m; \ Q](t)$$

 - each S_i is a concept or role built from $A \cup R$, each $p_i \in P$ is a predicate symbol, $Q(t)$ is a dl-query and $op_i \in \{ \cup, \cap \}$
Satisfaction Relation \models_L

Definition (Eiter et al. 2008, AlJ) Let $KB = (L, R)$ and I be an interpretation. Define *satisfaction under L*, denoted \models_L, as follows:

1. For a ground atom $a \in HB_R$, $I \models_L a$ if $a \in I$.

2. For a ground dl-atom $A = DL[S_1 op_1 p_1, \ldots, S_m op_m p_m; Q](t)$,

 $I \models_L A$ if $L \cup \bigcup_{i=1}^{m} A_i \models Q(t)$, where

 $$A_i = \begin{cases}
 \{S_i(e) \mid p_i(e) \in I\}, & \text{if } op_i = \cup; \\
 \{-S_i(e) \mid p_i(e) \in I\}, & \text{if } op_i = \cup; \\
 \{-S_i(e) \mid p_i(e) \not\in I\}, & \text{if } op_i = \cap.
 \end{cases}$$

*** Any $I \subseteq HB_R$ is an interpretation of $KB = (L, R)$. Let $I^- = HB_R \setminus I$ and $\neg I^- = \{\neg a \mid a \in I^-\}$
Program Transformation Reducts

- Given an interpretation I, FLP reduct fR^I_L is obtained from $\text{ground}(R)$ by
 deleting every rule r with $I \not\models_L \text{body}(r)$.

- **Weak transformation reduct** wR^I_L is obtained from fR^I_L by
 deleting all negative literals and all dl-atoms.

- **Strong transformation reduct** sR^I_L is obtained from fR^I_L by
 deleting all negative literals and all nonmonotonic dl-atoms.

*** A ground dl-atom A is **monotonic**

 if for any $I \subseteq J \subseteq HB_R$, $I \models_L A$ implies $J \models_L A$.
Three Semantics of DL-Programs

- Weak/strong/FLP answer set semantics
 A model I of $KB = (L, R)$ is a weak (resp. strong and FLP) answer set if I is a minimal model of wR^I_L (resp. sR^I_L and fR^I_L) (Eiter et al. 2008, AIJ; Eiter et al. 2005, IJCAI).

- FLP answer sets are minimal models, but weak/strong answer sets may not.
Circular Justification Problem

- The three answer set semantics suffer from the problem of **circular justifications**.

- **Example** Consider a DL-program $KB = (L, R)$, where $L = \emptyset$ and

 $$R: \quad p(a) \leftarrow q(a)$$

 $$q(a) \leftarrow DL[c \cup p, b \cap q; c \cap \neg b](a)$$

 $I = \{p(a), q(b)\}$ is the only model of KB. It is also a weak, a strong, and an FLP answer set. $p(a) \in I$ is circularly justified by a self-supporting loop:

 $$p(a) \leftarrow q(a) \leftarrow DL[c \cup p, b \cap q; c \cap \neg b](a) \leftarrow p(a) \lor \neg q(a) \leftarrow p(a)$$
Outline

I. Background and Motivation

II. DL-Programs

III. Well-Supported Models

IV. Well-Supported Answer Set Semantics

V. Related Work

VI. Summary and Future Work
Fages’ Well-Supportedness

- Fages’ well-supportedness condition (Fages 1994, JMLCS):
 A model I of a normal logic program is well-supported if there is a level mapping on I such that for every $a \in I$, there is a rule

 $$ a \leftarrow A_1, \ldots, A_m, \text{not } B_1, \ldots, \text{not } B_n $$

 where I satisfies the rule body and the level of each A_i is below the level of a.

- This well-supportedness condition does not apply to DL-programs, due to occurrences of dl-atoms.
To handle dl-atoms, we introduce **up to satisfaction**.

Informally, for \(E \subseteq I \subseteq HB_R \),

\[(E, I) \models_L \alpha \text{ if for every } F \text{ with } E \subseteq F \subseteq I, F \models_L \alpha.\]

\((E, I) \models_L \alpha\) implies that the truth of \(\alpha \) depends only on \(E \) and \(I^- \), and is independent of \(I \setminus E \).

For instance, if \(E = \{a\}, I = \{a, b, c\} \) and \(\alpha = a \land \neg d \), then for every \(F \) with \(E \subseteq F \subseteq I \), \(F \models_L \alpha \). Therefore,

\[(E, I) \models_L \alpha.\]
up to Satisfaction \((E,I) \models_L A\)

Definition Let \(KB = (L,R)\) and \(E \subseteq I \subseteq HB_R\). For any ground literal \(A\), define *\(E\) up to \(I\) satisfies \(A\) under \(L\)*, denoted \((E,I) \models_L A\), as follows:

1. For a ground atom \(a \in HB_R\),
 \[(E,I) \models_L a \text{ if } a \in E; \quad (E,I) \models_L \neg a \text{ if } a \notin I. \]

2. For a ground dl-atom \(A\),
 \[(E,I) \models_L A \text{ if for every } F \text{ with } E \subseteq F \subseteq I, \ F \models_L A; \]
 \[(E,I) \models_L \neg A \text{ if for no } F \text{ with } E \subseteq F \subseteq I, \ F \models_L A. \]
Monotonicity of $(E, I) \models_L A$

- **Proposition** Let A be a ground atom or dl-atom. For any $E_1 \subseteq E_2 \subseteq I$,
 - if $(E_1, I) \models_L A$ then $(E_2, I) \models_L A$;
 - and if $(E_1, I) \models_L \text{not } A$ then $(E_2, I) \models_L \text{not } A$.

- We use this up to satisfaction to extend Fages’ well-supportedness condition and define well-supported models for DL-programs.
Well-Supported Models

- Informally, a model I of a DL-program is strongly well-supported if there is a level mapping on I such that for every $a \in I$, there is $E \subseteq I$ and a rule $a \leftarrow \text{body}(r)$, where $(E, I) \models_L \text{body}(r)$ and the level of each element in E is below the level of a.

- Put another way,
 - $a \in I$ is supported by $\text{body}(r)$,
 - while the truth of $\text{body}(r)$ is determined by E and I^-,
 - where no $b \in E$ is circularly dependent on a.

- This guarantees that strongly well-supported models are free of circular justifications.
Well-Supported Models

Definition A model \(I \) of a DL-program \(KB = (L, R) \) is strongly well-supported if there exists a strict well-founded partial order \(\prec \) on \(I \) such that for every \(a \in I \), there is \(E \subset I \) and a rule \(a \leftarrow body(r) \) in \(ground(R) \) such that

\[
(E, I) \models_L body(r) \quad \text{and} \quad \text{for every } b \in E, \ b \prec a.
\]
Well-Supported Models

Example Consider a DL-program $KB = (L, R)$, where $L = \emptyset$ and

$$R: \quad p(a) \leftarrow q(a)$$

$$q(a) \leftarrow DL[c \cup p, b \cap q; c \sqcup \neg b](a)$$

$I = \{p(a), q(b)\}$ is the only model of KB. It is also a weak, a strong, and an FLP answer set. However, I is not a strongly well-supported model, since for $p(a) \in I$ there is no $E \subset I$ satisfying the well-supportedness condition.
Well-Supported Models

- **Theorem** Let $KB = (L, R)$ be a DL-program, where $L = \emptyset$ and R is a normal logic program. A model I is a strongly well-supported model of KB iff I is a well-supported model of R under Fages’ definition.

- As a result, Fages’ well-supportedness condition is extended to DL-programs.
Outline

I. Background and Motivation

II. DL-Programs

III. Well-Supported Models

IV. Well-Supported Answer Set Semantics

V. Related Work

VI. Summary and Future Work
Consequence Operator $T_{KB}(E, I)$

- **Definition** Let $KB = (L, R)$ and $E \subseteq I \subseteq HB_R$. Define $T_{KB}(E, I) = \{a | a \leftarrow body(r) \in ground(R) \text{ and } (E, I) \models_L body(r)\}$

- **Monotonicity** property of $T_{KB}(E, I)$

Theorem Let I be a model of KB. For any $E_1 \subseteq E_2 \subseteq I$, $T_{KB}(E_1, I) \subseteq T_{KB}(E_2, I) \subseteq I$.
Fixpoint $T_{KB}^\alpha(\emptyset, I)$

- $T_{KB}^\alpha(\emptyset, I)$: a fixpoint from the monotone sequence

 $$\langle T_{KB}^i(\emptyset, I) \rangle_{i=0}^\infty$$

 with $T_{KB}^0(\emptyset, I) = \emptyset$ and $T_{KB}^{i+1}(\emptyset, I) = T_{KB}(T_{KB}^i(\emptyset, I), I)$

- **Theorem** Let I be a model of $KB = (L, R)$. If $I = T_{KB}^\alpha(\emptyset, I)$ then I is a minimal model of KB.
Well-Supported Semantics

- **Definition** Let I be a model of a DL-program $KB = (L, R)$. I is an answer set of KB if $I = T_{KB}^\alpha (\emptyset, I)$.

- Answer sets are exactly strongly well-supported models

Theorem I is an answer set of KB iff I is a strongly well-supported model of KB.

- Therefore, we call such answer sets well-supported answer sets, which are free of circular justifications.
Well-Supported Semantics

Theorem If I is a well-supported answer set of KB, then

1. I is a minimal model of KB.

2. I is a strong answer set of KB that is also a weak answer set of KB.

3. I is an FLP answer set of KB.
Outline

I. Background and Motivation

II. DL-Programs

III. Well-Supported Models

IV. Well-Supported Answer Set Semantics

V. Related Work

VI. Summary and Future Work
Related Work

1. Weak answer set semantics (Eiter et al. 2008, AIJ)
 - There are circular justifications by self-supporting loops.

2. Strong answer set semantics (Eiter et al. 2008, AIJ)
 - The problem of circular justifications persists.

3. FLP answer set semantics (Eiter et al. 2005, IJCAI)
 - Weak/strong answer sets may not be minimal models.
 - FLP answer sets are minimal models.
 - The problem of circular justifications persists.

4. Loop formula based semantics (Wang et al. 2010, TPLP)
 - The problem of circular justifications persists.
Related Work

- FLP answer set semantics is based on FLP-reduct, a concept introduced in (Faber et al. 2004, JELIA) to define answer set semantics for logic programs with aggregates.
- Our up to satisfaction relation is inspired by conditional satisfaction, a concept introduced in (Son et al. 2007, JAIR) to define answer set semantics for logic programs with aggregates.
- DL-programs and logic programs with aggregates are closely related. Exploiting the deep connection presents an interesting future work.
Outline

I. Background and Motivation
II. DL-Programs
III. Well-Supported Models
IV. Well-Supported Answer Set Semantics
V. Related Work
VI. Summary and Future Work
Summary and Future Work

- **Summary:**

 To resolve the semantic problem of circular justifications with DL-programs, we

 - extended Fages’ well-supportedness condition from normal logic programs to DL-programs, and

 - presented a well-supported semantics for DL-programs, which produces answer sets free of circular justifications.
Summary and Future Work

- Future work:
 - Extend the work to DL-programs with disjunctive rule heads.
 - Study the complexity properties.
 - Exploit the connection between DL-programs and logic programs with aggregates.
Thanks!

Yi-Dong Shen

ydshen@ios.ac.cn

http://lcs.ios.ac.cn/~ydshen