CHAPTER 7
Heart Rate Variability: Stress and Psychiatric Conditions

Gary G. Berntson PhD and John T. Cacioppo PhD

Introduction
Psychological states and processes can impact dramatically on dynamic autonomic control of the heart. The literature in this area is far from simple, however, as the effects of stress states and psychiatric conditions on heart rate variability can be diverse. The present chapter will highlight selected aspects of this literature, and consider conceptual approaches that may help organize the diverse findings in this area. Clearly, this is an issue that requires interdisciplinary approaches across multiple levels of analysis, ranging from the psychological to the biological (Cacioppo et al. 2000).

Central origins of psychological influences on autonomic function
Brain mechanisms for somatomotor control and coordination have been extensively studied, and the complex, multilevel, hierarchical structure of central somatic motor systems is well recognized. As early as the 19th century, the notable English neurologist, John Hughlings Jackson, emphasized the continuous evolutionary layering and re-representation of motor systems at progressively higher levels of the neuraxis (Jackson 1958). Although spinal and brainstem reflexes organize primitive motor acts and provide important postural support for more complex activities, it is the higher levels in central motor systems that allow for flexibility and adaptability in motor control, and underlie the awesome, graceful movements of an accomplished ballerina.

Historically, research and theory concerning autonomic regulation often focused on the lowest levels of central control. Although Walter Cannon clearly articulated the impact of emotion and other psychological processes on autonomic states (Cannon 1928), he viewed the autonomic nervous system largely as a homeostatic regulatory mechanism (Cannon 1929). Recent research, however, has revealed a re-representation and layering of autonomic functions from the spinal cord to rostral brain networks sufficiently similar reminiscent of those for somatomotor control that they suggest a common evolutionary heritage.

Homeostatic functions of the autonomic nervous system are illustrated by the baroreceptor-heart rate reflex, through which a perturbation in blood pressure triggers a tightly coupled, reciprocal change in the activities of the autonomic branches. Postural hypotension, for example, results in a reflexive decrease in parasympathetic control of the heart, together with a reciprocal withdrawal of sympathetic cardiac control, which synergistically increase heart rate (and contractility). Together with vascular components, these changes serve to compensate for the hypotensive perturbation and normalize blood pressure (e.g. Cacioppo et al. 1994). Baroreceptor reflexes are prototypic homeostatic mechanisms, and are organized largely within lower central autonomic substrates at brainstem levels. Through evolutionary development of rostral brain systems, however, these lower autonomic circuits become integrated with higher neural networks (Berntson & Cacioppo 2000).

Limbic and forebrain areas implicated in behavioural processes, including the hypothalamus, amygdala and medial prefrontal cortex, have been shown to issue monosynaptic projections to brainstem reflex networks as well as to autonomic source
nuclei in the brainstem and spinal cord (for review see Berntson & Cacioppo 2000). Through these projections, higher neural processes can modulate or even bypass reflex networks and powerfully alter autonomic outflows. It is now clear that stressors, even as mild as mental arithmetic, can lead to an inhibition and/or a shift in set point of baroreceptor reflexes (Ditto & France 1990; Steptoe & Sawada 1989). Such effects reflect complex modulatory influences of rostral neural systems on lower autonomic substrates, and have necessitated expansion of the simple negative-feedback homeostatic model of autonomic control.

Autonomic space and cardiac chronotropic control

As considered above, brainstem baroreceptor reflexes have highly specific afferent (baroreceptor) inputs, and exert a rather rigid pattern of reciprocal control over the two autonomic branches, such that an increase in activity of one branch is associated with decreased activity in the other. This is apparent in the highly correlated cardiac chronotropic control exerted by the two autonomic branches during orthostatic stress (Berntson et al. 1994). Similarly, respiratory sinus arrhythmia is associated with reciprocal changes in the activities of the autonomic branches, which are approximately 180 degrees out of phase. Based on findings such as these, autonomic control has often been considered to lie along a continuum with parasympathetic activation at one end and sympathetic activation at the other (see Fig. 7.1).

In contrast to this linear-continuum model of autonomic control, however, descending influences from higher neural systems are not so constrained. Rather, psychological states and processes associated with rostral neural networks can evoke reciprocal, independent, or even coactive changes in the autonomic branches (Berntson et al. 1991, 1993; Koizumi & Kollai 1992). The flexible nature of rostral autonomic control mandates an expansion of the linear model to a bivariate representation of autonomic space, as illustrated in Fig. 7.1.

Even in cases where rostral neural influences foster a generally reciprocal mode of autonomic control, there remain important differences from the pattern of control exerted by baroreceptor reflexes (Fig. 7.2). Selective pharmacological blockades of the autonomic branches revealed that an orthostatic challenge (change from sitting to standing) and standard psychological stressors (mental arithmetic, speech stress and a reaction time task) yield a similar pattern of reciprocal sympathetic activation and vagal withdrawal in human subjects, when considered at the group level (Berntson et al. 1994). The response to orthostatic stress displayed minimal individual variation, and the reciprocal changes in the autonomic branches were highly correlated across subjects. In contrast, psychological stressors, typical of those encountered in daily life, yielded wide individual differences in the mode of response, with some subjects con-
E1

Sistently showing largely sympathetic activation, others primarily vagal withdrawal, and still others a reciprocal pattern of autonomic response (see Fig. 7.2). Hence, there was no significant correlation between the responses of the autonomic branches to psychological stress. This difference was not attributable to greater error variance in the response to psychological stress, as individual the response patterns were highly stable across tasks. Rather, these findings reveal that people differ in how they respond to psychological stressors (individual response uniqueness) and that these differences are relatively stable across time (individual response consistency). In contrast, these individual differences are not apparent when the stressor engages predominantly brainstem systems (e.g. orthostatic stress). This is also documented by the finding that hostility is highly correlated with the autonomic response to cognitive stressors, but not the autonomic responses to tilt (Sloan et al. 2001).

The complexities of rostral influences on autonomic control probably underlie the disparate literature on autonomic function in stress, anxiety, and psychiatric conditions. This should not be surprising, as behavioural manifestations also vary widely across these conditions, and indeed, even among subjects within a given condition. Consequently, it may be unrealistic to expect a simple pattern of altered autonomic control in various psychological and psychiatric states. Indeed, in addition to the individual differences outlined above, there are also differences in how people respond to distinct psychological tasks (stimulus response specificity). The tasks discussed above involve active cognitive processing and response (e.g. mental arithmetic, reaction time), and are generally associated with varied degrees of parasympathetic withdrawal and sympathetic activation. In contrast, more passive cognitive tasks, such as perceptual illusions, focused attention, or response inhibition may be accompanied by parasympathetic activation or coactivation of both the parasympathetic and sympathetic branches (Somsen et al. 1991; Berntson et al. 1996; Campbell et al. 1997; Jennings & Van der Molen 2002).

A meaningful understanding of the relationships between autonomic functions and cognitive processes, stress, and psychiatric conditions will depend on a greater appreciation of the role and complexity of rostral neurobehavioural systems. It is the complexity of rostral influences on autonomic control that likely contributes to the diversity in autonomic functions in stress, anxiety, and psychiatric conditions. The task confronting investigators is to identify the moderator variables underlying this diversity, and to understand their interactions and functional implications. Such moderator vari-

Fig. 7.2 Sympathetically and parasympathetically mediated changes in heart period in response to stress. Top panel: overall group responses to orthostatic and psychological stress. Bottom panel: in contrast to orthostatic stress, there were considerable individual differences in the response to psychological stressors, ranging from largely sympathetic activation to predominantly parasympathetic withdrawal. Arrows represent group (top) and individual (bottom) response vectors from pre-stress baseline, depicted at the intersection of the horizontal and vertical dotted lines. Response vectors were derived from single and dual pharmacological blockades of the autonomic branches (see Berntson et al. 1994).
Heart Rate Variability: Stress and Psychiatric Conditions

Variables can derive from three general sources: (1) contextual variables (types of tasks and their context, related to stimulus response specificity); (2) appraisal variables (how individuals appraise or interpret the condition, associated with individual response uniqueness); (3) individual differences in neural, neurochemical, and physiological variables associated with autonomic control (also related to individual response uniqueness).

Effects of stress on heart rate variability

Stressors are often associated with an increase in sympathetic cardiac control, a decrease in parasympathetic control, or both. Associated with these reactions is a frequently reported increase in low frequency (LF, centred around 0.1 Hz) heart rate variability, a decrease in high frequency (HF, 0.12 or 0.15–0.4 Hz) power, and/or an increase in the LF/HF ratio. Aspects of this general response pattern have been reported for: (a) acute laboratory psychological/cognitive stressors such as mental arithmetic, reaction time tasks, Stroop interference task, or speech stress (Berntson et al. 1994; Friedman et al. 1996; Delaney & Brodie, 2000; Hughes & Stoney 2000; Jain et al. 2001); (b) real-life acute stressors such as college examinations (Lucini et al. 2002), earthquakes (Lin et al. 2001), as well as typical day-to-day hassles (Sloan et al. 1994); and even (c) the level of chronic perceived stress associated with trait anxiety (Dishman et al. 2000). The Berntson et al. (1994) study on the autonomic effects of acute laboratory stressors, for example, reported a stress-related decrease in HF heart rate variability (LF was not quantified), associated with a significant reduction in parasympathetic cardiac control and an in sympathetic control, as revealed by selective pharmacological blockades of the autonomic branches.

Exceptions to this pattern include the forehead cold pressor manipulation (Hughes & Stoney 2000), water immersion and diving (Schipke & Pelzer 2001), and some attentional paradigms (e.g. Berntson et al. 1996), during which HF power may increase in both absolute and relative units. The increase in HF power in the cold pressor and immersion conditions may reflect a concurrent evocation of the dive reflex (see Gooden 1994), superimposed on a mild stress response (Friedman et al. 1996). In others cases, including attentional tasks, autonomic coactivation may represent an integrated response to specific cognitive reactions such as the orienting response (Quigley & Berntson 1990).

The relation of specific behavioural and psychological states to distinct patterns of autonomic control is an especially important issue for further investigation, from both the clinical and neuroscientific perspective. The construct of stress, however, is exceedingly broad and poorly defined. It is clear that no single pattern of autonomic adjustments, and associated changes in heart rate variability, will apply universally across distinct stressors. Of particular importance in future research will be a refinement in our conceptualization of stress, as well as the cognitive and behavioural responses individuals display to those stressors.

Heart rate variability in psychiatric conditions

Because psychiatric conditions derive from or impact on psychological processes, many of the issues and caveats raised above apply also to these conditions. The involvement of higher cerebral systems in psychopathological states predicts a considerable degree of complexity in the pattern of autonomic control. Space precludes a thorough consideration of autonomic function across the wide array of psychiatric states, so we limit our focus on anxiety disorders and depression, as illustrative of the impact of psychiatric states on autonomic control.

Anxiety

There is now an extensive literature on anxiety and autonomic control that documents complex links between behavioural and cardiovascular systems. Although some anxiety disorders, such as panic disorders and specific phobias, may be associated with enhanced autonomic activity or reactivity to threat-related cues, anxiety states such as generalized anxiety disorder may also be characterized by an overall diminished autonomic lability for non-threat cues (for review see Berntson et al. 1998). A similar diminished lability has been reported even for trauma-related material in post-traumatic stress disorder (Cohen et al. 2000).

A rather common finding in the literature on anxiety and autonomic control is diminished heart rate variability in anxiety disorders, especially in the
HF band (Thayer et al. 1996; Friedman & Thayer 1998; Cohen et al. 2000), which is associated with vagal control (ESC/NASPE Task Force 1996; Berntson et al. 1997). This has been considered to reflect a reduction in vagal control and an associated loss of autonomic 'flexibility' (Friedman & Thayer 1998; Monk et al. 2001). The reduction in HF variability may be reflected in diminished total heart rate variability, despite a potential selective increase in LF variability (Yeragani et al. 1998).

The specific origins of anxiety-related effects on autonomic function remain to be clarified, but likely relate to alterations in higher neurobehavioural systems (Hugdahl 1996; Berntson et al. 1998). Although simple conditioned fears can be established and maintained largely by subcortical structures (including the amygdala; LeDoux 2000), more generalized anxiety states entail an attentional focus on threat-related cues together with a response bias that likely depend on higher-level cortical/cognitive processes (for review see Berntson et al. 1998). In this regard, cortical regions, such as the medial prefrontal cortex, that have been implicated in anxiety are the very areas that have been shown to have direct monosynaptic projections to brainstem autonomic centres and source nuclei (see Berntson et al. 1998).

The specific psychological origins of the autonomic features of anxiety states remain unclear. There is considerable overlap between autonomic characteristics of anxiety and those associated with stress, which raises the possibility that some of the autonomic accompaniments of anxiety may represent features of a stress response. A salient aspect of anxiety is the attentional focus on threat-related cues, which might be expected to trigger a stress reaction. In this regard, part of the complexity in the literature may be attributable to individual differences in stress reactions as discussed above (individual response uniqueness), as well as the existence of distinct categories of anxiety disorders that may be associated with different patterns of autonomic function (stimulus response specificity). We will consider below some general research strategies for addressing these issues.

Depression

Depression has been often, but not universally, been reported to be associated with an overall reduction in total heart rate variability (Krittayaphong et al. 1997; Gorman & Sloan 2000; Carney et al. 2001; Agelink et al. 2002; Yeragani et al. 2002). This has generally been characterized by reduced HF variability, as well as other measures of vagal control of the heart (Watkins et al. 1999; Agelink et al. 2002; Yeragani et al. 2002), but these results also have not always been uniform (Carney et al. 2001).

Relations between depression and autonomic function are potentially important clinically, because depression is an independent risk factor for cardiovascular disease and for cardiac morbidity and mortality after myocardial infarction (for reviews see Gorman & Sloan 2000; Sheps & Sheffield 2001; Rugulies 2002). Moreover, decreased heart rate variability and vagal control of the heart are negative predictors of outcome after myocardial infarction (ESC/NASPE Task Force 1996; Malik 1998; La Rovere et al. 2001), which raises the possibility that the autonomic correlates of depression (decreased vagal and increased sympathetic control) may mediate in part the relation between depression and cardiovascular disease. Although the current picture is somewhat more complex than this, heart rate variability remains an important predictor of cardiac risk (Lombardi 2002). Conversely, HF heart rate variability is a predictor of outcome in major depressive disorders (Rottenberg et al. 2002).

In addition to the physiological mechanisms that underlie the relation between depression and cardiac function, which are addressed elsewhere in this volume, an important question arises as to the origin of the link between depression and heart rate variability. Depression is not a monolithic psychological state, and the relevant psychological dimensions that impact the pattern of heart rate variability have not been clearly established. A depressed mood, in and of itself, may not be the critical determinant, as depressed mood (indexed by the Beck Depression Inventory) is not necessarily accompanied by a significant decrease in basal HF heart rate variability, although it has been reported to be associated with an enhanced HF reduction to stress (Hughes & Stoney, 2000). In this regard, a recent meta-analysis revealed that clinical depression is a stronger predictor of coronary heart disease than is merely a depressed mood (Rugulies 2002). Although the distinction between clinical depression and depressed mood may be one of magnitude or degree, they may also reflect other associ-
ated behavioural factors, such as diet, sleep patterns, or activity levels.

Alternatively, the relations between depression and heart rate variability may be mediated by other psychological factors. Anxiety, for example is a common accompaniment of depression, and Watkins et al. (1999) report that the level of anxiety in a depressive sample correlated with reduced vagal regulation of the heart as indexed by baroreflex cardiac control, whereas the level of depression was not predictive of either baroreflex control or HF variability. Moreover, anxiety itself is a predictor of coronary heart disease (Kubzansky et al. 1998), and may contribute to the relation between depression and health. In this regard, the reduced heart rate variability in depression may represent a chronic, consolidated anxiety-related response to everyday hassles and aggravations. This could have substantial health implications, to the extent to which such a response fosters a suboptimal pattern of cardiac control. There are a number of alternative routes by which psychological or behavioural factors can impact health status (e.g. see Cacioppo et al. 2002), and this is an exceedingly important issue for further interdisciplinary research.

Directions for further research

The relations between behavioural/psychological processes and autonomic control are intricate and complex, as the neurobehavioural systems that give rise to these relationships represent some of the most sophisticated processing systems of the brain. Psychophysiology has advanced considerably over the decades, from a relatively limited focus on peripheral end organ responses (heart rate, skin conductance, etc.) to its current appreciation of the interactions between central systems and peripheral organs, and the impact of cognitive and emotional process on these interactions.

Further progress in this area will benefit from increased interdisciplinary research, which entails an integration of multiple levels of analysis ranging from the psychological to the organ system to the cellular. One impediment to such research is what has been referred to as the category error, or the lack of one-to-one mapping between the terms, constructs and theories of the distinct levels of analysis. This is likely a contributor to the lack of isomorphism between constructs such as anxiety and depression on the one hand, and physiological functions on the other. Important in future efforts will be a refinement in the constructs at each level of analysis, as they are informed by information derived from alternative levels of analysis. This will provide for a progressive reduction of category errors, and allow for an alignment or calibration of information across levels of analysis. Of particular importance in these studies will be the elucidation of the physiological and cellular mechanisms underlying psychophysiological relations.

The studies outlined above highlight the need for a more comprehensive and realistic framework for models of central autonomic control. Especially important will be the elucidation of the interactions between these central autonomic substrates and neurobehavioural, neuroendocrine, and immune systems. Of additional importance will be a recognition of the multiple, interacting levels of functional representation in central substrates that may underlie distinct aspects of psychophysiological relations. The benefit of such interdisciplinary, multilevel analyses will be a more comprehensive understanding of the relations between the mind and body, their health significance, and means of intervention.

References

