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Introduction

The achievements of the ear are indeed fabulous. While I am writing, my elder son 
rattles the fire rake in the stove, the infant babbles contentedly in his baby carriage, the 
church clock strikes the hour, …
… In the vibrations of air striking my ear, all these sounds are superimposed into a 
single extremely complex stream of pressure waves. Without doubt the achievements 
of the ear are greater than those of the eye.

Wolfgang Metzger, in Gesetze des Sehens (1953)
Abridged in English and quoted by Reinier Plomp (2002)

Introduction
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Cocktail Party Effect

Introduction Cocktail Party Effect

(Cocktail Party by SLAW, Maniscalco Gallery. From slides of Prof. Shinn-Cunningham, ARO 2006)

Colin Cherry (1953)

Our ability to follow one 
speaker in the presence
of other sounds.

The auditory system 
separates the input into
distinct auditory objects.

Challenging problem 
from a computational
perspective.
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Cocktail Party Effect

• Fundamental questions
– How does the brain solve it?
– Is it possible to build a machine capable of solving it in a 

satisfactory manner?
• Need not mimic the brain

• Two cases
– Multi-channel (Human auditory system is an example with two 

sensors)
– Single-Channel

Introduction Cocktail Party Effect
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Source Separation: Formulation

•

• Given just       , how to 
separate sources        ?

• Problem: Indeterminacy 
– Multiple ways in which 

source signals can be 
reconstructed from the 
available information

Introduction Source Separation
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Source Separation: Approaches

• Exact solutions not possible, but can approximate
– by utilizing information about the problem

• Psychoacoustically/Biologically inspired approach  
– Understand how the auditory system solves the problem
– Utilize the insights gained (rules and heuristics) in the artificial 

system

• Engineering approach
– Utilize probability and signal processing theories to take 

advantage of known or hypothesized structure/statistics of the 
source signals and/or the mixing process

Introduction Source Separation
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Source Separation: Approaches

• Psychoacoustically inspired approach  
– Seminal work of Bregman (1990) - Auditory Scene Analysis (ASA)
– Computational Auditory Scene Analysis (CASA)
– Computational implementations of the views outlined by Bregman

(Rosenthal and Okuno, 1998)
– Limitations: reconcile subjective concepts (e.g. “similarity”, 

“continuity”) with strictly deterministic computational platforms?
– Difficulty incorporating statistical information

• Engineering approach
– Most work has focused on multi-channel signals
– Blind Source Separation: Beamforming and ICA
– Unsuitable for single-channel signals

Introduction Source Separation
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Source Separation: This Work

• We take a machine learning approach in a supervised 
setting
– Assumption: One or more sources present in the mixture are 

“known”
– Analyze the sample waveforms of the known sources and extract 

characteristics unique to each one
– Utilize the learned information for source separation and other 

applications

• Focus on developing a probabilistic framework for 
modeling single-channel sounds
– Computational perspective, goal not to explain human auditory 

processing
– Provide a framework grounded in theory that allows principled 

extensions 
– Aim is not just to build a particular separation system

Introduction Source Separation
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Outline

• Introduction
• Time-Frequency Structure

– We need a representation of audio to proceed

• Latent Variable Decomposition:
A Probabilistic Framework

• Sparse Overcomplete Decomposition
• Conclusions 
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Representation

Time-Frequency Structure Audio Representation

FREQ

TIME

Time-domain representation

Sampled waveform: each sample 
represents the sound pressure 
level at a particular time instant.

Time-Frequency representation

TF representation shows energy 
in TF bins explicitly showing the 
variation along time and 
frequency. 

TIME

AMPL
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TF Representations

Time-Frequency Structure Audio Representation

Short Time Fourier Transform (STFT; 
Gabor, 1946)

• time-frames: successive fixed-width snippets 
of the waveform (windowed and overlapping)

• Spectrogram: Fourier transforms of all time 
slices. The result for a given time slice is a 
spectral vector.  

• Other TF representations possible (different 
filter banks): only STFT considered in this work

• Constant-Q (Brown, 1991)
• Gammatone (Patterson et al. 1995)
• Gamma-chirp (Irino and Patterson, 1997)
• TF distributions (Laughlin et al. 1994)

Piano

Cymbals

Female 
Speaker
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Magnitude Spectrograms

Time-Frequency Structure Audio Representation

Short Time Fourier Transform 
(STFT; Gabor, 1946)

• Magnitude spectrograms: TF 
entries represent energy-like 
quantities that can be approximated 
to add additively in case of sound 
mixtures

• Phase information is ignored. 
Enough information present in the 
magnitude spectrogram, simple test:

• Speech with cymbals phase

• Cymbals with piano phase

+ +
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TF Masks

Time-Frequency Masks
• Popular in the CASA literature 

• Assign higher weight to areas of the 
spectrogram where target is dominant

• Intuition: dominant source masks the 
energy of weaker ones in any TF bin, 
thus only such “dominant” TF bins are 
sufficient for reconstruction

• Reformulate the problem – goal is to 
estimate the TF mask (Ideal Binary 
Mask; Wang, 2005)

• Utilize cues like harmonicity, F0 
continuity, common onsets/offsets etc.:

– Synchrony strand (Cooke, 1991) 

– TF Maps (Brown and Cooke, 1994)

– Correlograms (Weintraub, 1985; Slaney 
and Lyon, 1990)

Time-Frequency Structure Modeling TF Structure

Target

Mixture

“Masked”
Mixture
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TF Masks

Time-Frequency Masks: Limitations

• Implementation of “fuzzy” rules and 
heuristics from ASA; ad-hoc methods, 
difficulty incorporating statistical 
information (Roweis, 2000)

• Assumption: energy sparsely distributed 
i.e. different sources are disjoint in their 
spectro-temporal content (Yilmaz and 
Rickard, 2004)

– performs well only on mixtures that 
exhibit well-defined regions in the TF 
plane corresponding to the various 
sources (van der Kouwe et al. 2001)

Time-Frequency Structure Modeling TF Structure

Target

Mixture

“Masked”
Mixture
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Basis Decomposition Methods

Basis Decomposition

• Idea: observed data vector can be 
expressed as a linear combination of a 
set of “basis components”

• Data vectors � spectral vectors 

• Intuition: every source exhibits 
characteristic structure that can be 
captured by a finite set of components 

Time-Frequency Structure Modeling TF Structure

Data Vectors

Mixture Weights
Basis 
Components

vt =
K∑

k=1

hktwk

V =WH

+
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Basis Decomposition Methods

Basis Decomposition Methods

• Many Matrix Factorization methods 
available, e.g. PCA, ICA

• Toy example: PCA components can 
have negative values 

• But spectrogram values are positive –
interpretation? 

Time-Frequency Structure Modeling TF Structure

+−+−

PCA Components

FREQ

TIME

FREQ
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Basis Decomposition Methods

Basis Decomposition Methods
• Non-negative Matrix Factorization (Lee 

and Seung, 1999)
• Explicitly enforces non-negativity on 

both the factored matrices 
• Useful for analyzing spectrograms 

(Smaragdis, 2004, Virtanen, 2006)

• Issues
– Can’t incorporate prior biases

– Restricted to 2D representations

Time-Frequency Structure Modeling TF Structure

W

H

Mixture Weights

Basis
Components

FREQ

TIME
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Outline

• Introduction
• Time-Frequency Structure
• Latent Variable Decomposition: Probabilistic Framework

– Our alternate approach: Latent variable decomposition treating 
spectrograms as histograms

• Sparse Overcomplete Decomposition
• Conclusions 
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Latent Variables

• Widely used in social and behavioral sciences
– Traced back to Spearman (1904), factor analytic models for 

Intelligence Testing

• Latent Class Models (Lazarsfeld and Henry, 1968)
– Principle of local independence (or the common cause criterion)
– If a latent variable underlies a number of observed variables, the 

observed variables conditioned on the latent variable should be 
independent

Latent Variable Decomposition Background
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Spectrograms as Histograms

Generative Model
• Spectral vectors – energy at various 

frequency bins

• Histograms of multiple draws from a 
frame-specific multinomial distribution 
over frequencies

• Each draw � “a quantum of energy”

Latent Variable Decomposition Generative Model

f

HISTOGRAM

f

FRAME t

HISTOGRAM Pick a ball

Note color,
update histogram

+1

Place it back

Multinomial Distribution
underlying the t-th spectral
vector

Pt(f)
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Model

Latent Variable Decomposition Framework

f

Pt(f)
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Model

Latent Variable Decomposition Framework

f

P (f |z)

Pt(z)

Pt(f) =
∑

z

P (f |z)Pt(z) Generative Model

• Mixture Multinomial

• Procedure
– Pick Latent Variable z (urn):

– Pick frequency f from urn:
– Repeat the process        times, 

the total energy in the t-th
frame  

Pt(z)
P (f |z)

Vt
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Model

Generative Model

• Mixture Multinomial

• Procedure
– Pick Latent Variable z (urn):

– Pick frequency f from urn:

– Repeat the process           times, the total 
energy in the t-th frame  

Latent Variable Decomposition Framework

f

HISTOGRAM

. . .

Pt(z)
P (f |z)

Vt

Pt(f) =
∑

z

P (f |z)Pt(z)

Frame-specific spectral distribution

Frame-specific mixture weights

Source-specific basis components
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Model

Latent Variable Decomposition Framework

f

HISTOGRAM

. . .

Pt(f) =
∑

z

P (f |z)Pt(z)

Frame-specific spectral distribution

Frame-specific mixture weights

Source-specific basis components

Generative Model

• Mixture Multinomial

• Procedure
– Pick Latent Variable z (urn):

– Pick frequency f from urn:

– Repeat the process           times, the total 
energy in the t-th frame  

Pt(z)
P (f |z)

Vt
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Model

Latent Variable Decomposition Framework

f

HISTOGRAM

. . .

Pt(f) =
∑

z

P (f |z)Pt(z)

Frame-specific spectral distribution

Frame-specific mixture weights

Source-specific basis components

Generative Model

• Mixture Multinomial

• Procedure
– Pick Latent Variable z (urn):

– Pick frequency f from urn:

– Repeat the process           times, the total 
energy in the t-th frame  

Pt(z)
P (f |z)

Vt



27

Model

Latent Variable Decomposition Framework

f

Pt(f)

P (f |z)

Pt(z)

Pt(f) =
∑

z

P (f |z)Pt(z) Generative Model

• Mixture Multinomial

• Procedure
– Pick Latent Variable z (urn):

– Pick frequency f from urn:
– Repeat the process        times, 

the total energy in the t-th
frame  

Pt(z)
P (f |z)

Vt
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The mixture multinomial as a point in a simplex

Latent Variable Decomposition Framework

P (f |z)

Pt(f)
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Learning the Model

Analysis

• Given the spectrogram    , estimate the 
parameters

• represent the latent structure, 
they underlie all the frames and hence 
characterize the source

Latent Variable Decomposition Framework

. . .

Pt(f) =
∑

z

P (f |z)Pt(z)

Frame-specific spectral distribution

Frame-specific mixture weights

Source-specific basis components

P (f |z)

V

V
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Learning the Model: Geometry

Latent Variable Decomposition Model Geometry

 

 

Simplex Boundary
Data Points
Basis Vectors
Convex Hull(001)

(010)

(100)

3 Basis Vectors

• Spectral distributions and basis components are points in a simplex

• Estimation process: find corners of the convex hull that surrounds normalized 
spectral vectors in the simplex
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Learning the Model: Parameter Estimation

• Expectation-Maximization Algorithm

Latent Variable Decomposition Framework

Pt(z) =

∑
f VftPt(z|f)∑

z

∑
f VftPt(z|f)

P (f |z) =

∑
t VftPt(z|f)∑

f

∑
t VftPt(z|f)

Pt(z|f) =
Pt(z)P (f |z)∑
z Pt(z)P (f |z)

Vft Entries of the training spectrogram 
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Example Bases 

Latent Variable Decomposition Framework

f

z t

Speech

Harp

Piano
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Source Separation 

Latent Variable Decomposition Source Separation

SpeechHarp
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Source Separation 

Latent Variable Decomposition Source Separation

SpeechHarp Mixture

Speech
Bases

Harp
Bases
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Source Separation

Latent Variable Decomposition Source Separation

• Mixture Spectrogram Model 
– linear combination of individual sources

Pt(f) = Pt(s1)P (f |s1) + Pt(s2)P (f |s2)

Pt(f) =

(

Pt(s1)
∑

z∈{zs1}

Pt(z|s1)Ps1(f |z)

)

+

(

Pt(s2)
∑

z∈{zs2}

Pt(z|s2)Ps2(f |z)

)
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Source Separation

Latent Variable Decomposition Source Separation

Pt(s, z|f) =
Pt(s)Pt(z|s)Ps(f |z)∑

s Pt(s)
∑
z∈{zs}

Pt(z|s)Ps(f |z)

Pt(f, s) = Pt(s)
∑

z∈{zs}

Pt(z|s)Ps(f |z)

• Expectation-Maximization Algorithm

Pt(s) =

∑
f Vft

∑
z∈{zs}

Pt(s, z|f)
∑
s

∑
f Vft

∑
z∈{zs}

Pt(s, z|f)

Pt(z|s) =

∑
f VftPt(s, z|f)∑

z∈{zs}

∑
f VftPt(s, z|f)

Vft

Entries of the
mixture spectrogram 
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Source Separation

Latent Variable Decomposition Source Separation

Pt(f) = Pt(s1)P (f |s1) + Pt(s2)P (f |s2)

Pt(f) =

(

Pt(s1)
∑

z∈{zs1}

Pt(z|s1)Ps1(f |z)

)

+

(

Pt(s2)
∑

z∈{zs2}

Pt(z|s2)Ps2(f |z)

)

Vft Mixture Spectrogram

V̂ft(s) =
Pt(f, s)

Pt(f)
Vft

Pt(f, s)
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Source Separation

Latent Variable Decomposition Source Separation

V

Φ

O

R

Magnitude of the mixture

Phase of the mixture

Mag. of the original signal

Mag. of the reconstruction

g(X) = 10 log10

( ∑
f,t

O2

ft∑
f,t |Ofte

jΦft−Xfte
jΦft |2

)

Mixture

Reconstructions

SNR Improvements 5.25 dB 5.30 dB

SNR = g(R)− g(V)
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Source Separation: Semi supervised

Latent Variable Decomposition Source Separation

• Possible even if only one source is “known”
– Bases of other source estimated during separation

• “Raise My Rent” by David Gilmour
• Background music “bases” learned 

from 5 seconds of music-only clips 
in the song 

• Lead guitar bases learned from the 
rest of the song

• “Sunrise” by Norah Jones

• Harder – wave-file clipped

• Background music bases learned 
from 5 seconds of music-only 
segments of the song

• More eg: http://cns.bu.edu/~mvss/courses/speechseg/

Song FG BG Song FG BG

= +
Denoising

Only speech
known
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Outline

• Introduction
• Time-Frequency Structure
• Latent Variable Decomposition: Probabilistic Framework
• Sparse Overcomplete Decomposition

– Learning more structure than the dimensionality will allow 

• Conclusions 
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Limitation of the Framework

• Real signals exhibit complex spectral structure 
– The number of components required to model this structure could 

be potentially large
– However, the latent variable framework has a limitation:

The number of components that can be extracted is limited 
by the number of frequency bins in the TF representation (
an arbitrary choice in the context of ground truth).

– Extracting an overcomplete set of components leads to the 
problem of indeterminacy

Sparse Overcomplete Decomposition Sparsity
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Overcompleteness: Geometry

Sparse Overcomplete Decomposition Geometry of Sparse Coding

(001)

(010)

(100)

3 Basis Vectors

(100)

(010)

(001)

4 Basis Vectors

 

 

Simplex Boundary
Data Points

(100) (010)

(001)

DATA

(100)

(010)

(001)

7 Basis Vectors

(100)

(010)

(001)

10 Basis Vectors

• Overcomplete case
– As the number of bases increases, basis components migrate towards the corners 

of the simplex
– Accurately represent data, but lose data-specificity
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Indeterminacy in the Overcomplete Case

Sparse Overcomplete Decomposition Geometry of Sparse Coding

• Multiple solutions that have zero error � indeterminacy
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Sparse Coding

Sparse Overcomplete Decomposition Geometry of Sparse Coding

• Restriction � use the fewest number of corners 
– At least three required for accurate representation

– The number of possible solutions greatly reduced, but still indeterminate

– Instead, we minimize the entropy of mixture weights

ABD, ACE, ACD
ABE, ABG, ACG
ACF
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Sparsity

• Sparsity – originated as a theoretical basis for sensory 
coding (Kanerva, 1988; Field, 1994; Olshausen and Field, 1996)
– Following Attneave (1954), Barlow (1959, 1961) to use 

information-theoretic principles to understand perception
– Has utility in computational models and engineering methods 

• How to measure sparsity?
– fewer number of components � more sparsity

• Number of non-zero mixture weights i.e. the L0 norm

– L0 hard to optimize; L1 (or L2 in certain cases) used as an 
approximation

– We use entropy of the mixture weights as the measure

Sparse Overcomplete Decomposition Sparsity
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Learning Sparse Codes: Entropic Prior

• Model --

– Estimate               such that entropy
of               is minimized

• Impose an entropic prior on           (Brand, 1999)

– where                             is the entropy

– is the sparsity parameter that can be controlled

– with high entropies are penalized with low probability

– MAP formulation solved using Lambert’s W function 

Sparse Overcomplete Decomposition Sparsity

P (f |z)

Pt(z)

Pt(z)

H(θ) = −
∑

i

θi log θi

Pt(z)

Pe(θ) ∝ e
βH(θ)

Pt(f) =
∑

z

P (f |z)Pt(z)

Pt(z)

β
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Geometry of Sparse Coding

Sparse Overcomplete Decomposition Geometry of Sparse Coding

• Sparse Overcomplete case
– Sparse mixture weights � spectral vectors must be close to a small number of 

corners, forcing the convex hull to be compact
– Simplex formed by bases shrinks to fit the data

Sparsity Param = 0.01

7 Basis Vectors

(100)

(001)

(010) 7 Basis Vectors

Sparsity Param = 0.05

(100)

(001)

(010)

 

 

Simplex Boundary
Data Points

(100) (010)

(001)

DATA

Sparsity Param = 0.1

7 Basis Vectors

(100)

(001)

(010)

Sparsity Param = 0.3

7 Basis Vectors

(100)

(001)

(010)
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Sparse-coding: Illustration

Sparse Overcomplete Decomposition Examples

1

2

3

1 2 3
P (f |z)

Pt(z)

f

t

No Sparsity
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1

2

3

4

1 2 3 4

Sparse-coding: Illustration

Sparse Overcomplete Decomposition Examples

P (f |z)

Pt(z)

f

t

No Sparsity
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1

2

3

4

1 2 3 4

Sparse-coding: Illustration

Sparse Overcomplete Decomposition Examples

P (f |z)

Pt(z)

f

t

Sparse Mixture Weights
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Speech Bases

Sparse Overcomplete Decomposition Examples

Trained without Sparse Mixture Weights
Compact Code

Trained with Sparse Mixture Weights
Sparse-Overcomplete Code

f

f
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Entropy Trade-off

Sparse Overcomplete Decomposition Geometry of Sparse Coding

Sparse-coding Geometry

• Sparse mixture weights � bases 
which are holistic representations of 
the data

• Decrease in mixture-weight entropy 
� increase in bases components 
entropy, components become more 
“informative”

– Empirical evidence
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Source Separation: Results

Sparse Overcomplete Decomposition Source Separation

Red – CC, compact code, 100 components

Blue – SC, sparse-overcomplete code, 1000 components, β = 0.7

Mixture 1

Mixture 2

CC

SC

CC

SC

3.82 dB 3.80 dB

9.16 dB8.90 dB

5.25 dB 5.30 dB

8.33 dB8.02 dB
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Source Separation: Results

Sparse Overcomplete Decomposition Source Separation

Results

• Sparse-overcomplete code leads to 
better separation

• Separation quality increases with 
increasing sparsity before tapering 
off at high sparsity values (> 0.7)
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Other Applications

Sparse Overcomplete Decomposition Other Applications

• Framework is general, operates on non-negative data 
– Text data (word counts), images etc.

• Examples 
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Other Applications

Sparse Overcomplete Decomposition Other Applications

• Framework is general, operates on non-negative data 
– Text data (word counts), images etc.

• Image Examples: Feature Extraction
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15

0,
 β
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 0

α = β = 0
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=

 0
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(a)

(b)

(c)

(e)

(d)
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Other Applications

Sparse Overcomplete Decomposition Other Applications

• Framework is general, operates on non-negative data 
– Text data (word counts), images etc.

• Image Examples: Hand-written digit classification

Basis Components Mixture Weights

Data Vector

Basis Vectors Mixture Weights

Pixel Image

β = 0.5

β = 0

β = 0.2

β = 0.05
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Other Applications

Sparse Overcomplete Decomposition Other Applications

• Framework is general, operates on non-negative data 
– Text data (word counts), images etc.

• Image Examples: Hand-written digit classification
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Outline

• Introduction
• Time-Frequency Structure
• Latent Variable Decomposition: Probabilistic Framework
• Sparse Overcomplete Decomposition
• Conclusions 

– In conclusion…
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Thesis Contributions

• Modeling single-channel acoustic signals – important 
applications in various fields

• Provides a probabilistic framework – amenable to 
principled extensions and improvements

• Incorporates the idea of sparse coding in the framework
• Points to other extensions – in the form of priors
• Theoretical analysis of models and algorithms
• Applicability to other data domains

• Six refereed publications in international conferences and 
workshops (ICASSP, ICA, NIPS), two manuscripts under 
review (IEEE TPAMI, NIPS)

Conclusions Thesis Contributions
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Future Work

• Representation
– Other TF representations (eg. constant-Q, gammatone)
– Multidimensional representations (correlograms, higher order 

spectra)
– Utilize phase information in the representation

• Model and Theory

• Applications 

Conclusions Future Work
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Future Work

• Representation

• Model and Theory
– Employ priors on parameters to impose known/hypothesized 

structure (Dirichlet, mixture Dirichlet, Logistic Normal)
– Explicitly model time structure using HMMs/other dynamic models
– Utilize discriminative learning paradigm
– Extract components that form independent subspaces, could be 

used for unsupervised separation
– Relation between sparse decomposition and non-negative ICA
– Extensions/improvements to inference algorithms (eg. tempered 

EM)

• Applications 

Conclusions Future Work
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Future Work

• Representation

• Model and Theory

• Applications 
– Other audio applications such as music transcription, speaker 

recognition, audio classification, language identification etc.
– Explore applications in data-mining, text semantic analysis, brain-

imaging analysis, radiology, chemical spectral analysis etc.

Conclusions Future Work
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